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We study the effects of the nonlinear piezoelectricity and the In distribution on the exciton energy, the electron-
hole electric dipole moment, and the fine-structure splitting in stress-tunable In(Ga)As/GaAs quantum dots
integrated onto a piezoelectric actuator. In particular, we investigate in detail the contributions of various elements
of the expansion of the electrical polarization in terms of externally induced elastic strain on the latter two important
quantum dot properties. Based on the comparison of the effects of first- and second-order piezoelectricity we
provide a simple relation to estimate the influence of applied anisotropic stress on the quantum dot dipole moment
for quantum dots significantly lattice mismatched to the host crystal.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) provide a number of
appealing applications. Among others, QDs may be used as
gain materials for lasers [1–3], as single photon emitters for
optical fiber communication [4], as building blocks of secure
optical links using entangled photon pairs [5], for quantum
gates [6,7], or are used in biomedical applications [8].

The capability of QDs to confine the motion of electrons
and holes in all three spatial dimensions offers the advantages
of a discrete, atomlike electronic system [9] within a solid-state
platform. The strong confinement and the Coulomb interaction
among trapped charge carriers promotes the formation of stable
few-particle states [10] like neutral exciton (X) and biexciton
(XX) whose cascaded radiative recombination allows the
generation of single and entangled photons [11,12]. The appli-
cation of QDs as quantum light sources in advanced quantum
communication and computation schemes [13,14] demands
well-defined transition energies, vanishing fine-structure split-
ting (FSS), and extensive control over the QDs’ interaction with
the charge environment. In this regard, the statistical distribu-
tion of structural parameters such as size, shape, or composition
of self-assembled QDs [15], which becomes apparent via
deviations of essential emission properties among different
QDs, represents a major challenge towards application and
demands for effective methods for (reversible) post-growth
engineering [16] of the electronic structure of individual QDs.

In this context, externally applied stress mediated via
piezoelectric actuators [17] has proven to be an effective tool
to (simultaneously) tune transition energies [18] and FSS
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[5,19], thus, enabled interference experiments with photons
from remote QDs [20] or the extraction of high-fidelity
polarization-entangled photons [21]. In a recent work [22]
we moreover demonstrated that applied stress allows us to
control magnitude and alignment of the vertical electron-hole
separation in In(Ga)As QDs manifesting itself via a built-in
dipole moment (p) along the growth direction. p is commonly
present in as-grown QDs [23] and its interaction with charges
in their vicinity leads to spectral diffusion [24] causing an
inhomogeneous linewidth broadening of the corresponding
optical transitions and, in turn, degrade the indistinguishability
of consecutive photons emitted by QD. It has been found
in Ref. [22] that the observed tuning of p can only be
described by considering nonlinear terms in the expansion of
the piezoelectric polarization, the importance of which was first
highlighted theoretically by Bester et al. [25,26]. However, that
effect is usually difficult to observe experimentally.

In this work we discuss the significance of the second-
order piezoelectric terms with regard to the FSS in stress-
tuned In(Ga)As QDs. In addition, the previously reported
dependencies of the X transition energy (E0) and p on the
externally applied stress [22] are analyzed in more detail.
The experimental data in Ref. [22] were obtained on QDs
embedded in n-i-p membrane diodes bonded on a PMN-PT
piezoelectric actuator. This device design allowed us to extract
E0 and p vs applied stress from microphotoluminescence
(μ-PL) measurements of the quantum-confined Stark effect
(QCSE) [27], whereas the corresponding FSS was obtained
via polarization-resolved μ-PL measurements of the X and
XX spectral lines. The presented theoretical model allows
us to concurrently reproduce the experimental data for the
considered quantities in terms of magnitude and observed
stress dependence. This is achieved while using realistic

2469-9950/2018/97(24)/245314(6) 245314-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.245314&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevB.97.245314


PETR KLENOVSKÝ et al. PHYSICAL REVIEW B 97, 245314 (2018)

structural parameters for the investigated QDs and taking into
account peculiarities of the used device (processing) in terms
of stress configuration and prestress. The performed analysis
finally allows us to propose an approximate relation of p

and the externally applied stress applicable to all epitaxial
QD systems lattice mismatched with the host material. We
want to emphasize that this analysis is not only applicable
to type-I QD systems like In(Ga)As/GaAs, but also for QD
systems supporting spatial indirectly located electron and hole
states (type-II QDs) that have been reported for distinct III–V
material combinations [28,29].

