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Dominant role of the shear strain induced admixture in spin-flip processes
in self-assembled quantum dots
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We study theoretically the spin-flip relaxation processes for a single electron in a self-assembled InAs/GaAs
quantum dot, and we show that the dominant channel is the spin admixture induced by symmetry-breaking shear
strain. This mechanism, determined within the eight-band envelope-function k· p theory, can be mapped onto two
effective spin-phonon terms in a conduction-band (effective-mass) Hamiltonian that have a similar structure and
interfere constructively. Unlike the Dresselhaus coupling, which dominates spin relaxation in larger, unstrained
dots, the shear strain contribution cannot be modeled by a generic, standard term in the Hamiltonian but rather
relies on the actual strain distribution in the quantum dot.
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I. INTRODUCTION

The dynamics and decoherence of spins in quantum dots
(QDs) have been a focus of both experimental and theoretical
studies for several years. This research activity is motivated
by the scientific interest in this nontrivial and still not fully
understood problem, as well as the promise it holds for
possible applications in spintronics and quantum-information
processing [1,2]. The latter is fed by the experimental results
showing very long lifetimes of confined spins, which raise
hopes for their applications as spin memories [3], and by the
development of manufacturing and control technologies that
allow one to coherently drive quantum spin states in a desired
way [4,5].

Among various QD systems, self-assembled structures
show many advantageous features for spin dynamics. In
contrast to, e.g., gate-defined lateral or vertical QDs, they
are optically active, allowing one to apply an optical control
approach originally developed for bulk semiconductors [6] and
to use light fields to prepare, detect, and control spin states
on very short time scales [7–15] (see Refs. [16–20] for a
review). Spin relaxation and dephasing in self-assembled QDs
is of particular interest, since these decoherence phenomena
set the ultimate limit on the functionality of any nanoscopic
spin-based devices. Experiments show exciton spin lifetimes
much longer than the recombination times [21] and electron
spin relaxation times in the range from nanoseconds [22] to
microseconds [23] or even milliseconds [3,24], depending on
the material systems and experimental details. The measured
spin coherence times are much shorter, on the order of
nanoseconds, which is due to hyperfine-induced dephasing and
ensemble inhomogeneity [8,25,26].
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A theoretical description of electron spin-flip processes in
QDs was initially formulated for a lateral gate-defined GaAs
structure both for transitions within the ground-state Zeeman
doublet [27] and for relaxation from higher energy levels
[28]. For those structures, the dominant mechanism of spin
relaxation was shown to be the admixture mechanism due to the
Dresselhaus spin-orbit coupling: an electron state with a certain
nominal spin orientation has a contribution of states with
inverted spin, which makes it possible for the phonons to couple
it to the states with a nominally opposite spin orientation.
Due to the time-inversion symmetry, in the resulting effective
carrier-phonon Hamiltonian for the Zeeman doublet, the terms
that are even in the magnetic field B have to vanish, which
leads to the characteristic ∼B5 dependence of the spin-flip
rate. Two other mechanisms invoked in Refs. [28] and [27],
of much lesser importance for large lateral dots, had a formal
structure of a direct spin-phonon coupling and were interpreted
as the spin-orbit splitting of the electron spectrum due to the
strain field produced by the acoustic phonons and as the strain-
induced modification of the electron Landé factor. In later
literature, an additional “ripple mechanism” has been invoked,
related to the phonon-induced motion of the QD interface
[29,30]. On the other hand, the generic description of spin-
phonon coupling, derived within the formal k · p approach from
the phonon-related contributions to the fundamental spin-orbit
Hamiltonian [31,32], can also be applied to nanostructures
in the effective mass and envelope-function approximations
[33–35].

Based on these results, the most common theoretical ap-
proach followed in numerous studies, including those devoted
to the electron relaxation in self-assembled structures [29,33–
39], is to derive the electron spin relaxation rates from a
simple model of confinement potential within the single-band
effective-mass approximation and the usual Dresselhaus cou-
pling or other generic spin-orbit coupling terms. To improve
the accuracy with which the spin-orbit admixtures to the
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wave functions are treated, it was proposed [40] to use an
atomistic pseudopotential theory for the calculation of wave
functions, while the standard carrier-phonon coupling was used
for the transitions, thus yielding a more exact theory within the
admixture paradigm. The predictions of the admixture model,
in particular the B5 dependence of the spin relaxation rate,
have also been invoked in the interpretation of experimen-
tal results that in fact showed such behavior [3,24], appar-
ently confirming the universal character of those theoretical
conclusions.

As the relative strengths of various spin relaxation channels
strongly depend on the system parameters, in particular on
the energetic separation of the excited states, there seems
to be no reason for a particular ordering of these channels
to hold universally. Moreover, in self-assembled systems,
a single-band effective-mass approach is just the simplest
approximation. Applying a more general multiband k · p theory
in the standard envelope-function approach [41] not only offers
quantitatively more accurate wave functions but also allows
one to systematically include spin-orbit couplings and strain
fields. In this way, all the channels of spin relaxation can be
included on the same footing. The standard quasidegenerate
perturbation theory (Löwdin elimination of the valence bands)
yields an effective electron Hamiltonian. This allows one to
relate the electron spin-flip channels proposed in the literature
to particular terms in the well-established k· p Hamiltonian as
well as to verify the predictions based on various mechanisms,
estimate the effective constants, and assess the relative impor-
tance of various couplings for the electron spin-flip process in
a self-assembled QD.

