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Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering
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Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation,
and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing
nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands,
have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime.
Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects;
however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that
graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical
response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared.
We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the
retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons,
which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where
intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems
from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms
along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails
to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband
nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the
Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil
the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore
the capability of this class of materials for nonlinear nanophotonic applications.
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I. INTRODUCTION

Nonlinear optics is a promising avenue for all-optical
control of light [1,2] and has many potential applications, such
as in mode locking [3,4], frequency-comb generation [5,6],
optical modulation [7–9], and all-optical switching [10]. Ful-
filling the potential of nonlinear optics is conditional on the
presence of strong light-matter interaction. However, nonlinear
optical effects, which rely on matter-mediated photon-photon
interactions, are naturally weak [11–13]. Therefore, there is
ongoing research, experimental and theoretical, on finding new
materials [12] and new methods [11] to enhance nonlinear
optical effects.

In recent years, two-dimensional materials such as
graphene, transition-metal dichalcogenides (TMDs), and phos-
phorene have attracted interest for nonlinear optical applica-
tions. The quantum confinement in low-dimensional materi-
als enhances electron-light interaction and yields intriguing
nonlinear optical effects. The nonlinear optical nonlinearity
has been measured in graphene [14–21], TMDs [22–25], and
phosphorene [26,27], among which graphene has shown the
strongest optical nonlinearity. In the fiber-optics communi-
cation frequency window (∼1.3–1.6 μm), graphene’s third-
order susceptibility measured by the third-harmonic generation
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(THG) experiment is ∼10−15 m2/V2 [21]. Also, there are a
number of theoretical papers on the nonlinear optical properties
of graphene [28–38] and nanostructured graphene, such as
graphene nanoribbons (GNRs) [39,40].

In addition to the quantum confinement in low-dimensional
materials, the plasmonic field enhancement is another promis-
ing approach for amplifying nonlinear optical effects [11].
Surface plasmon polaritons, or simply plasmons, are col-
lective oscillations of electrons in response to an external
electromagnetic field [41–44]. Plasmons propagate with large
wave vectors, far from the light cone (i.e., in the nonretarded
regime). As a result, they can concentrate the electromagnetic
energy in the subwavelength limit and, consequently, can
enhance the nonlinear optical response [11]. There are many
papers on the plasmon-enhanced nonlinearity in graphene,
graphene nanoislands, and GNRs [13,32,45–50]. At the near-
infrared (near-IR) frequencies and for ∼10-nm-wide GNRs,
the calculated plasmon-enhanced Kerr susceptibility and THG
susceptibility are on the order of 10−12 and 10−14 m2/V2,
respectively [45]. Although plasmons enhance the optical
nonlinearity in GNRs, they make the nonlinear optical re-
sponse narrowband in the frequency domain. (GNRs provide
a weakly dissipative environment for plasmons, so plasmon
resonances are sharp and narrow in the frequency domain [51].)
Adding to this the fact that the plasmon frequencies are highly
sensitive to the carrier density, nanostructure geometry, and
edge termination, it becomes clear that a strong nonlinear mate-
rial that is broadband in the retarded regime would be preferred
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FIG. 1. Schematic of a GNR on a substrate. The incident light
with frequency ω causes the third-order Kerr response (oscillating
with ω) and the THG response (oscillating with 3ω).

to the plasmon enhancement approach. Such a material could
be embedded in on-chip semiconductor waveguides, for the
purpose of integrated nanophotonics.

Here we show that GNRs have a remarkably strong
third-order optical response in the long-wavelength regime
and over a broad frequency range, from terahertz to the
nearinfrared. We calculate the third-order Kerr susceptibility
and the third-harmonic generation (THG) susceptibility for
graphene nanoribbons (GNRs) in the long-wavelength limit. At
the telecommunication frequency (∼1.3–1.6 μm), the GNRs
third-order Kerr susceptibility and THG susceptibility can be
as high as ∼10−10 and ∼10−14 m2/V2, respectively.

We use a perturbative approach in solving a quantum-
mechanical master equation [51,52] that accounts for electron
scattering mechanisms accurately and we show that, in the re-
tarded regime, electron scattering plays a critical role in the op-
tical nonlinearity of GNRs, which cannot be captured with the
commonly used relaxation-time approximation. At terahertz
frequencies, the intraband (particularly, intrasubband) optical
transitions are dominant. In this regime, the nonlinearity (in
particular, the third-order Kerr nonlinearity) is strong because
of the jagged shape of the electron-energy distribution, caused
by the interband electron-scattering mechanisms along with
the intraband inelastic electron scattering mechanisms. Only
an accurate quantum-mechanical model for electron scattering
is able to capture this phenomenon. In contrast, semiclassical
approaches, such as the relaxation-time approximation, fail
to capture the jaggedness of the electron-energy distribution
and result in a significant underestimation of the intraband
nonlinearity. At the midinfrared (mid-IR) to near-IR frequen-
cies, where the interband optical transitions are dominant, the
relaxation-time approximation significantly overestimates the
Kerr nonlinearity. These findings underscore the critical role of
electron scattering in the optical nonlinearity of nanostructured
graphene, and also suggest GNRs as a suitable core material
for nonlinear integrated nanophotonic applications.

