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Spin-orbit coupling effects in zinc-blende InSb and wurtzite InAs nanowires:
Realistic calculations with multiband k - p method

Tiago Campos,l’2 Paulo E. Faria Junior,"? Martin Gmitra,>> Guilherme M. Sipahi,l’4 and Jaroslav Fabian?

Unstituto de Fisica de Sdo Carlos, Universidade de Sédo Paulo, 13566-590 Sdo Carlos, Sdo Paulo, Brazil
2[nstitute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
3Institute of Physics, P. J. Safdrik University in KoSice, Park Angelinum 9, 04001 Kosice, Slovakia
*Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, USA

@ (Received 19 February 2018; revised manuscript received 25 April 2018; published 6 June 2018)

A systematic numerical investigation of spin-orbit fields in the conduction bands of III-V semiconductor
nanowires is performed. Zinc-blende (ZB) InSb nanowires are considered along [001], [011], and [111] directions,
while wurtzite (WZ) InAs nanowires are studied along [0001] and [1010] or [1120] directions. Robust multiband
k - p Hamiltonians are solved by using plane-wave expansions of real-space parameters. In all cases, the linear
and cubic spin-orbit coupling parameters are extracted for nanowire widths from 30 to 100 nm. Typical spin-orbit
energies are on the eV scale, except for WZ InAs nanowires grown along [1010] or [1120], in which the spin-orbit
energy is about meV, largely independent of the wire diameter. Significant spin-orbit coupling is obtained by
applying a transverse electric field, causing the Rashba effect. For an electric field of about 4 mV /nm, the
obtained spin-orbit energies are about 1 meV for both materials in all investigated growth directions. The most
favorable system, in which the spin-orbit effects are maximal, are WZ InAs nanowires grown along [1010] or
[1120] since here spin-orbit energies are giant (meV) already in the absence of electric field. The least favorable
are InAs WZ nanowires grown along [0001] since here even the electric field does not increase the spin-orbit
energies beyond 0.1 meV. The presented results should be useful for investigations of optical orientation, spin

transport, weak localization, and superconducting proximity effects in semiconductor nanowires.
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I. INTRODUCTION

The ultimate goal of spintronics is to enhance the functional-
ities of electronic devices by exploring the spin degree of free-
dom [1,2]. In low-dimensional semiconductor nanostructures,
the control of spin allows to transfer information between spin
and light [3-7], and can realize topological states of matter [8]
and helical states in one-dimensional (1D) nanowires [9-12]
that are essential in the search for Majorana zero-energy states
[9,13]. In particular, semiconductor nanowires with strong
spin-orbit coupling (SOC), such as InSb and InAs, in proximity
with an s-wave superconductor may support such zero-energy
bound edge state, when time-reversal symmetry is broken by
a magnetic field [14-19].

In the absence of space-inversion symmetry, in addition
to orbital splittings at high-symmetry points and lines, SOC
is also manifested by the spin splitting of the energy bands
and by the appearance of a spin texture on energy surfaces.
The spin splitting can arise from two main contributions:
the bulk-inversion asymmetry, known as BIA [20], and the
structural-inversion asymmetry, known as SIA [21]. The for-
mer is present in materials, such as III-V semiconductors,
lacking space inversion in the primitive cell. The latter appears
due to quantum confinement, at interfaces in heterostructures,
and in the presence of an applied electric field. Tuning the
interplay between different sources of SOC can lead to per-
sistent spin helices [22-24], spin field-effect transistors [25],
g-factor anisotropies [26—28], and significant changes in the
spin relaxation times [29,30].

2469-9950/2018/97(24)/245402(18)

245402-1

Experimentally, reliable determination of the SOC strength
in nanowires is a challenging task [31]. Distinct setups yield
differing values [30,32,33]. For example, SOC strengths in the
same material, extracted from weak antilocalization measure-
ments, come out different [34-37]. These distinct values are
due to the electron-electron contribution (Hartree potential)
to the Rashba SOC term [38-41], i.e., the fields induced
by the gates lead to a charge unbalance in the system. This
charge unbalance gives rise to the Hartree potential which
is strongly dependent on the system configuration and has
a large contribution to the Rashba SOC term. Theoretically,
it is common to use reduced models for the semiconductor
conduction band [1,2,21,42]. In these models, SOC enters
as an empirical parameter that can assume a wide range of
values for the same system depending on what is measured
[30,33,43-45].

Motivated by the hybrid semiconductor-superconductor
proposal [9,46] as a platform for the zero-energy Majorana
bound states, that uses semiconductor nanowires with large
SOC, we investigate the role of BIA and SIA SOC terms
in free-standing zinc-blende (ZB) InSb and wurtzite (WZ)
InAs nanowires. In particular, we address theoretically how
the quantum confinement, given by the nanowire diameter, and
the orientation of the nanowire (growth direction) modifies the
main parameter, the SOC energy, that defines if the system can
(or cannot) host Majorana zero-energy excitations.

Both multiband tight-binding and k - p methods [47-53]
have been successful in the determination of the electronic
and spintronic properties of nanowires. Here, we use robust
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multiband k - p models: a 14-band Kane model [2,54,55] to
treat ZB InSb nanowires and 8-band model [56] to treat WZ
InAs nanowires, under the envelope function approximation
and plane-wave expansion. The BIA SOC for ZB is taken into
account with the addition of the extra conduction bands (in
comparison with the 8-band model) and their explicit coupling
parameters; in the WZ case we also include often neglected
linear-in-momentum SOC terms in the 8-band model [57-60].
We also apply an electric field, transverse to the nanowires axes,
to investigate the Rashba effect and extract the field-dependent
spin-orbit parameters.

We give the essential spin-orbit splitting parameters and
effective masses for the lowest conduction subbands, for a
set of hexagonal nanowires, from 30 to 100 nm, oriented
along different directions: [001], [110], and [111] for ZB InSb,
and [0001] and [1010] or [1120] WZ InAs nanowires. In the
absence of electric field, the spin-orbit energies of ZB InSb
nanowires are tiny, on the order of micro eVs. However, due to
the presence of a linear spin-orbit splitting in the bulk, WZ InAs
nanowires exhibit giant splittings already in the absence of the
field. Although symmetry suppresses the spin-orbit energy for
[0001] nanowires, the splitting is about 1 meV in [1010] or
[1120] cases.

Under an applied electric field, ZB InSb nanowires can
exhibit spin splittings as on the meV scale, in the fields of
a few mV/nm. We find that this Rashba effect does not
depend essentially on the growth direction, nor on the nanowire
diameter. However, the case of WZ InAs nanowires is curious.
The electric field does not significantly increase the spin split-
ting for [0001] directions. For example, the spin-orbit energy
reaches only 20 eV for fields of 4 mV /nm, hardly enough
to be practical as a platform for topological superconductivity.
This material system is rather unfavorable in this sense. On the
other hand, the spin-orbit energy of WZ InAs nanowires grown
along [1010] or [1120] retain their meV spin-orbit energies,
not being influenced much by the field. We conjecture that
this is true even in the presence of gating interfaces, meaning
that the bulk effect dominates over the interfaces and electric
fields which further reduce space-inversion symmetry. The
robustness and large value of the spin-orbit energy in these
systems makes us suggest them as favorable systems.