II. MODELLING OF THE EXPERIMENTAL DATA

The Taylor expansion of the electrical polarization (P) in
terms of strain (η) up to second-order terms is P = Pl + Pnl

[30], where Pl is the linear term:

Pl = e14

⎛
⎝

η4

η5

η6

⎞
⎠, (1)

and Pnl the nonlinear one:
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(2)
Here ηi are indexed according to the Voigt notation, i.e.,
η1 ≡ ηxx , η2 ≡ ηyy , η3 ≡ ηzz, η4 ≡ 2ηyz, η5 ≡ 2ηxz, η6 ≡
2ηxy [30], where x,y,z denote the crystallographic axes of the
conventional cubic unit cell of the zincblende lattice. Note that
even though the third-order coefficients of the above expansion
were provided by Tse and colleagues [31], we restrict ourselves
to second-order ones in this work since the magnitude of
externally induced (misfit) η is of the order 0.1% (3%) [22]. As
a consequence, the largest third-order contributions involving
the externally induced strain are products of that with the
squared misfit strain. These contributions are much smaller
than the largest second-order contributions involving the misfit
strain in first order.

In the simulations discussed in this work the calculation
flow was as follows. First, the geometry of the QD structure
was defined on a rectangular grid including the spatially
dependent material constituents. Thereafter, the strain field in
and around QD was found by minimizing the strain energy.
The effect of the resulting strain on the confinement potential
was then treated using the Bir-Pikus Hamiltonian [32] with
positionally dependent parameters. The next step involved
the self-consistent solution of single-particle Schrödinger and
Poisson equations including the effect of piezoelectric fields
up to second order in η. Note that the single-particle states
were obtained within the envelope function method based on
an eight-band k · p approximation and all the preceding steps
of calculation were done using the Nextnano3 simulation suite
[33]. For the full list of material parameters used in this work
see Ref. [34]. Finally, the obtained single-particle states were
used as input for the excitonic calculations using the con-
figuration interaction (CI) algorithm that we have previously
developed [29]. All CI calculations included the computation
of direct and exchange Coulomb integrals and were performed

FIG. 1. (a) Side view of the InxGa1−xAs/GaAs QD1 and QD2

structures used for the calculations. The shape of both QDs is that
of truncated cones with base and top diameters of 40 and 20 nm,
respectively. The height is 2 nm (3 nm), the In concentration is equal
to 0.45 (linearly increasing from 0.25 at the bottom to 0.65 at the apex),
and σ pre = 500 MPa (σ pre = 350 MPa) for QD1 (QD2). (b) Side and
(c) top view of the typical simulated dot (pink), and calculated electron
(green) and hole (blue) probability densities, respectively. The wave
functions are given as isosurfaces encircling 70% of the probability.

with a basis set of six electron and six hole single-particle
states, thus providing also the effect of correlation.

Two InxGa1−xAs/GaAs QDs labeled QD1 and QD2 in
Fig. 1(a) were used as model systems. Both have the shape of
truncated cones but differ in size and In-Ga alloy distribution.
Their parameters were deliberately chosen so that the calcu-
lated dependencies of E0 and p on the hydrostatic part of the
applied anisotropic stress σmax + σmin match the experimental
results taken from Ref. [22], see Fig. 2. Note that similarly as
in Ref. [22] p is considered to be oriented from negative to
positive charge throughout this work. The variables σmax and
σmin denote the principal stresses [35,36] applied externally by
the two-dimensional piezoactuator. In Ref. [22] it was shown
that σmax was applied at an angle of α = 55◦ with respect to the
[100] crystal axis which we adopt also in this work. This stress
configuration corresponds to the experimental one as estimated
via the measurements of FSS, see the Supplemental Material of
Ref. [22]. The various coordinate systems used in our model as
well as the typical single-particle wave functions of electrons
and holes are indicated in Figs. 1(b) and 1(c). Note that by
assuming a smaller average In concentration (45% instead
of 62.5%) but a larger In gradient along growth direction
(from 25% to 65% instead of 45% to 80%) as compared to
Ref. [22], in this work we could significantly improve the
agreement between simulated and measured slope of p/e with
applied stress. At the same time, the observed scattering range
of X energies and dipole moments remains within a model
parameter region of comparable width as assumed in Ref. [22].