II. METHODS

Here we study the nonlinear optical response of GNRs
illuminated by a TM-polarized light propagating along the
ribbon (Fig. 1). We base our analysis on the self-consistent-
field approximation within the Markovian master-equation for-
malism (SCF-MMEF), a method we developed in our previous
papers [51,52]. In the SCF-MMEF, we perturbatively solve the
following master equation describing the time evolution of the
density matrix in the Schrödinger picture:

dρe(t)

dt
= − i

h̄
[He,ρe(t)] − i

h̄
[VSCF(t),ρe(t)] + D{ρe(t)}. (1)

Here ρe(t) is the electron density matrix, He is the unperturbed
electronic Hamiltonian,VSCF(t) is the self-consistent field, and
D{ρe(t)} is the dissipator. The simplest form of the dissipator
would be within the relaxation-time approximation (RTA),
i.e., D{ρe(t)} = − ρe(t)

2τ
(with τ being the relaxation time) [45],

and we call it the RTA dissipator. The RTA assumes that all
scattering mechanisms occur on the same time scales and are
energy independent. However, in order to accurately account
for electron scattering, we use a Lindblad-type dissipator
within the Born-Markov approximation that for brevity we call
it the Lindblad dissipator [52–54]. In our calculations we ac-
count for electron scattering via acoustic phonons, longitudinal
optical phonons, ionized impurities, surface-optical phonons,
and line-edge roughness. After solving Eq. (1) for the electron
density matrix (ρe), we use it to calculate the macroscopic
quantities such as the nonlinear conductivity σ (s,ps ), and the
nonlinear susceptibility χ (s,ps ), where s and ps denote the
response order and the corresponding harmonic, respectively.
The second-order optical response vanishes because of the
lattice centrosymmetry; therefore, we calculate the optical
response up to third order. The third-order electron-density
matrix oscillates either at the fundamental frequency (i.e., Kerr
nonlinearity) or at three times the fundamental frequency (i.e.,
THG) [Fig. 1(a)]. For the Kerr nonlinearity (s,ps) = (3,1), and
for the THG (s,ps) = (3,3). For details of the SCF-MMEF and
the Lindblad dissipator, see the Appendix.

III. RESULTS AND DISCUSSION

A. Intraband regime

At terahertz frequencies (100 GHz–10 THz) and at large-
enough sheet carrier densities (�1011 cm2), the intraband
(intrasubband) optical transitions dominate and the interband
optical transitions are negligible. Therefore, it is appropriate to
show the nonlinear optical behavior in terms of the conductivity
σ (s,ps )(ω). The conductivity is σ

(s,ps )
l /W , with σ

(s,ps )
l and W

being the line conductivity and the GNR width, respectively.
Here we focus on the armchair graphene nanoribbons (aG-
NRs), which have stronger optical nonlinearity than the zigzag
graphene nanoribbons (zGNRs). The results for the nonlinear
response of the zGNRs are provided in the Supplemental
Material (SM) [55].

aGNRs are categorized into three families, based on the
number of dimers in a unit cell: 3N , 3N + 1, and 3N + 2, with
N being an integer [56]. Dimers are the carbon pairs oriented
along the ribbon. (3N + 2)-aGNRs are semimetallic and have
the smallest band gap. However, by increasing the width, the
band gap in all three families decreases. Calculation of the
optical nonlinearity of nanomaterials requires an accurate band
structure. So we use a third-nearest-neighbor tight-binding
method to calculate the band structure of hydrogen-passivated
GNRs. These results are in excellent agreement with the results
of the ab initio calculations [56]. According to Son et al., who
used the local spin density approximation in their calculations,
bond shortening near the edges of aGNRs, which happens
because of hydrogen termination, has a crucial effect on their
band structure [56]. Therefore, in our tight-binding method,
we modify the edge-bond lengths, which corresponds to the
change of hopping energies between carbon atoms at the edges.
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FIG. 2. The absolute value of the the third-order Kerr conductivity
(solid) and the THG conductivity (dashed) for three different aGNRs,
on two different substrates: SiO2 (left) and hBN (right). The green
shaded area shows the third-order conductivity calculated via the RTA
dissipator for the relaxation times in the range of 10−14–10−11 s. The
sheet carrier density is 5 × 1012 cm−2 (i.e., the line carrier density
is ∼5 × 106 cm−1). The third-order conductivity is normalized to
σ0 = e2/h.

The details of the calculation of the aGNR band structure are
provided in [51].

We begin by looking at the frequency dependence of
the third-order conductivity σ (3)(ω). In Fig. 2 we show the
magnitude of the third-order conductivity for three ∼10-nm-
wide aGNRs on two different substrates: SiO2 and hBN.
The third-order conductivity asymptotically drops as ω−3;
however, different characteristic time scales corresponding
to different electron scattering mechanisms cause deviations
from the ω−3 behavior. Figure 2 also shows that, between the
two substrates, supported-on-hBN aGNRs show a moderately
stronger nonlinearity. However, independent of the substrate
or the aGNR family type, the Kerr nonlinearity is at least an
order of magnitude larger than the THG. The green shaded
areas in Fig. 2 illustrate the third-order conductivity calculated
via the RTA dissipator for the relaxation times in the range
of 10−14–10−11 s. It can bee seen that, even for relaxation
times as large as 10−11 s, the RTA dissipator significantly
underestimates the third-order conductivity obtained with the
accurate Lindblad-type dissipator.

To understand the dependence ofσ (3)(ω) on the aGNR width
and carrier density, we calculate the third-order conductivity
for different (3N + 2)-aGNRs at ω = 10 THz (∼=41 meV)
(Fig. 3). The results for zGNRs and other types of aGNRs
are provided in the Supplemental Material [55]. As Fig. 3
shows, the third-order nonlinearity has a strong dependence
on the line carrier density and can be tuned over several
orders of magnitude by changing the line carrier density or,
equivalently, the Fermi level. We also calculated σ 3(ω) via the
RTA dissipator with the relaxation times extracted from the
dc mobility. The RTA dissipator (open circles in Fig. 3) not
only fails to capture the carrier-density dependence, but also
significantly underestimates the nonlinear conductivity in the
intraband regime. To understand the reason for these behaviors,
we look at the electron-energy distribution.
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FIG. 3. The absolute value of the third-order THG conductivity
(top) and the third-order Kerr conductivity (bottom) at 10 THz
and for different (3N + 2)-aGNRs. The third-order conductivity is
calculated via the Lindblad dissipator (solid) and the RTA dissipator
(open). The RTA dissipator significantly underestimates the third-
order conductivity.