Spin-orbit coupling in semiconductor nanowires has re-
cently been investigated. Kammermeier er al. [45] devised
a theoretical framework to calculate the weak antilocaliza-
tion effects in cylindrical nanowires and have successfully
reproduced the values of ag ~ 0.1-0.3 meV nm for ZB InAs
nanowires [61-65]. Winkler et al. [53], using multiband k - p
for WZ InAs oriented along [0001] direction and tight-binding
model for ZB InSb oriented along [111] direction, found an
increase, of one order of magnitude or more, in the g-factor
of excited conduction subbands due to the spin-orbit coupling.
Luo et al. [66] found a giant Rashba effect of holes in semi-
conductor nanowires. Using an atomistic approach, they found
that the hole Rashba coefficient of ZB InAs nanowires under
an applied electric field of the order of 0.5 mV /nm is about
two to five times larger than the electron Rashba coefficient.
Consistent with our results, they also found a saturation of the
electron Rashba coefficient with increasing nanowire diameter.
Moreover, Wojcik et al. [41] using a two-band k - p model
(by folding down the 8-band Kane model), in a self-consistent

framework were able to accurately reproduce the results for
ZB InSb nanowires from Ref. [36]. Unlike in our work, which
provides setup-free spin-orbit parameters, these authors fixed
the nanowire diameter and orientation and studied how SOC
changes with distinct gate configurations and charge profiles.
Nevertheless, in their calculations they found for a ZB InSb
nanowire with L ~ 100 nm for a fixed chemical potential of
0.2 eV and an applied electric field of 4 mV/nm, a Rashba
coefficient of about ag = 2« &~ 50 meV nm which is in good
agreement with our results of « &~ 19 meV nm. Furthermore,
for WZ InAs nanowires oriented along [0001] direction with
100 nm in diameter, the authors in Ref. [17] reported ag =
8 meV nm also in agreement with values reported in Ref. [16],
which is about 1.6 times larger than our reported value of
200 &~ 5 meVnm for a 4 mV/nm applied field, although in
both papers it is not clear the value of the applied electric field.
Moreover, the authors in Ref. [67] experimentally detected
that for WZ CdSe nanowires the Dresselhaus SOC is absent
for nanowires oriented along [0001] direction but present for
[1120] direction, which is consistent with our results.

This paper is organized as follows: In Sec. II we present
the geometric schematics of the nanowires we have simulated
specifying the orientations and coordinate axes. Following,
we introduce the respective k - p models we used as well as
the numeric procedure employed to calculate the energies and
states of the nanowires. After that, in Sec. III, we present the
model Hamiltonian including SOC and its energy dispersion.
With the expression from the energy dispersion we then
apply a fitting procedure to the lowest conduction subband
of the nanowires. In Sec. IV we discuss the specifics of the
effective masses and SOC in ZB type structures following, in
Secs. IV A-IV C, with a detailed examination of the SOC in
the distinct nanowire orientations. In Secs. V.and VA and VB
we do the same but for WZ crystal phase. Next, in Sec. VI
we discuss the essential SOC effects in nanowires from the
perspective of finding a topological quantum phase transition in
superconducting nanowires. Finally, we conclude in Sec. VII.

II. NANOWIRE MODELING

By carefully controlling growth conditions [68—70], semi-
conductor nanowires using III-V compounds can be synthe-
sized with pure ZB or WZ crystal phases [68], but also
with a mixed phase [71]. Furthermore, it is possible to
obtain nanowires with a variety of cross sections, such as
hexagonal, circular, square, etc., grown along different di-
rections. Typically, ZB nanowires grow along [111] direction
with hexagonal cross section [72—74], while [001] nanowires
have typically square cross section [72,74-76]. As for [110]-
oriented ZB nanowires there can be several cross-section
configurations from trapezoidal to diamondlike shapes and
nonregular hexagons [72,74,77-80]. WZ nanowires can be
typically fabricated along [0001] with hexagonal cross section,
while WZ nanowires grown along [1120] and [1010] present
square cross section [70,74,81]. On the other hand, from
a theoretical perspective nanowires are usually treated with
cylindrical or square cross section, which simplifies the calcu-
lations without sacrificing the underlying physical features of
the system [45,82-84].
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FIG. 1. (a) Schematics of a hexagonal nanowire and the coordi-
nate axes we use in the text. The nanowire growth direction is along
z, and the electric field is applied along the y direction. The wire
diameter is L, which is the distance between the opposite vertices
of the hexagon. In (b) and (c) we show the growth planes (shaded
regions) inside the conventional unit cells for ZB and WZ crystals,
respectively. In (c) the dashed lines represent the primitive unit cell.
The coordinate axes with respect to the crystal orientations are also
indicated for [001] ZB and [0001] WZ structures. These are the same
axes as used in the confinement geometry (a).

In this paper, we consider ZB InSb and WZ InAs nanowires
with hexagonal cross section [85], oriented along different
(growth) directions, as shown in Fig. 1. We calculated ZB
nanowires oriented along [001], [110], and [111] directions
and WZ nanowires oriented along [0001], [1120], and [1010]
directions. The diameter of the nanowires is denoted as L,
defined as the largest distance between vertices [see Fig. 1(a)].
Our Cartesian system has its z axis along the growth direction,
while the quantum confinement is in the xy plane. For a ZB
nanowire grown along [001], this would mean that x is [100],
y is [010], and z is [001]. For a WZ nanowire grown along
[0001], the hexagonal atomic arrangement is compatible with
the hexagonal confinement of the nanowire [see Fig. 1(c)].
For all other orientations, the relation between the Cartesian
coordinates and the crystallographic orientations is discussed
in the corresponding sections.

Bulk ZB crystals are invariant under 7, and WZ crystals
under Cg, symmetry operations. Because space-inversion sym-
metry is broken in these two crystal phases, the energy bands of
both ZB and WZ nanowires exhibit generic spin split due to the
(bulk-inversion) asymmetry. To simulate realistic experimental
conditions, we also apply an external electric field in the

cross-sectional plane of the nanowires. Our intention is to give
benchmark results, instead of very specific experimental condi-
tions with metal gates and electrodes attached to nanowires, as
well as heterostructure charging effects, which would require
self-consistent treatment. We wish to rather provide estimates
of how large spin splitting one can expect if a given electric
field, from whatever environment, acts on the confined electron
gas in the nanowire.

The electric field introduces additional spin-orbit splitting,
which in general interferes with BIA SOC. The resulting
spin-orbit splitting can be said to be due to structure-inversion
asymmetry (the Rashba effect), although this terminology is
not unique, and we simply refer to the spin-orbit splitting
without any labels, but stating the material, confinement
geometry, nanowire orientation, and the electric field. Electric
field also reduces the mirror symmetry, resulting in further
orbital splitting of the conduction band subbands, as shown in
Figs. 7, 11, 15, 19, and 23.

In order to calculate the electronic structure of ZB InSb and
WZ InAs semiconductor nanowires and extract the spin-orbit
splitting of the lowest conduction subbands, we employ the
multiband k - p method combined with the envelope function
approximation. Our k - p Hamiltonians describe realistically
the bulk cases as the reference points.

For ZB InSb we use a 14-band extended Kane model
[2,54,86,87]. which provides the relevant SOC features in the
lowest conduction band via coupling to higher conduction
bands [88]. The involved bands are the lowest s conduction and
the lowest three p conduction bands, as well as the three highest
p valence bands (heavy and light, and spin-orbit split-off
bands). Including the spin degree of freedom to these bands, we
end up with a total of 14 bands. We use the parameters [89] for
InSb from Ref. [54]. If we took an 8-band model [90,91], with
only the lowest s conduction subband, we would fail to describe
properly the bulk spin-orbit splitting because this model lacks
the couplings that generate the bulk spin splitting observed in
ZB III-V semiconductors.

For our WZ InAs nanowires we use the 8-band k - p model
with k-dependent SOC terms [56], that reproduces very well
the bulk SOC features in the vicinity of I'-point. Such k-
dependent terms are usually neglected in conventional 8-band
WZ Hamiltonians [93-95], but they are needed to accurately
describe bulk spin-orbit effects in WZ InAs [56].