As discussed in Ref. [22], the bonding of the sample onto
the piezoactuator leads to a prestress (σ pre) independent of
the voltage applied to the piezo varying between different
dots. As will be discussed towards the end of the paper,
only the off-diagonal component σ

pre
xy of the (symmetric)

in-plane prestress tensor effectively affects the electron-hole
separation p/e in QDs, where e denotes the elementary charge.
Consequently, in order to match the measured values of p/e
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FIG. 2. Dependencies of average energy E0 (top panel) and aver-
age electron-hole separation p/e (bottom panel) on σmax + σmin exper-
imentally obtained from μPL measurements of nine In(Ga)As/GaAs
QDs [22] (broken curves) and that calculated for QD1 (full red curve)
and QD2 (full blue curve). The different upper and lower x scales
uniquely define the in-plane applied stress tensor via the relation [36]
σ appl

xy = 1
2 (σmax − σmin) sin(2α), where α is given in the text. The letter

e denotes the elementary charge.

with the results of our calculations we needed to allow for
different magnitudes of σ

pre
xy of 500 and 350 MPa that acted

on QD1 and QD2, respectively. We support this assumption by
comparing measured values of FSS with those obtained using
CI, as discussed in the following.

The effects of σ
pre
xy on FSS and p/e are different, however, it

is possible to estimate a value of σ
pre
xy such that one can fit both

sets of experimental data, i.e., for FSS and p/e. In the top panel
of Fig. 3 we show that for QD2 the application of a variable
stress leads to a minimal FSS of 1.15 μeV for σmax + σmin =
−53.32 MPa if we assume σ

pre
xy = 50 MPa. Note that by

the two scales of the abscissa axes in Fig. 3 together with
α = 55◦ and the relation [36] σ

appl
xy = 1

2 (σmax − σmin) sin(2α)
all components of the in-plane stress tensor are defined. For
larger values of σ

pre
xy the applied stress leads again to reduction

of FSS, but the minimal value of FSS is progressively larger
as well as the value of σmax + σmin for which the anticrossing
occurs. At the same time, the values of p/e for σmax + σmin = 0
decrease with increasing σ

pre
xy , see bottom panel of Fig. 3.

Interestingly, p/e attains positive values for σ
pre
xy � 200 MPa.

However, larger values of σ
pre
xy lead to negative values of p/e

for σmax + σmin = 0. Notice that ∂p/∂(σmax + σmin) is very
similar among different dots. We will return to discussion of
this observation later.

It is well known that apart from σ
pre
xy FSS also depends on the

elongation of the QDs along [110] crystallographic direction

FIG. 3. Dependencies of FSS (top panel) and p/e (bottom panel)
on σmax + σmin experimentally obtained from μPL measurements of
nine In(Ga)As/GaAs QDs [22] (broken curves) and that calculated for
different values of σ pre

xy as indicated in the legend. Except for σ pre
xy the

simulated QDs had the same properties as QD2. The shaded area in the
top panel indicates the range of FSS variations due to dot elongation
along [110] crystallographic direction in the range between 0.9 and
1.2. The meaning of both x scales is the same as in Fig. 2.

[37,38]. However, our simulations show that for large QDs
with dimensions similar to that of QD2, such elongations in an
unrealistically large range between 0.9 and 1.2 cause FSS of
less than ∼10 μeV, see Ref. [39]. Since the elongation-induced
FSS is much smaller than the FSS observed in our experiments,
it was neglected in our analysis.

Our model reproduces the experimental values of FSS and
p/e as well as ∂FSS/∂(σmax + σmin) and 1/e × ∂p/∂(σmax +
σmin) reasonably well for σ

pre
xy � 350 MPa indicating that rather

large σ
pre
xy is experienced by our QDs and the value of that is

different among dots.
Motivated by Refs. [23,40], which discussed the influence

of In distribution inside In(Ga)As/GaAs QDs on p, we have
tested that observation for our stress-tuned dots. In Fig. 4 we
show FSS and p/e as a function of σmax + σmin for In contents
(i) linearly increasing from 0.25 at the QD base to 0.65 at
its apex, (ii) the same but for reverted concentration profile,
and (iii) for constant In composition of 0.45. Similarly as in
Refs. [23,40], we find that p/e at σmax + σmin = 0 can be varied
considerably by changing the slope of In content from −0.05
nm for (i) to −0.27 nm for (ii). Case (iii) is found somewhat
in between at −0.21 nm. Note that the calculated slopes 1/e ×
∂p/∂σ