The perturbation expansion of the lth-subband electron-
energy distribution is fl(k) = f 0

l (k) + f
(1,1)
l (k) + · · · , where

f 0
l (k) is the lth-subband Fermi-Dirac distribution and f

(1,1)
l (k)

is the lth-subband first-order first-harmonic electron-energy
distribution calculated from ρ(1,1)

e . Figure 4 shows the first-
order electron-energy distribution for the first conduction
subband of a 38-aGNR, which is one of the aGNRs appearing
in the valley in Fig. 3, for different carrier densities. The large
third-order conductivity of GNRs occurs because the electron-
energy distribution is jagged. At their onset, the inelastic intra-
band scattering mechanisms and the intersubband scattering
mechanisms cause dips in the electron-energy distribution.
The jaggedness is more pronounced near the subband extrema
(owing to the large electronic density of states) and also close
to the maximum of f

(1,1)
l (k). The f

(1,1)
l (k) maximum occurs

approximately at the Fermi energy; therefore, when the Fermi
level is far from the subband extrema, the effect of electron
scattering is dampened. This explains the carrier-density de-
pendence of σ 3(ω) in Fig. 3. Unlike the Lindblad dissipator,
the RTA dissipator fails to capture these quantum-mechanical
phenomena.

In short, electron scattering plays a nontrivial role in the
strong third-order optical response of GNRs at THz frequen-
cies and requires an accurate quantum-mechanical model to be
captured, rather than simplified semiclassical models based on
the RTA. As a consequence of the complicated interplay among
different electron-scattering mechanisms and the Fermi-level
position, the third-order nonlinearity of GNRs [particularly
(3N + 2)-aGNRs] can be tuned by varying electronic density,
for example by a back gate.
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FIG. 4. (a) The electron-energy dispersion of a 38-aGNR. The arrows show a few of the electronic transitions due to different electron
scattering mechanisms. (b) The first-order electron-energy distribution for the first conduction subband of the 38-aGNR for three different
carrier densities, calculated via the Lindblad dissipator (left) and the RTA dissipator (right). The intrasubband inelastic electron scattering
mechanisms and intersubband electron-scattering mechanisms cause dips in the electron-energy distribution. For the 5 × 1012 cm−2 carrier
density, the Fermi level is far from the subbands extrema and the electron scattering effect is reduced.

B. Interband regime

In the range of mid-IR to near-IR frequencies, photons have
enough energy to mediate interband electronic transitions. In
other words, the nonlinear optical response is dominated by
the interband optical transitions instead of the intraband ones.
Therefore, it is more appropriate to show the nonlinear optical
response in terms of susceptibility χ (s,ps )(ω).

In Fig. 5 we show the third-order susceptibility χ (3)(ω) of
81-, 82-, and 83-aGNRs, which are all approximately 10-nm
wide. The THG susceptibility can be as large as 10−14 m2/V2

in the near-IR and at least three orders of magnitude smaller
than the third-order Kerr susceptibility. The third-order Kerr
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FIG. 5. (a) The magnitude of the THG susceptibility. The
Lindblad-dissipator results (solid) and RTA-dissipator results
(dashed) are very close to each other. (b) The magnitude (top row)
and the phase (bottom row) of the third-order Kerr susceptibility. The
RTA dissipator significantly overestimates the third-order Kerr sus-
ceptibility magnitude and also does not calculate the phase accurately.
The dark background shade in the panels denotes the near-IR region.

susceptibility can be as large as 10−10 m2/V2, considerably
greater than the plasmon-enhanced third-order Kerr suscepti-
bility, which can be as large as 10−12 m2/V2 [45]. In addition
to the larger third-order susceptibility, the long-wavelength-
limit nonlinear response is more broadband than the plasmon-
enhanced nonlinear response. In GNRs, owing to the low
electronic density of states and thus lower rates of electron
scattering, plasmon resonances are sharp and narrowband [51].

In order to compare the RTA dissipator and the Lindblad
dissipator, we also calculate the third-order susceptibility via
the RTA dissipator (dashed curves in Fig. 5). We extracted the
relaxation times from the dc mobility. The THG susceptibility
calculated via the RTA dissipator and the Lindblad dissipator
are in a good agreement with each other; however, the RTA
dissipator significantly overestimates the Kerr nonlinearity,
unlike in the intraband regime, in which the RTA dissipator
underestimates the Kerr nonlinearity by several orders of
magnitude. Moreover, the RTA dissipator does not calculate
the phase of the third-order Kerr susceptibility accurately. The
phase of χ (3,1)(ω) is as important as its magnitude, because
it determines how the GNR χ (3,1)(ω) adds to the χ (3,1)(ω)
of other materials in the waveguide. The bottom line is that
the relaxation time corresponding to the dc mobility fails to
reproduce the Kerr nonlinearity in the interband regime.

Figure 5 also shows that, in the interband regime, the third-
order susceptibility has a very weak dependence on the carrier
density or, equivalently, on the Fermi energy. In the interband
regime, the dominant optical transitions are those happening
between a full subband in the valence band and an empty
subband in the conduction band; both subbands involved are far
from the Fermi energy. However, this phenomenon makes the
frequency dependence of the third-order susceptibility quite
complex. When the frequency equals the interband oscillation
energy, it is an onset of a new pathway for optical transitions
and the susceptibility shows sharp jumps [Fig. 6(a)]. This
means that the third-order susceptibility strongly depends on
the electron-energy dispersion, and consequently depends on
the GNR edge orientation and width.
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FIG. 6. (a) The electron energy dispersion of a 83-aGNR. The arrows show interband optical transitions. (b) The third-order Kerr
susceptibility at the telecommunication frequency for different (3N )-aGNRs (triangle), (3N + 1)-aGNRs (diamond), and (3N + 2)-aGNRs
(circle). The aGNRs are supported on SiO2 (left) and hBN (right). We calculated the third-order Kerr susceptibility via the Lindblad dissipator.
(c) The characteristic electric field at the telecommunication frequency for different aGNRs on SiO2 (left) and hBN (right).

For understanding the width dependence of the GNR optical
nonlinearity, we calculate the third-order Kerr susceptibility at
a telecommunication frequency (1.55 μm) for different aGNRs
[Fig. 6(b)]. The aGNR widths are in the range of ∼3 to 12 nm.
The Kerr susceptibility can be as large as 10−10 m2/V2, when
an interband oscillation energy falls in the telecommunication
window. This suggests that, by edge and strain engineering, one
can maximize the GNRs Kerr susceptibility at the frequencies
of interest. Like in the intraband regime, the hBN-supported
aGNRs show a stronger optical nonlinearity than those on
SiO2. It should be noted that the Kerr nonlinear susceptibility
of the zGNRs is at least an order of magnitude smaller than the
Kerr nonlinear susceptibility of the aGNRs; see the SM [55]
for details.