To model quantum confinement, we use the envelope
function approximation [96-99]. Essentially, this treatment
applied to the multiband k - p Hamiltonians means substituting
bulk wave numbers k,(,y by operators —i d/0x(y), keeping k. a
parameter, thus transforming the bulk multiband Hamiltonian
into a set of coupled linear differential equations. To solve these
coupled differential equations, we employ the plane-wave ex-
pansion [95,100-104], that is, the Fourier transform of the real-
space-dependent parameters. In narrow-gap semiconductors,
real-space treatment of confined systems can lead to spurious
solutions and special treatment [49,105,106] should be applied
to eliminate them, while using Fourier transformation the spu-
rious solutions are easily identifiable and controllable [102].
The plane-wave expansion works by creating, effectively,
periodically repeated systems of nanowires with vacuum in-
between. To treat the vacuum we follow the suggested values,
in Ref. [92], of the band offset for the conduction band as
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FIG. 2. Schematics of the band alignment. (a) ZB 14-band model
with band alignment to vacuum. The band-gap energy is E, for the
s conduction band and E; for the p’ conduction band. In the valence
band, Ag is the the spin-orbit coupling splitting, while in the p’
conduction band it is described by the A, parameter. (b) WZ 8-band
model with band alignment to vacuum. The p valence bands have an
extra splitting (due to the crystal field) at I" point, making them only
spin (and no longer orbital) degenerate. The energy labels for WZ are
also indicated: E. is the conduction band minimum, and E?, i=1,2,
and 3, are the valence band maxima. The conduction bands offset to
the vacuum is 5.5 eV, and the valence bands offset is 2.5 eV following
Ref. [92].

5.5 eV and for the valence band as 2.5 eV. In Fig. 2, we show
a scheme of the used band alignment of the semiconductor
with the vacuum. In Appendix A we discuss the plane-wave
expansion approach and its numerical implementation.

In addition to confinement, we also apply electric field
across the nanowires, along x and y directions [see Fig. 1(a) for
the choice of coordinate system]. For example, if the electric
field is along y, the voltage drop along the nanowire is

Vele:eEy’ (1)

where e is the modulus of the electron charge and E is the
applied electric field. The values of y range from O to L, thus
thicker nanowires have larger values of V. for a fixed value
of E. For sufficiently large values of Vg, the confinement
profiles of conduction and valence energy bands overlap,
therefore closing the gap of the system. In Appendix B we
show an example of such case. Although interesting physical
phenomena can be found in gapless systems [107,108], in
this study we focus on values of electric fields that do not
overlap conduction and valence energy band profiles, i.e., we
are considering gapped systems.

III. MODEL HAMILTONIANS

We fit our numerical data to effective Hamiltonians in order
to extract useful parameters such as effective masses and SOCs.
In general, the conduction bands of our nanowires follow the
2 x 2 Hamiltonian

H = Hy + Hpia + Hsia. ()

Here, Hy is the effective mass Hamiltonian, expressing the
parabolic dispersion near the I" point. The remaining two
terms express the bulk-inversion (BIA) and structure-inversion

(SIA) asymmetry-induced SOCs. For conduction electrons,
which form orbitally nondegenerate bands, these spin-orbit
Hamiltonians are conventionally written as

H =Qk) -5, 3

where  is the spin-orbit field. Time-reversal symmetry
requires it to be an odd function of momentum (k) =
—Q(—k). Otherwise, the functional form of the spin-orbit field
is restricted by the crystal and confinement symmetry.

Each structure has its own functional form of the effective
mass and spin-orbit field, based on the symmetry. In the
following sections, we discuss the specific forms and present
effective masses, as well as spin-orbit field parameters up to
cubic-in-momentum terms

AE = 2(ak + yk*). “4)

Apart from « and y, an important measure of the strength of
SOC is the spin-orbit energy,

2 a)’m*
2h?

where m* is the effective mass of the conduction band. The
spin-orbit energy is indicated in Fig. 3.

Our goal is to provide a reliable fitting of these effective
models to the numerical calculations using the multiband k - p
Hamiltonians. The fitting procedure is illustrated in Fig. 4.
We fit the lowest conduction band, as calculated with the k -
p method, using a cubic fitting, i.e., up to third order in the
momentum [see Eq. (4)]. The agreement is in general excellent.
From that fitting we obtain the effective mass of the lowest
conduction band. The subband’s spin splitting, induced either
by the structure itself or by the applied electric field, is then
divided by momentum, providing a nice way of obtaining the
linear spin-orbit splitting parameter « as the intersection with
the vertical axis. A quadratic fitting to this curve determines
the cubic coefficient y. In Appendix C we discuss the effects
of higher conduction subbands.

) &)

Eso =

(a) (b)
WITH SOC

E(k)

FIG. 3. Schematical description of SOC effects at the I" point.
(a) Without SOC the conduction bands in the bulk and also in
nanowires are parabolic, described by the effective mass m*. (b) In the
presence of SOC, the spin degeneracy of the bands is lifted (due to the
lack of inversion symmetry, either atomic structure or confinement)
and the band structure comprises two shifted parabolas, indicating
the presence of a k-linear spin-orbit field. The new minima of the
parabolas are at energy Eso, which is a measure of the strength of
SOC.
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FIG. 4. Fitting procedure example. (a) Cubic fitting to the k - p
calculated lowest conduction subband structure around the I point of
InAs WZ nanowire oriented along [0001]. The wire diameter is 60 nm,
and the applied electric field 1 mV /nm. (b) Spin-orbit splitting of the
subband in (a) divided by momentum. This line is fit to obtain the
linear spin-orbit coefficient « as well as the cubic spin-orbit coefficient
y. The thin vertical lines correspond to the fitting range which was
taken as ~1% of the Brillouin zone.

IV. ZINC-BLENDE InSb NANOWIRES

The cubic structure of ZB semiconductors allows to approx-
imate the lowest conduction band (also in confined structures)
by the parabolic dependence near the I" point

2

Hy = (k3 + k5 +k2), (6)

2m*
where m* is the conduction electron effective mass. For bulk
ZB InSb m* ~ 0.015 mg [54], where my is the free-electron
mass. However, the effective mass value changes with the
quantum confinement as we will discuss later in the paper.
The spin-orbit splitting of the conduction bands in ZB InSb
nanowires can be qualitatively discussed using the expression
obtained by Dresselhaus for spin-orbit coupling in ZB II-V
semiconductors. For bulk ZB III-V semiconductors, Dressel-
haus found that [20]

Qpia = v 5[k, (k3 = 2) ey (k2 = k) o (k2 = K) . (D)

The spin-orbit splitting of the conduction band is increasing
as a cubic power of the momentum, away from the the I'
point. There is no linear-in-momentum splitting in the bulk. A
spherical plot of Qg is shown in Fig. 5(a). The field vanishes
for [001] and [111] directions, as is clear from Eq. (7). Maximal
spin-orbit splittings are along the site diagonals [110]. A recent
DFT calculation [109] found for ZB InSb that the bulk cubic
coefficient is VI%st ~ 200 meV nm>.

We also project the vector field QBIA on a Fermi sphere,
in Fig. 5(b). The field has saddle points along [001], which is
the familiar vector pattern for the Dresselhaus field in [001]
grown quantum wells. Along body diagonals [111], the field
has vortices, resembling the Rashba texture. Finally, along
[011] the field does not vanish, but has a strong component
perpendicular to the momentum. A simple counting of the
winding numbers for the field indices (points where the field
vanishes) (six saddle points of winding number —1 each, and
eight vortices of winding number 41 each) gives the total
winding number of 2, which is the Euler characteristic of a
sphere, in line with the Poincaré-Hopf theorem [110].

FIG. 5. Topology of the Dresselhaus spin-orbit coupling field. (a)
Spherical plot of the magnitude of the Dresselhaus spin-orbit field in
the momentum space. The crystallographic axes are indicated. The
field vanishes for [001] and [111] directions (and their equivalents).
The field has a maximum along [110] directions. (b) Dresselhaus
vector field over a Fermi sphere. The vortices are along [111], and
saddle points along [001] directions, indicating the spin-orbit fields
in the quantum wells grown along these orientations.

In the following subsections we discuss separately the
spin physics of hexagonal nanowires along the three growth
directions [001], [110], and [111]. It is worth mention that
our band structure is in agreement with previously published
results [48,49,82,83].

A. [001] growth direction

The cross section of the atomic structure of a ZB semi-
conductor along [001] direction is shown in Fig. 6(a). The
principal symmetry axes are along [110] and [110], which
are also the normal vectors of the mirror symmetry planes.
This symmetry is not compatible with the chosen hexagonal
confinement, resulting in the absence of a mirror symmetry
plane in the nanowire structure [see Fig. 6(b)]. For this growth
direction x = [100], y = [010], and z = [001].