appl
xy do not fit the experimentally observed ones so well

as for different σ
pre
xy discussed before.
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FIG. 4. Dependencies of FSS (top panel) and p/e (bottom panel)
on σmax + σmin experimentally obtained from μPL measurements of
nine In(Ga)As/GaAs QDs [22] (broken curves) and that calculated
for different In contents inside QD. The data for In content linearly
varying as a function of vertical dimension from 0.25 (0.65) at the
QD base to 0.65 (0.25) at the QD apex are shown as blue (orange)
curves. Those for constant In content of 0.45 are given as green curves.
All other properties of the dots were the same as for QD2 including
σ pre = 350 MPa. The meaning of both x scales is the same as in Fig. 2.

On the other hand, the influence of different In gradients
on the values of FSS is much weaker than for p/e. This
is expected since FSS is most sensitive to the in-plane QD
symmetry [35] which is decreased in the presence of in-plane
shear stress. Thus, the In gradient cannot be used to explain the
spread of values of FSS that we have experimentally observed.
Additionally, calculations for different QD height are shown
in Ref. [41].

We now proceed with the analysis of the evolution of p/e

on σmax + σmin and the apparent similarity of its slope among
different QDs that we have measured. To investigate the origin
of that we have performed calculations in which we have set all
piezoelectric parameters equal to zero as well as sequentially
e14, B114, B124, and B156 to the values listed in Table I, see
Fig. 5.

First, by comparing the open squares with the full triangles
in the top panel of Fig. 5, we note that FSS is dominated by
σ

appl
xy + σ

pre
xy and that the concomitant piezoelectric field Pl +

Pnl as given by Eqs. (1) and (2) increases FSS by only ∼25%.
As shown by the open triangles, this increase is overestimated
twice by considering Pl only. Note that according to Eqs. (1)
and (2) the pre- and applied stress are in-plane and thus result
in a purely perpendicular piezoelectric field. As shown in

TABLE I. Used values in units of C/m2 for the piezoelectric
constants defined in Eqs. (1) and (2) as obtained from calculations
given in Ref. [30]. For InxGa1−xAs, the constants were obtained by
linear interpolation.

e14 B114 B124 B156

InAs −0.115 −0.6 −4.1 0.2
GaAs −0.238 −0.4 −3.8 −0.7

Ref. [42], electric fields in this direction couple to the FSS only
via the different dipole moments of the respective excitons.
Obviously this coupling is less effective for FSS than the
in-plane symmetry-breaking effect of σ

appl
xy + σ

pre
xy . Moreover,

the small response of FSS to electric fields in perpendicular
direction justifies for our analysis of FSS a posteriori the
neglection of the n-i-p diode built-in electric field, which is
estimated to be approximately two times smaller than the
piezoelectric field.

Second, from the bottom panel of Fig. 5 we see from the
comparison of the effects of first- and second-order piezo that
the latter is dominant for p/e. In particular, the term containing
the piezoelectric parameter B124 in Eq. (2) almost exclusively
determines the dependencies of p/e on σmax + σmin. This is not
surprising since the magnitude of B124 is several times larger
than that of e14, B114, or B156 [30]. This observation, however,
suggests a simplification of Eqs. (1) and (2) by discarding all

FIG. 5. Comparison of dependencies of FSS and p/e on σmax +
σmin for σ pre

xy = 350 MPa and all piezoelectric parameters equal to zero
together with results for e14, B114, B124, and B156 sequentially retaining
their values for QD2. For comparison, one set of the experimental data
for p/e from Ref. [22] is given by the gray broken curve in the bottom
panel. The meaning of both x scales is the same as in Fig. 2.
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FIG. 6. Results of linear fits of experimental dependencies of p/e

on σ appl
xy by Eq. (6). The colors of data points correspond to the colors

of fitted linear lines in the inset. The dotted curve corresponds to the

mean value of A
QD = −0.48 nm/GPa.

terms except for that for B124. Let us now expand the z element
of P of the second term in Eq. (2) as

Pz = 2B124ηxy(ηxx + ηyy)