In addition to the third-order susceptibility, another impor-
tant figure of merit in nonlinear-optics applications (e.g., all-
optical switching) is the phase shift caused by the nonlinearity,
which must ideally be about π for efficient switching [12].
The phase shift �φ is equal to E2/E2

0 , with E being the
electric field. E0 is the characteristic electric field and equals√

|χ (1,1)|
|χ (3,1)| . The lower the characteristic electric field, the lower

the electric field required to achieve the same phase change.
Figure 6(c) shows the characteristic electric field for different
aGNRs at the telecommunication frequency. The characteristic
field can be as low as ∼5 kV/cm. Therefore, for a phase shift
comparable to π , the corresponding optical field intensity can
be as low as 0.3 MW/cm2. Also, as a direct consequence of
larger |χ (3,1)| for hBN-supported aGNRs, the characteristic
electric field is smaller for aGNRs supported on hBN. In short,
large third-order Kerr susceptibility, along with a relatively
small characteristic electric field [12], make GNRs a promising
material for nonlinear nanophotonics applications, and partic-
ularly for all-optical switching applications.

IV. CONCLUSION

In the long-wavelength regime, the third-order suscepti-
bility (particularly the Kerr susceptibility) of GNRs (par-
ticularly, aGNRs) is remarkably large and also broadband,
from terahertz to the near infrared. The large third-order
susceptibility lowers the required optical field intensity and
makes GNRs a promising material for integrated nonlinear
nanophotonics applications. We used a quantum-mechanical
master equation that accurately accounts for electron scatter-
ing to show that, in the retarded regime, electron scattering
plays a critical role in the optical nonlinearity of GNRs. At
terahertz frequencies, where the intraband optical transitions
are dominant, the strong nonlinearity (in particular, third-
order Kerr nonlinearity) stems from the jagged shape of the
electron energy distribution, caused by the interband electron
scattering mechanisms along with the intraband inelastic scat-
tering mechanisms. The relaxation-time approximation fails
to capture this quantum-mechanical phenomenon and results
in a significant underestimation of the intraband nonlinearity
and a significant overestimation of the interband nonlinearity.
At the midinfrared and near-infrared frequencies, the interband
optical transitions are dominant and Kerr nonlinearity of GNRs
can be as large as 10−10 m2/V2. Unlike in the intraband regime,
the relaxation-time approximation significantly overestimates
the Kerr nonlinearity in the interband regime. In short, electron
scattering has a critical effect on the optical nonlinearity of
nanostructured graphene and must be accurately computed
within a quantum transport framework.
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APPENDIX: NONLIEAR RESPONSE VIA SCF-MMEF

Here we use the SCF-MMEF along with the perturbation
theory to calculate the nonlinear optical response of GNRs. The
self-consistent potential energy, with the frequency ofω and the
wave vector of q, can be written as VSCF(t) = VSCFe

iqx−iωt +
V ∗

SCFe
−iqx+iωt , where the x axis is aligned along the GNR.

By assuming the self-consistent field as the perturbation, the
s-order ps-harmonic conductivity, we start with the continuity
equation −eωn

(s,ps )

 = qJ

(s,ps )

 , where n
 and J
 are, respec-

tively, the induced charge line density and the induced current
line density and are assumed to be uniformly distributed across
the ribbon. (Note: 
denotes line.) Also, the constitutive relation
between the self-consistent electric field and the current density
is J

(s,ps )

 = σ

(s,ps )

 (ESCF)ps+ s−ps

2 (E∗
SCF)

s−ps
2 , with σ
 being the

line conductivity. Incorporating the continuity equation, the
constitutive equation, and −eESCF = −iqVSCF, we obtain

σ
(s,ps )

 (q,ω) = (−i)ps eω

q2

(
e

q

)s−1

P
(s,ps )

 (q,ω). (A1)

In the above equation, P
(s,ps )

 is the line polarization and is

defined as the ratio between the induced charge line density
and the self-consistent field:

P
(s,ps )

 (q,ω) = −en

(s,ps )
l (q,ω)

VSCF
ps+ s−ps

2 V ∗
SCF

s−ps
2

. (A2)

The s-order line polarization defined above has units of
C/mJs . To avoid confusion, we denote the (volume) polar-
ization (the dipole moment volume density) with P . The
(volume) polarization P and the induced charge volume

density relate as iqP (s,ps ) = − en
(s,ps )



Wd
, where W and d are

the width and the thickness of the GNR, respectively. In-
corporating this equation, the constitutive equation P (s,ps ) =
ε0χ

(s,ps )(ESCF)ps+ s−ps
2 (E∗

SCF)
s−ps

2 , and Eq. (A1) yields

χ (s,ps )(q,ω) = iσ (s,ps )

ε0psωd
, (A3)

where χ (s,ps ) is the nonlinear susceptibility and σ = σ
/W

denotes the nonlinear (sheet) conductivity. Knowing the non-
linear conductivity [Eq. (A1)] and, consequently, the nonlinear
susceptibility [Eq. (A3)] requires knowing the polarization
P

(s,ps )

 . We generalize the SCF-MMEF [51,52] to calculate

the nonlinear polarization. We start with the total Hamil-
tonian within the self-consistent-field approximation that is

H(t) = He + VSCF(t) + Hcol + Hph. He is the unperturbed
Hamiltonian of the electronic system, with the eigenkets
and eigenenergies of He being represented by |kl〉 and εkl ,
respectively. k is the wave vector along the x axis, l is
the band index. (Note: l denotes the subband index and 


denotes line.) Hph denotes the free Hamiltonian of the phonon
bath. Also, Hcol corresponds to the collision Hamiltonian. All
interaction Hamiltonian can be written in the following gen-
eral form Hint = ∑

kq,l′l Mint(q)(k + ql′|kl)c†k+ql′ckl ⊗ Bq,v,

where c and c† are the electron annihilation and creation
operators, respectively.Mint(q) is the interaction strength.Bq,v

operates on the phonon bath and (k + ql′|kl) is the overlap
integrals. The details of the interaction Hamiltonian and also,
the self-consistent field calculation are provided in [51]. The
polarization in the second-quantization representation reads