In the bulk, the spin-orbit field vanishes for momenta
along [001], as is clear from the Dresselhaus expression (7).

FIG. 6. Symmetry analysis of [001]-oriented ZB nanowire. (a)
Atomic arrangement along [001] orientation of a ZB structure with
indicated x and y axes. (b) Mirror symmetry planes of the atomic
structure (solid) and of the hexagonal confinement (dashed). (c),
(d) The spin projections without and with the applied electric field,
respectively. In (c), the resulting spin projection along the nanowire
axis is due to the mismatch between the atomic arrangement and the
quantum confinement, and is absent if the growth direction would lie
in a mirror symmetry plane (which is the case for square and circular
nanowires). (a) Produced using the VESTA software [111].
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FIG. 7. Calculated electronic subband dispersionfora L = 60 nm
ZB InSb hexagonal nanowire oriented along [001] direction. The left-
most subband dispersion (negative k) corresponds to an electric field
of E, = 4 mV/nm and the rightmost subband dispersion (positive k)
to a zero applied electric field. The thin vertical lines correspond to
the fitting range which was taken as ~1% of the Brillouin zone.

However, the disorientation of the hexagonal confinement in
our nanowires leads to a finite, linear-in-momentum spin-orbit
field. This field (that is, the spin quantization axis) points in
the [001] direction, so the spin-orbit splitting is proportional to
k.o,. Such a term would not be allowed if the growth direction
would lie in a mirror symmetry plane (which is the case for
square and circular nanowires) [112]. The orientation of the
spin caused by SOC in ZB nanowires, without applied electric
field, is shown in Fig. 6(c). By applying an electric field, the
simple SIA model tells us that the spin is oriented perpendicular
to both the direction of the field and the electron’s velocity,
which in the case of electric field along y direction makes the
spins oriented along x [see Fig. 6(d)].

Figure 7 shows the calculated electronic subband structure
for a ZB InSb hexagonal nanowire along [001], calculated
using the 14-band k - p method. The conduction subbands are
shown in the absence and presence of a transverse electric
field along the y direction. In the absence of the electric
field, the mismatch between the crystal structure and the
confinement profile tells us that the lowest conduction subband
should be spin split. This is explained by directly quantizing
the Dresselhaus field [Eq. (7)] in the x and y directions.
Indeed, considering that the expectation values of operators
ky = —id/dx and lEy = —id/dy vanish for the ground state
|0), we obtain

Qoo1 = ¥?2[0,0,k.], 8)

where « is the expectation value of 12)% - 12}2 in the ground state:
% = (0|k210) — (O|I€§|O). Because our nanowire does not have
the x — y symmetry, «2 does not, in general, vanish, and the

| |
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FIG. 8. Extracted (a) linear « and (b) cubic y spin-orbit splitting
coefficients, (c) effective masses, and (d) spin-orbit coupling energy
for different diameters L as indicated, for InSb ZB nanowires oriented
along [001].

lowest conduction subband exhibits a weak spin-orbit field
oriented along the growth direction z.
To get an estimate for the linear splitting, we approximate

]/ZB
2a = y™P* ~ fa 9)

where f, is an anisotropy factor quantifying the difference
between x and y directions. This factor should be on the order
of 0.1 (this is a guess), which say, for L = 60 nm, we would
then getow & 3 eV nm for InSb. This is indeed a tiny value and
itis below our numerical precision as discussed in Appendix A.
Therefore, we regard it as zero.

However, the splitting is strongly enhanced in the presence
of the electric field, whose effect is nicely visible already on
the scale of Fig. 7. The extracted linear and cubic spin-orbit
coefficients o and y, as functions of £, are plotted in Figs. 8(a)
and 8(b). The linear coefficient is typically 10 meV nm for
electric fields of a few mV /nm. Cubic coefficients are about
400 meV nm?. In Fig. 8(c) we see that the confinement influ-
ences the effective mass of the lowest conduction subbands.
The effective mass for nanowires with L 2 50 nm is already
within 20% of the bulk electron mass. For thinner nanowires
(30 nm) the effective mass reaches values 0.02 my.

Finally, in Fig. 8(d) we provide the full map of the extracted
spin-orbit strength Ego as a function of both the electric field
E, and the diameter of the nanowire L. For a given electric
field in the considered range, there is not much variation of
the spin-orbit strength with respect to the nanowire diameter.
The electric field is the most critical control parameter to
tune the spin-orbit splitting. The obtained spin-orbit energies
for the ZB InSb nanowires are about Esg = 0.8 meV for fields
of 4 meV /nm. The scaling with the electric field is quadratic
since Eso ~ o, and a grows linearly with increasing electric
field.

B. [110] growth direction

‘We now rotate the coordinate system such that the nanowire
axis is along z = [110]. The new Cartesian system is shown in
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¥0[010]

FIG. 9. Scheme of the coordinate system with the growth direc-
tion along [001], and transverse plane spanned by indicated rotated x
and y axes.

Fig. 9: axis x = [001] and y = [110]. The cross section of the
atomic structure of a ZB semiconductor along [110] direction
is shown in Fig. 10(a). The hexagonal confinement reduces the
structural symmetry, retaining only one mirror plane, spanned
by y and z (making the system symmetric as y — —y). The
compatibility of the atomic structure along [110] and of the
confinement is shown in Fig. 10(b).

The Dresselhaus spin-orbit field [Eq. (7)] for ZB structures
with rotated coordinates, as shown in Fig. 9, transforms
according to the functional form [45]

ZB k
- y 4
Q= T[—4kxky,2kf — kI k.26 + k2 — k] ]lzz
y

(10)

I}

The coordinates of momenta k,, k,, and k, are with respect to
the rotated axes with unit vector k, pointing along [011], k,
along [001], and k, along [110].

When we quantize the spin-orbit field along x and y, we
get linear spin-orbit splitting for the free motion along z
proportional to k.oy. The orientation of the spin caused by
SOC in ZB nanowires without applied electric field is along
v, as shown in Fig. 10(c). In an electric field along y, the spin
orientation points along y [see Fig. 10(d)].

Figure 11 shows the calculated electronic subband structure
for aZB InSb hexagonal nanowire along [ 110]. The conduction
subbands are shown in the absence and presence of a transverse
electric field along the y direction. In the absence of the electric

FIG. 10. Symmetry analysis of [110]-oriented ZB nanowire. (a)
Atomic arrangement along [110] orientation of a ZB structure with
indicated x and y axes. (b) Mirror symmetry planes of the atomic
structure (solid) and of the hexagonal confinement (dashed). (c),
(d) The spin projections without and with the applied electric field,
respectively. (a) Produced using the VESTA software [111].

ZB InSb [110]
Ey=4mVnm' E,=0
” \_/
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FIG. 11. Calculated electronic subband dispersion for a L =
60 nm ZB InSb hexagonal nanowire oriented along [110] direction.
The leftmost subband dispersion (negative k;) corresponds to an
electric field of E, = 4 mV /nm and the rightmost subband dispersion
(positive k;) to a zero applied electric field. The thin vertical lines
correspond to the fitting range which was taken as ~1% of the
Brillouin zone.

field, the lowest conduction subband has a small spin splitting
due to the hexagonal confinement. This is explained by directly
quantizing the Dresselhaus field [Eq. (10)] in the x and y
directions:

Qi1 = y?P[0, %k, 0], (11)

where 2 is the expectation value of 2 + k2 in the ground
state: k% = (0[k2|0) + 1 (0[2|0).

As in the [001] case, the presence of the external electric
field is the dominant factor in the spin splitting also in
nanowires along [110]. In fact, the linear and cubic spin-orbit
parameters, effective masses, as well as the spin-orbit field,
are in magnitude very similar to the [001] case (see Fig. 12),
for the range of electric fields considered. However, due to
nonvanishing Dresselhaus SOC for [110] direction, thinner
nanowires have a nonzero spin splitting with parameters o ~
4 meV/nm and y ~ —100 meV/nm?. The interplay between
the Dresselhaus and Rashba SOC is additive for electric fields
along the y direction while for electric field along the x
direction the zero spin-splitting case is shifted to nonzero
values of electric field.