= 2B124
(
ηQD

xy + ηappl
xy + ηpre

xy

)(
η

QD
H + η

appl
H + η

pre
H

)
, (3)

where ηH ≡ ηxx + ηyy corresponds to the hydrostatic in-plane
strain. The meaning of the other variables is as follows: ηQD

xy is
the shear strain stemming from the lattice mismatch between
the dot material and GaAs matrix, η

appl
xy is the shear strain

induced by the piezoelectric actuator, and η
pre
xy is the fixed

shear prestrain; η
QD
H , η

appl
H , and η

pre
H denote the corresponding

in-plane hydrostatic components. Variations of the strain fields
over the QD volume are neglected, i.e., all strain components
represent values averaged over the QD volume.

Since it is reasonable to expect that η
appl
H ,η

pre
H � η

QD
H , we

can neglect η
appl
H and η

pre
H arriving at

Pz ≈ 2B124η
QD
H

(
ηappl

xy + ηpre
xy + ηQD

xy

)
, (4)

shedding light to the reason why we see a linear dependence
of p/e on σ

appl
xy in our measurements. In turn, in the presence

of large hydrostatic strains typical for QDs lattice mismatched
to the host crystal, Eq. (4) has to be used to calculate Pz rather
than the commonly used first-order expansion given, e.g., in
Ref. [43], which for our case would read

Pz = 2e14
(
ηappl

xy + ηpre
xy + ηQD

xy

)
. (5)

We can now work out the approximate dependence of p/e

on σ
appl
xy as

p/e ≈ p0/e + AQD
(
σ appl

xy + σ pre
xy + σ QD

xy

)
, (6)

where AQD = B124C
elη

QD
H /eG; Cel is a scaling factor that

reflects the effect of quantum confinement on position of
quasiparticles in QD and G is the shear modulus. All built-in
dipole moments independent of the piezoelectric polarization
(induced, e.g., by a gradient in the In concentration in QDs)
are lumped together in p0. According to Eq. (6), only the
off-diagonal element of the prestress tensor is important for the
simulation of p/e in highly lattice mismatched QD systems,

justifying the inclusion of prestress in our simulations by a
single scalar parameter σ

pre
xy as described in the beginning of

the paper.
In Fig. 6 we provide the test of Eq. (6) by linear fitting of the

experimental dependencies of p/e on σ
appl
xy . It can be seen that

the values for the slope AQD for all studied QDs are scattered

by less than ±20% around a mean value of A
QD = −0.48

nm/GPa. Since η
QD
H is the only experimental parameter in AQD,

we conclude that the uncertainty in the value for AQD is due to a
variation of η

QD
H of only ±20% for our QDs. Finally, the effec-

tive offset dipole moment given by Eq. (6) as peff
0 /e = p0/e +

AQD(σ pre
xy + σ QD

xy ) pronouncedly varies by ±75% for the QDs
shown in Fig. 6 as a consequence of variations ofp0 andσ

pre
xy . To

which extent each of them contributes to the observed variation
of peff

0 cannot be concluded based on the experimental data
available. Finally, by comparing the effects of Eqs. (4) and
(5) on p/e, respectively, using Eq. (6) we find that the former
provides ≈ 6 times larger values of AQD than the latter.

III. CONCLUSIONS

We have studied the effects of nonlinear piezoelectricity
on built-in electric dipole and excitonic fine-structure splitting
energy in stress-tuned In(Ga)As/GaAs quantum dots and pin-
pointed its importance as compared to first-order terms only.
Furthermore, it was found that while the dipole is influenced by
the shear prestress via the piezoelectric effect, the latter effect is
relatively unimportant for FSS. On the contrary, shear prestress
influences fine structure by reducing the dot overall symmetry,
particularly in the base plane of In(Ga)As/GaAs QDs. Finally,
we have found the dominant piezoelectric term and provided
an approximate relation to estimate the influence of the applied
stress on the electrical dipole moment for the In(Ga)As/GaAs
QD system. The applicability of our simplified model extends
also to other strongly lattice mismatched piezoelectric QD
systems with large built-in hydrostatic strains. Its contribution
to Pz potentially dominates the more commonly used relation
Pz = 2e14ηxy . Noticeably, in the case of In(Ga)As/GaAs QDs
studied in this work, our model led to almost an order of
magnitude larger effect of applied shear stress on QD dipole
than that when only the linear piezoelectricity was considered.
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