P
(s,ps )

 (q,ω) = − e

L

∑
k,l′,l

〈c†klck+psql′ 〉(s,ps )

VSCF
ps+ s−ps

2 V ∗
SCF

s−ps
2

× (kl|k + psql′), (A4)

where 〈c†klck+psql′ 〉 = tre{c†klck+psql′ρe} is the expectation value
of the coherences. Now we calculate the time dependence of
the expected value of the coherences via a quantum master
equation. Within the Born approximation and Markov approx-
imation [51–54], the equation of motion of the electron-density
matrix is

dρe(t)

dt
= − i

h̄
[He,ρe(t)] − i

h̄
[VSCF(t),ρe(t)]

− 1

h̄2

∫ ∞

0
dτ trph{[Hcol,[H̃col(−τ ),ρe(t)

⊗ ρph]]}. (A5)

The tilde symbol denotes the operators in the interaction
picture, i.e., Õ(t) = U†

0(t)O(t)U0(t). U0 is the unitary time-
evolution operator corresponding to He + VSCF(t) + Hph.
Now we use a perturbative approach to solve Eq. (A5) for the
density operator. The perturbation expansion of the electron-
density matrix is ρe(t) = ∑

s ρ(s)
e (t) = ∑

s,ps
ρ

(s,ps )
e e−ipsωt +

H.c. By substituting the perturbation expansion of the density
matrix into Eq. (A5), solving it for the time harmonic solutions,
knowing that VSCF(t) has no diagonal elements, and keeping
only the s-order and ps-harmonic terms, we get

−iωρ(s,ps )
e = − i

h̄
[He,ρ

(s,ps )
e ] − i

h̄
[VSCF,ρ

(s−1,ps±1)
e ]

− 1

h̄2

∫ ∞

0
dτ trph{[Hcol,[e

− i
h̄

(He+Hph)τ

×Hcole
i
h̄

(He+Hph)τ ,ρ(s,ps )
e ⊗ ρph]]}. (A6)

Now, by following the same procedure as in Ref. [52], we
use the above equation to obtain the equation of motion for
〈c†klck+psql′ 〉(s,ps ):

h̄psω〈c†klck+psql′ 〉(s,ps ) = (εk+psql′ − εkl)〈c†klck+psql′ 〉(s,ps )

+VSCF

∑
k′mm′

tre
{[

c
†
k′+qm′ck′m,ρ(s−1,ps−1)

e

]
c
†
klck+psql′

}
(k′ + qm′|k′m)
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+V ∗
SCF

∑
k′mm′

tre
{[

c
†
k′−qm′ck′m,ρ(s−1,ps+1)

e

]
c
†
klck+psql′

}
(k′ − qm′|k′m)

+ iπ
∑

k′mm′g

[δ(εk′m − εkl ± h̄ωg)(W±
k′−k,g ± �Wk′−k,gfkl)

× (k + psql′|k′ + psqm′)(k′m|kl)〈c†k′mck′+psqm′ 〉(s,ps )]

+ iπ
∑

k′mm′g

[δ(εk′+psqm′ − εk+psql′ ± h̄ωg)(W±
k′−k,g ± �Wk′−k,gfk+psql′ )

× (k′m|kl)(k + psql′|k′ + psqm′)〈c†k′mck′+psqm′ 〉(s,ps )]

− iπ
∑

k′mm′g

[δ(εk′m′ − εkm ± h̄ωg)(W∓
k′−k,g ∓ �Wk′−k,gfk′m′)

× (k′m′|kl)(km|k′m′)〈c†kmck+psql′ 〉(s,ps )]

− iπ
∑

k′mm′g

[δ(εk′+psqm − εk+psqm′ ± h̄ωg)(W∓
k′−k,g ∓ �Wk′−k,gfk′+psqm)

× (k + psql′|k′ + psqm)(k′ + psqm|k + psqm′)〈c†klck+psqm′ 〉(s,ps )]. (A7)

W±
k′−k,v is the scattering weight. The expression for the scattering weights of the acoustic-phonon scattering, longitudinal-optical

scattering, ionized-impurity scattering, line-edge-roughness scattering, and the surface-optical-phonon (SO-phonon) scattering
is provided in Ref. [51].
Phonon–phonon scattering results in a finite phonon lifetime [57,58]. This, of course, holds for SO phonons in polar materials,
such as SiO2 or hBN, as well. The finite lifetime of SO phonons is equivalent to their broadened energy (h̄�ωSO), which can be
seen in their transmittance spectra obtained via spectrometry. We extract the broadening of the SO-phonon energies in SiO2 and
hBN from their complex dielectric function [52]. We consider the full width at half maximum (FWHM) of the imaginary part of
the dielectric function at a SO-phonon resonance as its energy broadening. The broadening energy of SO phonons in SiO2 and
hBN is approximately 4–6 meV, which is not negligible and its effect on the electron-SO-phonon scattering needs to be taken into
account. To do so, we substitute a SO-phonon mode at ωSO with the corresponding scattering weight of W with three SO-phonon
modes at ωSO − �ωSO

2 , ωSO, and ωSO + �ωSO
2 with the corresponding scattering weights of 1

4W , 1
2W , and 1

4W , respectively.
Depending on the nature of optical transitions in different regimes of interest, Eq. (A7) can be simplified, considerably. In
the intraband regime, we could assume that for l 
= l′, 〈c†klck+psql〉(s,ps ) = 0. In the interband and the long-wavelength regime,
the optical transitions between the corresponding valence and conduction subbands are dominant. As a result, Eq. (A7) can
be decoupled into pairs of lth-conduction and lth-valence subbands. In order to solve Eq. (A7) numerically, we discretize the
Brillouin zone and rewrite Eq. (A7) in the matrix form:

E (s,ps )X (s,ps ) = F (s,ps ) + i(R(s,ps ) − R′(s,ps ) − R′′(s,ps ))X (s,ps ), (A8)

where

E (s,ps )
{kl′l}{k′m′m} = δ{kl′l}{k′m′m}(εkl − εk+psql′ + h̄ω), (A9aa)