C. [111] growth direction

Finally, we look at InSb nanowires oriented along [111].
The rotated coordinated axes are z = [111], x = [112], and
y = [110] (see Fig. 13). The atomic structure profile is in
Fig. 14(a). Here, the atoms arrange themselves with a trigonal
symmetry, similar to the confinement profile. However, the
atomic arrangement is less symmetric than the hexagonal
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FIG. 12. Extracted (a) linear « and (b) cubic y spin-orbit splitting
coefficients, (c) effective masses, and (d) spin-orbit coupling energy
for different diameters L as indicated, for InSb ZB nanowires oriented
along [110].

confinement. The compatibility of the atomic structure along
[111] and of the confinement is shown in Fig. 14(b).

The Dresselhaus spin-orbit field [Eq. (7)] for ZB structures
with rotated coordinates, as shown in Fig. 13, transforms as
[45]

oo VY[ k(KR K 4 2V 2k k, — 4k2)
\/z 9
k2(ky + V/2k.) + ky (k2 — /2kk, — 4K?)
ﬁ 9

— ky (k3 — 3k§)]. (12)

The coordinates of momenta k,, k,, and k_, are with respect to
the rotated axes with unit vector k. pointing along [111]. Unlike
in previous examples, where we applied the electric field along
v, here we direct it along x, to explicitly demonstrate that the
orientation of the field, as well as of the wires, matters little
once the fields are strong enough to raise the spin-orbit energies
above 100 peV or so.

When we quantize the spin-orbit field along x and y, we
get linear spin-orbit splitting for the free motion along z
proportional to k;o,. The orientation of the spin caused by

y[710] _
N7 L B

Xo[100]
Zo[001]
FIG. 13. Scheme of the coordinate system with the growth direc-

tion along [111], and transverse plane spanned by indicated rotated x
and y axes.

(c)

FIG. 14. Symmetry analysis of [111]-oriented ZB nanowire. (a)
Atomic arrangement along [111] orientation of a ZB structure with
indicated x and y axes. (b) Mirror symmetry planes of the atomic
structure (solid) and of the hexagonal confinement (dashed). (c),
(d) The spin projections without and with the applied electric field,
respectively. (a) Produced using the VESTA software [111].

SOC in ZB nanowires without applied electric field is along
v, as shown in Fig. 14(c). In the presence of the electric field
along x the spin orients along y [see Fig. 14(d)].

In Fig. 15 we display the calculated electronic subband
structure for a ZB InSb hexagonal nanowire along [111].
Again, the subbands are shown in the absence and presence
of a transverse electric field along the x direction. The zero
spin splitting is explained by quantizing the Dresselhaus field:

> 1
Qi = —\fgyZE[o,xzkz,OL (13)
where «? is the expectation value of 1 (k2 — k2) in the ground
state: x2 = 5((0[k2|0) — (0[k2|0)). Because there is a Cs,
ZB InSb [111]
Ex=4mVnm™" E,=0
N
70 -
60 -}
50 -
S
[}
E 40
5 |
245
5 30
20 -
10
0 %4
T T T T T T T T
0.1 -0.05 0 0.05 0.1
k, (nm™")

FIG. 15. Calculated electronic subband dispersion for a L =
60 nm ZB InSb hexagonal nanowire oriented along [111] direction.
The leftmost subband dispersion (negative k;) corresponds to an
electric field of £, = 4 mV /nm and the rightmost subband dispersion
(positive k,) to a zero applied electric field. The thin vertical lines
correspond to the fitting range which was taken as ~1% of the
Brillouin zone.
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FIG. 16. Extracted (a) linear « and (b) cubic y spin-orbit splitting
coefficients, (c) effective masses, and (d) spin-orbit coupling energy
for different diameters L as indicated, for InSb ZB nanowires oriented
along [111]. Unlike in other cases, the electric field is now along x.

symmetry, k> vanishes and the lowest conduction subband does
not exhibit a spin-orbit field.

What is the effect of the electric field oriented along x?
Consulting Fig. 16 we see that the the overall behavior is very
close to that seen in [001] and [011] wires with the field along
x. This demonstrates that the growth direction, as well as the
application of the electric field, are essentially irrelevant in
determining the magnitude (but not direction!) of the spin-orbit
fields. The magnitudes of the spin-orbit energy reach close to
1 meV for electric fields of 4 mV /nm.

V. WURTZITE InAs NANOWIRES

For WZ crystals, the X and y directions are geometrically
distinct from 2 yielding different effective masses and, conse-
quently, energy dispersions, described close to the I" point by
the quadratic Hamiltonian

Hozh_2 1(k2+k2)+ik2 (14)
2 mi v mp '

For bulk WZ InAs the two values for the effective mass are (i)
the perpendicular m’ ~ 0.0416 mo; (ii) and the parallel mj ~
0.037 mg to the ¢ axis [56,113].

The functional form of the spin-orbit field of the conduction
electrons in bulk WZ III-V semiconductor is [60]

Opip = [@VZ 4 y V2 (b2 — 2 — ki)](ky, —ky,0).  (15)

The spin-orbit splitting vanishes for momenta along the hexag-
onal axis [0001], that is for k, =k, =0, as well as for
the momenta in the hyperboloid, bkz2 = (k2 + k?) —a/y. A

spherical plot of QBIA is shown in Figs. 17(a) and 17(c).
Maximal spin-orbit splittings are along the directions [1010]
and [1120]. A recent DFT calculation [109] found that for
WZ InAs the bulk linear coefficient o)'%, ~ 0.3 eV A while

the cubic coefficient e, ~ 132.5 eV A’ and the anisotropy

factor b & —1.24. We also project the vector field @BIA ona
Fermi sphere, in Figs. 17(b) and 17(d). The field is solely in

(a) (b)

[0001]

[1070]

FIG. 17. Topology of the Dresselhaus spin-orbit coupling field.
(a), (c) Spherical plot of the magnitude of the (Rashba) spin-orbit field
of a WZ III-V crystal in the momentum space. The crystallographic
axes are indicated. There are two cases where the ﬁelgii\llanishes:
(i) the [0001] direction, shown in both (a) with k =1 A  and (c)
with £ = 0.045 10%_]; (ii) for a small range of momenta, shown in
(c), there is also an additional surface over which the field vanishes
[the hyperboloid bk? = (k2 + k2) — a/y]. (b), (d) Corresponding
spin-orbit vector field over a Fermi sphere. The vortices are along
[0001] directions. The field has cylindrical symmetry.

the basis plane of the hexagon, pointing perpendicular to the
momentum.

In the 8-band k - p model, which is symmetric in the xy
plane, the Hamiltonian for [1010] and [1120] directions is the
same. Therefore, in the following we discuss separately the
spin physics of hexagonal nanowires grown along [0001], and,
as one case, together nanowires grown along [1010] or [1120]
directions.

A. [0001] growth direction

The cross section of the atomic structure of a WZ semi-
conductor along [0001] direction is shown in Fig. 18(a). The
atomic arrangement has an incomplete hexagonal symmetry
that is not compatible with the chosen hexagonal confinement,
resulting in an absence of some mirror symmetry planes in the
nanowire structure [see Fig. 18(b)].

As already mentioned, the spin-orbit field vanishes for
momenta along [0001]. In the bulk WZ crystal, there are glide
symmetry planes which require an extra 5 translation along the
z axis. Since the nanowires considered in this section are grown
along the z direction, this glide symmetry plane also applies.
Therefore, as indicated in Fig. 18(c), there is no spin-orbit
field in the absence of electric field. By applying a transverse
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(a) (c)

no SOC
field
(d)
y 5 |
L.
X

FIG. 18. Symmetry analysis of hexagonal WZ nanowire oriented
along [0001] direction. (a) Atomic arrangement along [0001] ori-
entation of a WZ structure with indicated x and y axes. (b) Mirror
symmetry planes of the atomic structure (solid) and of the hexagonal
confinement (dashed). (c), (d) The spin projections without and with
the applied electric field, respectively. In (b), the dotted lines represent
the WZ glide planes, i.e., they need an extra translation of § along the
z direction. (a) Produced using the VESTA software [111].

electric field, say along y, the spin quantization axis will be x
[see Fig. 18(d)].