X (s,ps )
{kl′l} = 〈c†klck+psql′ 〉(s,ps )

VSCF
ps+ s−ps

2 V ∗
SCF

s−ps
2

, (A9ab)

R(s,ps )
{kl′l}{k′m′m} = L

h̄

∑
g

εk′+ps qm′ =εk+ps ql′∓h̄ωg

[W±
k′−k,g ± �Wk′−k,gfk+psql′ ]∣∣∣ ∂εk′+ps qm

∂k′

∣∣∣ (k′m|kl)(k + psql′|k′ + psqm′)

+ L

h̄

∑
g

εk′m=εkl∓h̄ωg

[W±
k′−k,g ± �Wk′−k,gfkl]∣∣∣ ∂εk′m

∂k′

∣∣∣ (k + psql′|k′ + psqm′)(k′m|kl), (A9ac)

R′(s,ps )
{kl′l}{kl′m} = L

h̄

∑
m′g

εk′m′=εkm∓h̄ωg

[W∓
k′−k,g ∓ �Wk′−k,gfk′m′]∣∣∣ ∂εk′m

∂k′

∣∣∣ (k′m′|kl)(km|k′m′), (A9ad)
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R′′(s,ps )
{kl′l}{km′l} = L

h̄

∑
mg

εk′+ps qm=εk+ps qm′∓h̄ωg

[W∓
k′−k,g ∓ �Wk′−k,gfk′+psqm]∣∣∣ ∂εk′+ps qm

∂k′

∣∣∣ (k + psql′|k′ + psqm)(k′ + psqm|k + psqm′) . (A9ae)

And for s > 1,

F (s,ps )
{kl′l} =

∑
k′m

〈c†klck+(ps−1)qm〉(s−1,ps−1)

VSCF
ps+ s−ps

2 −1V ∗
SCF

s−ps
2

(k + psql′|k + (ps − 1)qm)

−
∑
k′m

〈c†k+qmck+psql′ 〉(s−1,ps−1)

VSCF
ps+ s−ps

2 −1V ∗
SCF

s−ps
2

(k + qm|kl)

+
∑
k′m

〈c†klck+(ps+1)qm〉(s−1,ps+1)

VSCF
ps+ s−ps

2 V ∗
SCF

s−ps
2 −1

(k + psql′|k + (ps + 1)qm)

−
∑
k′m

〈c†k−qmck+psql′ 〉(s−1,ps+1)

VSCF
ps+ s−ps

2 V ∗
SCF

s−ps
2 −1

(k − qm|kl).

(A9b)

It should be noted that 〈c†klck−psql′ 〉(s,−ps ) = [〈c†k−psql′ckl〉(s,ps )]
∗
. For s = 1,F (1,1)

{kl′l} = (fkl − fk+ql′ )(k + ql′|kl). By solving Eq. (A8)
for X (s,ps ), we use Eq. (A4) to calculate the polarization, and consequently, the nonlinear conductivity and the nonlinear
susceptibility.

[1] R. W. Boyd, Nonlinear Optics, Third Edition (Academic, New
York 2008).

[2] E. Garmire, Opt. Express 21, 30532 (2013).
[3] E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[4] R. Paschotta and U. Keller, Appl. Phys. B 73, 653 (2001).
[5] P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth,

and T. Kippenberg, Nature (London) 450, 1214 (2007).
[6] T. Sakamoto, T. Kawanishi, and M. Izutsu, Opt. Lett. 32, 1515

(2007).
[7] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F.

Wang, and X. Zhang, Nature (London) 474, 64 (2011).
[8] G. T. Reed, G. Mashanovich, F. Gardes, and D. Thomson, Nat.

Photonics 4, 518 (2010).
[9] Z. Sun, A. Martinez, and F. Wang, Nat. Photonics 10, 227

(2016).
[10] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R.

Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich
et al., Nat. Photonics 3, 216 (2009).

[11] M. Kauranen and A. V. Zayats, Nat. Photonics 6, 737 (2012).
[12] J. Khurgin, Appl. Phys. Lett. 104, 161116 (2014).
[13] J. D. Cox and F. J. Garcia de Abajo, Nat. Commun. 5, 5725

(2014).
[14] E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A.

Mikhailov, Phys. Rev. Lett. 105, 097401 (2010).
[15] T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G.-Q.

Lo, D.-L. Kwong, J. Hone, and C. W. Wong, Nat. Photonics 6,
554 (2012).

[16] R. Wu, Y. Zhang, S. Yan, F. Bian, W. Wang, X. Bai, X. Lu, J.
Zhao, and E. Wang, Nano Lett. 11, 5159 (2011).

[17] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout,
and P. Kockaert, Opt. Lett. 37, 1856 (2012).

[18] N. Kumar, J. Kumar, C. Gerstenkorn, R. Wang, H.-Y. Chiu, A. L.
Smirl, and H. Zhao, Phys. Rev. B 87, 121406 (2013).

[19] S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M.
Osgood, Jr., Phys. Rev. X 3, 021014 (2013).

[20] N. Vermeulen, D. Castelló-Lurbe, J. L. Cheng, I. Pasternak, A.
Krajewska, T. Ciuk, W. Strupinski, H. Thienpont, and J. Van
Erps, Phys. Rev. Appl. 6, 044006 (2016).

[21] A. Säynätjoki, L. Karvonen, J. Riikonen, W. Kim, S. Mehravar,
R. A. Norwood, N. Peyghambarian, H. Lipsanen, and K. Kieu,
ACS Nano 7, 8441 (2013).

[22] D. Li, W. Xiong, L. Jiang, Z. Xiao, H. Rabiee Golgir, M. Wang,
X. Huang, Y. Zhou, Z. Lin, J. Song et al., ACS Nano 10, 3766
(2016).

[23] R. Woodward, R. Murray, C. Phelan, R. de Oliveira, T. Runcorn,
E. Kelleher, S. Li, E. de Oliveira, G. Fechine, G. Eda et al., 2D
Mater. 4, 011006 (2016).

[24] R. Wang, H.-C. Chien, J. Kumar, N. Kumar, H.-Y. Chiu, and H.
Zhao, ACS Appl. Mater. Interfaces 6, 314 (2013).

[25] A. Säynätjoki, L. Karvonen, H. Rostami, A. Autere, S. Mehravar,
A. Lombardo, R. A. Norwood, T. Hasan, N. Peyghambarian, H.
Lipsanen et al., Nat. Commun. 8, 893 (2017).

[26] N. Youngblood, R. Peng, A. Nemilentsau, T. Low, and M. Li,
ACS Photonics 4, 8 (2017).

[27] H.-Y. Wu, Y. Yen, and C.-H. Liu, Appl. Phys. Lett. 109, 261902
(2016).

[28] S. Mikhailov, Europhys. Lett. 79, 27002 (2007).
[29] S. A. Mikhailov, Phys. Rev. B 93, 085403 (2016).
[30] A. Marini, J. D. Cox, and F. J. García de Abajo, Phys. Rev. B

95, 125408 (2017).
[31] H. Rostami and M. Polini, Phys. Rev. B 93, 161411

(2016).
[32] H. Rostami, M. I. Katsnelson, and M. Polini, Phys. Rev. B 95,

035416 (2017).
[33] J. Cheng, N. Vermeulen, and J. Sipe, New J. Phys. 16, 053014

(2014).

245403-8

https://doi.org/10.1364/OE.21.030532
https://doi.org/10.1364/OE.21.030532
https://doi.org/10.1364/OE.21.030532
https://doi.org/10.1364/OE.21.030532
https://doi.org/10.1007/BF01081309
https://doi.org/10.1007/BF01081309
https://doi.org/10.1007/BF01081309
https://doi.org/10.1007/BF01081309
https://doi.org/10.1007/s003400100726
https://doi.org/10.1007/s003400100726
https://doi.org/10.1007/s003400100726
https://doi.org/10.1007/s003400100726
https://doi.org/10.1038/nature06401
https://doi.org/10.1038/nature06401
https://doi.org/10.1038/nature06401
https://doi.org/10.1038/nature06401
https://doi.org/10.1364/OL.32.001515
https://doi.org/10.1364/OL.32.001515
https://doi.org/10.1364/OL.32.001515
https://doi.org/10.1364/OL.32.001515
https://doi.org/10.1038/nature10067
https://doi.org/10.1038/nature10067
https://doi.org/10.1038/nature10067
https://doi.org/10.1038/nature10067
https://doi.org/10.1038/nphoton.2010.179
https://doi.org/10.1038/nphoton.2010.179
https://doi.org/10.1038/nphoton.2010.179
https://doi.org/10.1038/nphoton.2010.179
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2016.15
https://doi.org/10.1038/nphoton.2009.25
https://doi.org/10.1038/nphoton.2009.25
https://doi.org/10.1038/nphoton.2009.25
https://doi.org/10.1038/nphoton.2009.25
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1063/1.4873704
https://doi.org/10.1063/1.4873704
https://doi.org/10.1063/1.4873704
https://doi.org/10.1063/1.4873704
https://doi.org/10.1038/ncomms6725
https://doi.org/10.1038/ncomms6725
https://doi.org/10.1038/ncomms6725
https://doi.org/10.1038/ncomms6725
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1103/PhysRevLett.105.097401
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1038/nphoton.2012.147
https://doi.org/10.1021/nl2023405
https://doi.org/10.1021/nl2023405
https://doi.org/10.1021/nl2023405
https://doi.org/10.1021/nl2023405
https://doi.org/10.1364/OL.37.001856
https://doi.org/10.1364/OL.37.001856
https://doi.org/10.1364/OL.37.001856
https://doi.org/10.1364/OL.37.001856
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevB.87.121406
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevX.3.021014
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1103/PhysRevApplied.6.044006
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/nn4042909
https://doi.org/10.1021/acsnano.6b00371
https://doi.org/10.1021/acsnano.6b00371
https://doi.org/10.1021/acsnano.6b00371
https://doi.org/10.1021/acsnano.6b00371
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1088/2053-1583/4/1/011006
https://doi.org/10.1021/am4042542
https://doi.org/10.1021/am4042542
https://doi.org/10.1021/am4042542
https://doi.org/10.1021/am4042542
https://doi.org/10.1038/s41467-017-00749-4
https://doi.org/10.1038/s41467-017-00749-4
https://doi.org/10.1038/s41467-017-00749-4
https://doi.org/10.1038/s41467-017-00749-4
https://doi.org/10.1021/acsphotonics.6b00639
https://doi.org/10.1021/acsphotonics.6b00639
https://doi.org/10.1021/acsphotonics.6b00639
https://doi.org/10.1021/acsphotonics.6b00639
https://doi.org/10.1063/1.4972869
https://doi.org/10.1063/1.4972869
https://doi.org/10.1063/1.4972869
https://doi.org/10.1063/1.4972869
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1209/0295-5075/79/27002
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.93.085403
https://doi.org/10.1103/PhysRevB.95.125408
https://doi.org/10.1103/PhysRevB.95.125408
https://doi.org/10.1103/PhysRevB.95.125408
https://doi.org/10.1103/PhysRevB.95.125408
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.93.161411
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1103/PhysRevB.95.035416
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014
https://doi.org/10.1088/1367-2630/16/5/053014


NONLINEAR OPTICAL RESPONSE IN GRAPHENE … PHYSICAL REVIEW B 97, 245403 (2018)

[34] J. L. Cheng, N. Vermeulen, and J. E. Sipe, Phys. Rev. B 91,
235320 (2015).

[35] Y. Wang, M. Tokman, and A. Belyanin, Phys. Rev. B 94, 195442
(2016).

[36] T. Christensen, W. Yan, A.-P. Jauho, M. Wubs, and N. A.
Mortensen, Phys. Rev. B 92, 121407 (2015).

[37] V. A. Margulis, E. Muryumin, and E. Gaiduk, Solid State
Commun. 246, 76 (2016).

[38] V. A. Margulis, E. Muryumin, and E. Gaiduk, Jpn. J. Opt. 19,
065505 (2017).