Figure 19 shows the calculated electronic subband structure
for a WZ InAs hexagonal nanowire along [0001]. Conduction
subband is shown in the absence and presence of a transverse
electric field along the y direction. In the absence of the electric
field, the lowest conduction subband is degenerated, while we
see a small spin splitting due to the applied electric field. This
small spin splitting indicates that the Rashba coefficient for
WZ InAs is rather small.

WZ InAs [0001]
Ey=4mVnm’ Ey =

50

40 +

30 1

20

Energy (meV)

e

10 +

\ T T ‘ " \ ‘ T
-0.1 -0.05 0 0.05 0.1
k (nm-T)

FIG. 19. Calculated electronic subband dispersion for a L =
60 nm WZ InAs hexagonal nanowire oriented along [0001] direction.
The leftmost subband dispersion (negative k;) corresponds to an
electric field of Ey, = 4 mV /nm and the rightmost subband dispersion
(positive k,) to a zero applied electric field. The thin vertical lines
correspond to the fitting range which was taken as ~1% of the
Brillouin zone.
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FIG. 20. Extracted (a) linear o and (b) cubic y spin-orbit splitting
coefficients, (c) effective masses, and (d) spin-orbit coupling energy
for different diameters L as indicated, for InAs ZB nanowires oriented
along [0001]. The electric field points along y.

The extracted linear and cubic spin-orbit coefficients o and
v, as a function of E,, are plotted in Figs. 20(a) and 20(b).
The linear coefficient is typically 1 meV nm for electric fields
of a few mV/nm. Cubic coefficients are about 5 meV nm>.
These spin-orbit coefficients are more than an order of mag-
nitude smaller than the ones we have encountered in InSb
ZB nanowires. Why are spin-orbit effects in WZ nanowires
grown along [0001] negligible? The reason stems in Eq. (15).
Quantizing the field along the confining x and y directions,
even in the presence of the electric field, does not yield a term
linear in k.. Any such linear term present in the nanowire must
come from higher-order (and thus necessarily smaller) terms,
not captured by Eq. (15).

In Fig. 8(c) we see that the confinement influences the
effective mass of the lowest conduction subbands, although
the influence is smaller than in the ZB case since WZ electrons
have already a larger effective mass. The effective mass for
nanowires with L 2 50 nm is already within 10% of the bulk
electron mass. For thinner nanowires (30 nm), the effective
mass reaches values 0.043 m,.

Finally, in Fig. 20(d) we provide the full map of the
extracted spin-orbit strength Eso as a function of both the
electric field E, and the diameter of the nanowire L. For a
given electric field in the considered range there is not much
variation of the spin-orbit strength with respect to the nanowire
diameter. The smallness of « is reflected in the small spin-orbit
energy. Indeed, the energy is only Eso = 30 eV for fields
of 4 meV/nm. Nanowires based on WZ InAs, grown along
[0001], are thus hardly suitable as a platform for studying
topological superconducting proximity effects.

B. [1010] or [1120] growth direction

We have seen that spin-orbit effects in WZ nanowires grown
along [0001] are negligible. In contrast, spin-orbit energies are
giant, in the absence of electric field, for WZ nanowires grown
along [1010] or [1120] direction. Since WZ oriented along
both [1010] and [1120] are described by the same 8-band k - p
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FIG. 21. Scheme of the coordinate system with the growth direc-
tion along [1010], and transverse plane spanned by indicated rotated
x and y axes.

Hamiltonians, here we choose to show only the coordinate
system and atomic arrangements for the [1010] case. Thus,
the nanowire axis points along z = [1010]. The new Cartesian
system is shown in Fig. 21: axis x = [0001] and y = a,. The
cross section of the atomic structure of a WZ semiconductor
along [1010] direction is shown in Fig. 22(a). The hexagonal
confinement reduces the structural symmetry, retaining only
one mirror plane, spanned by y and z (making the system
symmetric as y — —y). The compatibility of the atomic
structure along [1010] and of the hexagonal confinement is
shown in Fig. 22(b).
The Dresselhaus spin-orbit field for [1010] is

0
Nz = [V + y V(b — K2 — k2)] k| a9
y

The coordinates of momenta ky, k,, and k, are with respect to
the rotated axes with unit vector &, pointing along [10110], k,
along [0001], and ky along d;.

When we quantize the spin-orbit field along x and y, we get
linear and cubic spin-orbit splitting for the free motion along
z proportional to k.o,. The orientation of the spin caused by
SOC in WZ nanowires without electric field is along y, as
shown in Fig. 22(c). By applying an electric field along y,
the spin acquires a component along x. However, the Rashba
coefficient, due to the applied electric field, for WZ InAs
nanowires is rather small compared to intrinsic one, as seen in

w0y

FIG. 22. Symmetry analysis of [1010]-oriented WZ nanowire. (a)
Atomic arrangement along [1010] orientation of a WZ structure with
indicated x and y axes. (b) Mirror symmetry planes of the atomic
structure (solid) and of the hexagonal confinement (dashed). (c),
(d) The spin projections without and with the applied electric field,
respectively. (a) Produced using the VESTA software [111].
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FIG. 23. Calculated electronic subband dispersion for a L =
60 nm WZ InAs hexagonal nanowire oriented along [1010] direction.
The leftmost subband dispersion (negative k;) corresponds to an
electric field of E, = 4 mV /nm and the rightmost subband dispersion
(positive k,) to a zero applied electric field. The thin vertical lines
correspond to the fitting range which was taken as ~1% of the
Brillouin zone.

Fig. 18(a), and the change in the spin orientation is negligible.
Therefore, the spin orientation, even with electric field is along
v, for the range of electric field investigated, as depicted in
Fig. 22(d).

Figure 23 shows the calculated electronic subband struc-
ture for a WZ InAs hexagonal nanowire along [1010]. The
conduction band is shown in the absence and presence of a
transverse electric field along the y direction. In the absence
of the electric field, the lowest conduction band already has
a large spin splitting. This is explained by directly quantizing
the Dresselhaus field [Eq. (16)]. We get

oty = ke [0, — &V — V2 (k? —k2),0),  (17)

where «? is the expectation value of bl%f + 12}% in the ground
state: k2 = b (O|I€§|0) + (0|l€§|0) which in general is not zero.
There is always the linear term present, which is due to the
bulk spin-orbit coupling W%. This is the dominating spin-orbit
contribution to the spin-orbit energy even in the presence of
electric field (within the investigated ranges).

Indeed, the spin splitting is not strongly enhanced in the
presence of the electric field, as seen in the case of [110] ZB
InSb nanowire, shownin Fig. 11. The extracted linear and cubic
spin-orbit coefficients  and y, as a function of E, are plotted
in Figs. 24(a) and 24(b). The linear coefficient is typically
15 meV nm for electric fields of a few mV/nm. In Fig. 24(c)
we see that the confinement influences the effective mass of the
lowest conduction subbands. For thinner nanowires (30 nm),
the effective mass reaches values 0.054 m which is about 10%
larger than the bulk effective mass.
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FIG. 24. Extracted (a) linear « and (b) cubic y spin-orbit splitting
coefficients, (c) effective masses, and (d) spin-orbit coupling energy
for different diameters L as indicated, for InAs WZ nanowires
oriented along [1010].

In Fig. 24(d) we give the full map of the extracted spin-orbit
strength Ego as a function of both the electric field £, and the
diameter of the nanowire L. Most important, the energy is in
the range 1-2 meV; this magnitude is rather stable with respect
to the nanowire diameter and the electric field.

VI. DISCUSSION

In ZB nanowires, it is the confinement and electric field
that dominate spin-orbit splitting. Bulk effects are negligible
since they are only cubic in momentum. Interface with vacuum
leads to interfacial spin-orbit coupling [114], and electric field
to more localized subband modes, inducing the Rashba effect
[21]. On the other hand, WZ crystals exhibit linear spin-orbit
splitting already in the bulk. Incidentally, what leads often
to confusing terminology, this is also called Rashba splitting
[60,115], as it was derived by Rashba [116]. In addition, in WZ
confined systems and/or in the presence of electric field, the
spin-orbit splitting is proportional not only to the electrostatic
potential gradient, but depends on the potential itself [117]. The
linear coefficient « is thus not necessarily a linear function of
electric field.

When we induce a structural asymmetry via the electric
field, we have at least two cases: (i) the application of £ = EyX
induces a SIA spin-orbit coupling with spin polarization along
the y direction; (ii) the application of E = Ey¥ induces a
SIA SOC with spin polarization along the x direction. Both
cases have a functional form for the spin splitting which is
linear in momentum. In case (i), both BIA and SIA have
spin polarization along the same direction (exception made for
ZB [001]-oriented nanowires), therefore, their contributions
interfere with each other and we could get a subband dispersion
which is asymmetric (or have an asymmetric spin splitting)
with respect to the sign of the applied electric field [118].
In case (ii) we do not have interferences between BIA and
SIA because they always point in distinct directions, and the
spin-splitting parameters are always symmetric with respect to
the applied electric field.

A distinction between our “hard wall” nanowires and
electrically defined quantum wires is that, in the former, the
confinement in the xy plane has very similar strengths, there-
fore, it couples the electron dynamics in all three dimensions,
which is not the case in the latter system where the confinement
is much weaker than underlying quantum well confinement
[119]. This distinction means that the Rashba effect (structural
asymmetry) describes very well the decoupled case (electri-
cally defined quantum wire) but it should fail in general for
the hard wall case. The failure is seen as a deviation from
the linear dependence with the electric field of the associated
spin-splitting parameter [see Figs. 8(a), 12(a), 16(a), 20(a),
and 24(a)]. Moreover, since in quantum wire systems the
Rashba coefficient is given by the underlying asymmetry in
the quantum well, it should remain invariant under changes in
the electrical confinement. On the other hand, for hard wall
confinement, the Rashba coefficient strictly depends on the
geometric configuration of the system. Therefore, changes in
the quantum confinement also change the Rashba coefficient
[119,120].

For ZB in Figs. 8(a) and 8(b), 12(a) and 12(b), and 16(a) and
16(b), we see that for large confinements, L = 30 nm, the spin-
splitting coefficients (linear and cubic in momentum) present a
linear dependence with the applied electric field. However, as
we increase the wire diameter to L = 60 nm we already see that
this linear dependence holds only for small values of electric
field. Moreover, comparing the spin-splitting parameters for
diameters L = 60 and 100 nm wee see that they almost do
not change. Hence, we can say that the Rashba parameter has
a dependence on the nanowire diameter: it is small for thin
wires and grow up to a saturation value for large diameters.
Also, the simplified Rashba model, when applied to nanowires,
does not predict a cubic-in-momentum dependence for the
spin-splitting parameters and the BIA term only show a cubic
dependence for [110]-oriented nanowires. However, since we
are using the full multiband Hamiltonian and not the simplified
Rashba model, we realistically capture all the features of the
full model which includes (i) the dependence of the Rashba
parameters on quantum confinement; (ii) the deviation of
linearity for large electric fields; and (iii) the presence of the
cubic-in-momentum dependence of the spin-split parameters.
For WZ in Figs. 20(a) and 20(b) and 24(a) and 24(b), the same
applies, except that the Rashba coefficient does not vary with
the nanowire diameter as discussed above.

We also briefly discuss the relevance of our results for super-
conducting proximity effects. In Fig. 25 we plot the spectrum
of ZB InSb nanowires in the superconducting proximity regime
(nonzero superconducting gap A) in the presence of a magnetic
field causing Zeeman (but no orbital) splitting. The spectrum
is obtained by solving the BdG equation [9,46]

h? 1Y,
Hgys = — | — k" —pn|og+2ako; T,
2mg ) \ m*

*
_8M B 51 Aoyt (18)

where & is a vector containing the Pauli spin matrices (plus
the identity o) acting on the spin degree of freedom and 7 is
a vector also containing the Pauli matrices but acting on the
particle-hole space. The wave function is in the Nambu spinor
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FIG. 25. Zinc-blende InSb nanowire with L = 100 nm with mag-
netic field applied along the nanowire axis (and perpendicular to
the spin-orbit coupling) and superconductivity proximity effect.
Dashed lines represent negative energies (zero is set by the chemical
potential u). (a) Lowest subband spectrum for u = B = A = 0. (b)
Quasiparticle excitation spectrum for u© = B = A = 0. (c) Excita-
tion spectrum for B =0.1 T, A = u =0 where Zeeman splitting
opens a gap at k, =0. (d) B=0.1T, A =0.25meV, u = 0 with
a superconducting gap for k, # 0 and a Zeeman gap near k, =
0.(e) B=0.17T, A =0.25 meV, u =0 meaning V, = A where
the gap at k, =0 is closed meaning a phase transition. (f) B =
0.22 T, A =0.25 meV, p = 0 here the gap reopens confirming the
phase transition.

basis, i.e., it contains both particle and antiparticle wave func-
tions and is written as W(7) = [uy(7),u} (F),v, (), — v1(P)]".
Here, the Rashba term can be on the x or y direction (depending
on the direction of the applied electric field), and the magnetic
field that is perpendicular to it. For the system to undergo
the topological phase transition it has to be gapped before
we couple it to the superconductor, then with a change in
the parameters it has to close the gap and reopen again.
At k, = 0, the gap is defined by E(0) = |[Vz — /A% + u?|.
The trivial phase is defined when V; < /A2 + u?, the phase
transition (closing of the gap) when V; = \/A? + u?, and the
topological phase is defined when Vz > /A2 + 12 [46,121-
123].

Since our k - p Hamiltonians describe the crystals with both
bulk-inversion asymmetry and structural-inversion asymme-
try, for instance when an external electric field is applied, its
subbands are spin split away from k& = 0. Especially for the
conduction subbands, they have a “Dirac-type” shape for very
small momenta. In Ref. [121] the authors showed that the com-
bination of this Dirac-type shape for the conduction subbands,
the presence of a magnetic field, giving aZeeman spin split, and
the proximity effects of an s-wave superconductor allows for a

effective p-wave pairing in the lowest branch of the conduction
subband.

The appearance of the topological superconducting phase
and, therefore, the possibility of a zero-energy Majorana bound
state follow from (i) the spin-orbit coupling spin polarize the
subbands which in turn are split at k = 0 by the magnetic field;
(ii) with the Fermi level set in-between the Zeeman gap, we
get an effective spinless (or polarized spinful) metal; (iii) the
superconductor induces a p-wave pairing which is known to
support Majorana fermions [124].

Using realistic parameters fitted from our multiband k - p
calculations we see that for L = 100 nm ZB InSb nanowires,
which are experimentally relevant [14], the typical val-
ues which characterize the system are m* =~ 0.017 mg, o =
0.2eVA, gr ~ =51, and Zeeman splitting Vz ~ —1.48 x
By meV, with By being the magnetic field magnitude. The
proposed induced superconducting gap is A ~ 0.25 meV and
typical values for the magnetic field are By =~ 0.1 [14]. In
Fig. 25(d) we show that the gap is open for B = 0.1 T and
A = 0.25 meV, and that matching the Zeeman energy to the
pairing potential, the gap closes [see Fig. 25(e)]. Once the
magnetic field further increases, the superconducting spectral
gap reopens [see Fig. 25(f)], demonstrating the possibility for
topological phase transition. However, experimentally this is
still a challenging task due to imperfections in the growth
process [19,125-127].