[39] Y. Wang and D. R. Andersen, J. Phys. D 49, 46LT01
(2016).

[40] Y. Wang and D. R. Andersen, J. Phys.: Condens. Matter 28,
475301 (2016).

[41] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and
M. L. Brongersma, Nat. Mater. 9, 193 (2010).

[42] S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer,
A. A. Requicha, and H. A. Atwater, Adv. Mater. 13, 1501
(2001).

[43] S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101
(2005).

[44] A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and
M. Soljačić, Phys. Rev. Lett. 95, 063901 (2005).

[45] J. D. Cox, I. Silveiro, and F. J. García de Abajo, ACS Nano 10,
1995 (2016).

[46] J. D. Cox and F. J. García de Abajo, ACS Photonics 2, 306
(2015).

[47] J. D. Cox, A. Marini, and F. J. G. De Abajo, Nat. Commun. 8,
14380 (2017).

[48] M. Gullans, D. E. Chang, F. H. L. Koppens, F. J. García de Abajo,
and M. D. Lukin, Phys. Rev. Lett. 111, 247401 (2013).

[49] X. Yao, M. Tokman, and A. Belyanin, Phys. Rev. Lett. 112,
055501 (2014).

[50] A. V. Gorbach, Phys. Rev. A 87, 013830 (2013).
[51] F. Karimi and I. Knezevic, Phys. Rev. B 96, 125417 (2017).
[52] F. Karimi, A. H. Davoody, and I. Knezevic, Phys. Rev. B 93,

205421 (2016).
[53] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press on Demand, Oxford, 2002).
[54] I. Knezevic and B. Novakovic, J. Comput. Electron. 12, 363

(2013).
[55] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.97.245403 for additional details and results,
which includes Refs. [53,54].

[56] Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97,
216803 (2006).

[57] J. M. Ziman, Electrons and Phonons: The Theory of Transport
Phenomena in Solids (Oxford University Press, Oxford, 1960).

[58] G. P. Srivastava, The Physics of Phonons (CRC, Boca Raton,
FL, 1990).

245403-9

https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.91.235320
https://doi.org/10.1103/PhysRevB.94.195442
https://doi.org/10.1103/PhysRevB.94.195442
https://doi.org/10.1103/PhysRevB.94.195442
https://doi.org/10.1103/PhysRevB.94.195442
https://doi.org/10.1103/PhysRevB.92.121407
https://doi.org/10.1103/PhysRevB.92.121407
https://doi.org/10.1103/PhysRevB.92.121407
https://doi.org/10.1103/PhysRevB.92.121407
https://doi.org/10.1016/j.ssc.2016.08.005
https://doi.org/10.1016/j.ssc.2016.08.005
https://doi.org/10.1016/j.ssc.2016.08.005
https://doi.org/10.1016/j.ssc.2016.08.005
https://doi.org/10.1088/2040-8986/aa6b6a
https://doi.org/10.1088/2040-8986/aa6b6a
https://doi.org/10.1088/2040-8986/aa6b6a
https://doi.org/10.1088/2040-8986/aa6b6a
https://doi.org/10.1088/0022-3727/49/46/46LT01
https://doi.org/10.1088/0022-3727/49/46/46LT01
https://doi.org/10.1088/0022-3727/49/46/46LT01
https://doi.org/10.1088/0022-3727/49/46/46LT01
https://doi.org/10.1088/0953-8984/28/47/475301
https://doi.org/10.1088/0953-8984/28/47/475301
https://doi.org/10.1088/0953-8984/28/47/475301
https://doi.org/10.1088/0953-8984/28/47/475301
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1038/nmat2630
https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
https://doi.org/10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z
https://doi.org/10.1063/1.1951057
https://doi.org/10.1063/1.1951057
https://doi.org/10.1063/1.1951057
https://doi.org/10.1063/1.1951057
https://doi.org/10.1103/PhysRevLett.95.063901
https://doi.org/10.1103/PhysRevLett.95.063901
https://doi.org/10.1103/PhysRevLett.95.063901
https://doi.org/10.1103/PhysRevLett.95.063901
https://doi.org/10.1021/acsnano.5b06110
https://doi.org/10.1021/acsnano.5b06110
https://doi.org/10.1021/acsnano.5b06110
https://doi.org/10.1021/acsnano.5b06110
https://doi.org/10.1021/ph500424a
https://doi.org/10.1021/ph500424a
https://doi.org/10.1021/ph500424a
https://doi.org/10.1021/ph500424a
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1038/ncomms14380
https://doi.org/10.1103/PhysRevLett.111.247401
https://doi.org/10.1103/PhysRevLett.111.247401
https://doi.org/10.1103/PhysRevLett.111.247401
https://doi.org/10.1103/PhysRevLett.111.247401
https://doi.org/10.1103/PhysRevLett.112.055501
https://doi.org/10.1103/PhysRevLett.112.055501
https://doi.org/10.1103/PhysRevLett.112.055501
https://doi.org/10.1103/PhysRevLett.112.055501
https://doi.org/10.1103/PhysRevA.87.013830
https://doi.org/10.1103/PhysRevA.87.013830
https://doi.org/10.1103/PhysRevA.87.013830
https://doi.org/10.1103/PhysRevA.87.013830
https://doi.org/10.1103/PhysRevB.96.125417
https://doi.org/10.1103/PhysRevB.96.125417
https://doi.org/10.1103/PhysRevB.96.125417
https://doi.org/10.1103/PhysRevB.96.125417
https://doi.org/10.1103/PhysRevB.93.205421
https://doi.org/10.1103/PhysRevB.93.205421
https://doi.org/10.1103/PhysRevB.93.205421
https://doi.org/10.1103/PhysRevB.93.205421
https://doi.org/10.1007/s10825-013-0474-7
https://doi.org/10.1007/s10825-013-0474-7
https://doi.org/10.1007/s10825-013-0474-7
https://doi.org/10.1007/s10825-013-0474-7
http://link.aps.org/supplemental/10.1103/PhysRevB.97.245403
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.97.216803
https://doi.org/10.1103/PhysRevLett.97.216803