VII. CONCLUSIONS

We performed a systematic investigation of the spin-orbit
interaction in hexagonal semiconductor nanowires under an
applied transverse electric field. We used robust multiband
k - p Hamiltonians in the envelope function approximation
and plane-wave expansion to extract relevant physical param-
eters describing the lowest-energy conduction band with high
fidelity. Specifically, we focused on ZB InSb and WZ InAs
nanowires, extracting relevant spin-orbit parameters: linear «,
cubic y, and spin-orbit energy Eso.

We found that in ZB InSb nanowires the spin-orbit splitting
is strongly influenced by the quantum confinement. On the
other hand, for WZ InAs nanowires there is already a large
linear spin-orbit parameter o™#, which also dominates in
the presence of confinement. Due to symmetry reasons, the
spin splitting remains largely unaffected in [1010]- or [1120]-
oriented nanowires, while the splitting is absent for wires along
[0001].

In the presence of electric field, the spin splitting gets
strongly enhanced in ZB nanowires. The enhancement does
not vary with the growth direction. The spin-orbit energies
reach 0.8 meV for electric fields of 4 mV/nm. On the other
hand, the electric field hardly influences the already large spin
splitting of the WZ nanowires. For the [0001] direction, the
spin-orbit energy remains small, reaching only 30 peV in the
field of 4 mV /nm. This growth orientation is least favorable
for applications requiring large spin-orbit splitting.

Finally, with our realistic set of parameters describing the
first conduction band of the nanowires, we used the BdG
formalism to describe the superconductivity-induced effects
and showed that the system undergoes the topological phase
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transition. Our results could help guiding experimental efforts
in demonstrating such superconducting topological effects.
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APPENDIX A: PLANE-WAVE EXPANSION AND
NUMERICAL DETAILS

In the envelope function approximation description of the
multiband k - p we end up with a set of coupled differential
equations given by [96-99]

A
D LK, y) VI f () = E f(xy), (A

where the summation over A represents the multiband k - p
model we are dealing with, in this paper it is either A =
8 for the WZ k- p model or A = 14 for the ZB model;
K¥®(x,y) represents the spatial description of the kinetic
terms (effective masses, interband and intraband couplings,
k-dependent spin-orbit coupling terms, etc.) and V**(x,y) of
the potential terms (quantum confinement profile, electric field,
spin-orbit coupling terms, etc.) and f(x,y) is the envelope
function.

Among the several ways that exist to solve such type
of coupled differential equations, consider the plane-wave
expansion to the envelope functions

Sy =) &I FK K.

KK,

(A2)

Carrying out the calculations with the above form of the
envelope function, we can identify in the final equation of the
Hamiltonian that the spatial-dependent parameters and poten-
tials (confinement and external electric field) can be written
as [102-104]

Xy = Y @ eNz0,.0,) (A3
0.0,
with the condition
Quw =Ky —K,, aa=xy (A4)
, 2w .
{Ko, Ky} = it i= 0,£1,£2,.... (A5)

o

In a similar fashion that by performing the envelope
function approximation we end up with a description of
the spatial-dependent functions and parameters in terms of
derivatives [ky,) — —i9/0x(y)], by performing the plane-
wave expansion can be summarized by the expansions given
by Egs. (A2) and (A3) and the following substitutions to the k

suiod 18

-20-15-10 -5 0 5 10 15 20
X (hm)

y (nm)
o !
suiod T

-20 -

-20-15-10 -5 0 5 10 15 20
X (hm)

FIG. 26. Discretization grid for (a) potential profile and (b) wave
function. Due to the plane-wave expansion method the number of grid
points is larger in the potential profile if compared with the number
of grid points in the final wave function.

vectors:
ko = 3(Ko + K,

kakg — 3(KoKjy + KgK}), {a.B} = x,y.  (A6)

From Egs. (A2)-(AS5) we notice that the number of co-
efficients of the parameters and potentials are bigger than
the number of coefficients of the envelope function. For
instance, considering 1 plane wave for x and y directions
we would have the set of Ky and K, vectors given

by {—1,0,1} x Li—’(’y) and consequently the set of Q, vectors
given by {—2, — 1,0,1,2} x 27 therefore leading to 3 x 3

Ly’
coefficients for the wave functions and 5 x 5 coefficients for
the parameters and potentials. As a general rule, given anumber
of plane waves N,y for x and also y directions, the number of
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FIG. 27. Conduction and valence subbands crossing for a WZ
InAs nanowire with L = 60 nm due to high quantum confinement
induced by electric field of £ = 16 mV/nm. In (a) we focused on
showing the first two conduction subbands embedded in the valence
subbands sea, whereas in (b) we show the first few valence subbands.

Fourier coefficients is (2 x Npy + 1)? for the wave functions
and (4 x Npy + 1)?> for the parameters and potentials. The
connection between the Fourier coefficients and the real-space
points is done by the Fourier transform routines.

In this paper, we have used 20 plane waves for x and
y directions in a square grid for all simulations. This leads
to 41 x 41 Fourier coefficients, or real-space discretization
values, for the wave functions and 81 x 81 for the parameters
and potentials. This value was sufficient to achieve energy
convergence in our tests. In Fig. 26 we show the example of
a WZ InAs nanowire along [0001] direction with L = 30 nm.
In Fig. 26(a) we show the hexagonal confinement profile with
each vertex of the square grid representing one of the 81 x 81
discretization points. Similarly, in Fig. 26(b) we show the
41 x 41 square grid discretization for the probability density at
k. = Ofor the first conduction subband. The nanowire itself has
61 discretization points along the diameter (distance between
opposite vertices in hexagonal nanowires), with at least 10
discretization points in the surrounding vacuum at each side
along the line. In our simulations, we always kept the ratio of
points inside to points outside the nanowire constant.

Regarding the numerical calculations, we performed the
diagonalization of the final Hamiltonian using the MAGMA
[128] suite which implements the LAPACK routines in a
multicore +GPU (graphical processing unit) computational
environment. The numerical precision of the calculations is
guaranteed up to single precision which translates to energies
on the order of 107° eV: any value below this number was
regarded as zero.

APPENDIX B

In Fig. 27 we show the band structure of a WZ InAs
nanowire with L = 60 nm, with an applied electric field of
E =16 mV/nm. The quantum confinement induced by the
electric field is large enough to cause the conduction and

10
. 8
e
£ 6
3 4
()
g 2
0 E =1.6 mV/nm
10
1(c) (d)
—~~ 8_
S ]
g 6
S 4
5 J
§ 2
0 E =24 mV/nm E =3.2mV/nm
L e e e e

0 0.025 0.05 0.075 0 0.025 0.05 0.075
kz (nm) kz (nm™T)

FIG. 28. (a) Second and third conduction subbands of a WZ InAs
nanowire with 40 and 60 nm in diameter without applied electric field.
(b) Same as (a) but with electric field of £ = 1.6 mV/nm. (c) Same
as (a) but with electric field of £ = 2.4 mV/nm. (d) Same as (a) but
with electric field of E = 3.2 mV /nm. The vertical lines indicate 1%
of the Brillouin zone.

valence subbands to cross. In this situation, it is difficult to
isolate the desired subband to apply the fitting method.

APPENDIX C

What about higher conduction bands? In Fig. 28 we show
a band-crossing evolution as a function of the applied electric
field for two WZ InAs nanowires, of diameter 40 and 60 nm.
Without an applied electric field, the spin-split bands cross each
other, making it unrealistic to describe structure with a simple
spin-half model. As we turn on and increase the magnitude
of the electric field, the orbital quasidegeneracy vanishes and
the crossing point extends further away from the I point. For
this specific configuration, with an applied electric field of
E = 1.6 mV/nm the band crossing occurs outside the fitting
range, therefore making it possible, in principle, to apply the
single-band model for spin-half electrons. However, due to
quantum confinement effects, the crossing point shift is not
the same for all nanowire crystal phases, neither for applied
electric field. Therefore, we choose to not apply the fitting to
higher excited conduction bands. A better approach would be
to develop an effective Hamiltonian that takes into account all
the desired bands in the desired range and fit the Hamiltonian
itself rather than the energy dispersion. The disadvantage of
such an approach is the loss of simplicity.
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