In this paper, we present the results of k· p modeling of
electron spin relaxation in InAs/GaAs self-assembled QDs.
First, we classify the terms responsible for spin-flip processes
at the level of an eight-band theory, and we show that spin
relaxation between the Zeeman sublevels of the ground state
is dominated by the admixture mechanism induced by shear
strain and valence-band deformation potentials. By perturba-
tively reducing the model to an effective description of the
conduction band, we show that this mechanism corresponds
to a strain-dependent anisotropic contribution to the electron
g-factor that leads to spin mixing.

The paper is organized as follows. In Sec. II we define the
model of the QD system. In the central Sec. III we present,
compare, and interpret the results for spin relaxation via various
channels. Section IV concludes the paper.

II. MODEL

We consider a flat-bottom, lens-shaped, self-assembled
InAs QD placed in a GaAs matrix, assuming a uniform
composition of 100% InAs inside the QD and the wetting layer
(WL). The base radius of the dot is 12 nm and the height is
4.2 nm, while the height of the WL is 0.6 nm. The system is
placed in a magnetic field oriented in the growth direction.

The electron wave functions are obtained by diagonalizing
the eight-band k· p Hamiltonian in the envelope-function ap-
proximation [41,42]. The model includes the kinetic terms up
to the second order both within the bands and in the band-off-
diagonal blocks coupling the conduction and valence bands.

We account for the strain within the continuous elasticity
approach [43] in the linear order.

In the block notation, the Hamiltonian has the form

H =
⎛⎝H6c6c H6c8v H6c7v

H8v6c H8v8v H8v7v

H7v6c H7v8v H7v7v

⎞⎠, (1)

where the blocks refer in the standard way to the lowest
conduction band (cb, 6c), the j = 3/2 valence band (vb, 8v),
and the j = 1/2 (spin-orbit split-off) vb (7v). Here and in the
following, we use the notation of Ref. [41]. The corresponding
blocks are explicitly given by [41,44]

H6c6c = Ec + Vp + ac Tr ε

+ h̄2

2m0

(
kxA

′
ckx + i

2
k[xg

′ky]σz + c.p.

)
, (2a)

H8v8v = Ev − h̄2

2m0

{
kxγ

′
1kx − 2

(
J 2

x − 1

3
J 2

)
kxγ

′
2kx

−{Jx,Jy}k{xγ ′
3ky} + c.p.

}
+ 1

2
√

3

[{
Jx,J

2
y − J 2

z

}{Ck,kx} + c.p.
]

+ av Tr ε − bv

[(
J 2

x − 1

3
J 2

)
εxx + c.p.

]
− dv√

3
[{Jx,Jy}εxy + c.p.]

− i
h̄2

m0

[
k[xκ

′ky]Jz + k[xqky]J
3
z + c.p.

]
, (2b)

H7v7v = Ev + Vp + av Tr ε

−�0 − h̄2

2m0
(kxγ

′
1kx + c.p.)

− i
h̄2

m0
[k[xκ

′ky]σz + c.p.]

−(μBBzσz + c.p.), (2c)

H6c8v =
√

3T · k̃P + i

√
3

2
(Txk{yB+

8vkz} + c.p.)

+
√

3

2

[
(Txx − Tyy)

(
2

3
kzB

−
8vkz

−1

3
kxB

−
8vkx − 1

3
kyB

−
8vky

)
− Tzz(kxB

−
8vkx − kyB

−
8vky)

]
+ i

√
3C2(Txεyz + c.p.), (2d)

H6c7v = − 1√
3
σ · k̃P − i

2
√

3
(σxk{yB7vkz} + c.p.)

− i
1√
3
C2(σxεyz + c.p.), (2e)

H8v7v = − h̄2

2m0
{−6(T †

xxkxγ
′
2kx + c.p.)
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− 6(T †
xyk{xγ ′

3ky} + c.p.)}

− i

√
3

2
(T †

yz{Ck,kx} + c.p.)

− 3bv(T †
xxεxx + c.p.) −

√
3dv(2T †

xyεxy + c.p.)

− i
3h̄2

2m0
[k[xκ

′ky]T
†
z + c.p.]

− 3(μBBzT
†
z + c.p.). (2f)

Here {O1,O2} = O1O2 + O2O1, k{iOkj} = kiOkj + kjOki ,
k[iOkj ] = kiOkj − kjOki for any operators O, O1, O2; c.p.
stands for the cyclic permutation of indices; Ec and Ev are the
cb and vb edges, respectively (E0 = Ec − Ev is the fundamen-
tal band gap in a bulk crystal), �0 is the spin-orbit parameter;
k = −i∇ + eA/h̄, where A is the vector potential of the
magnetic field B; k̃ = k(I − 2ε); ε is the strain tensor; Vp is
the piezoelectric potential including piezoelectric polarization
up to second-order terms in structural strain [45,46] with the
parameters taken from Ref. [47]; m0 is the free-electron mass;
γ ′

i are the Luttinger parameters with removed contributions
from the �6 cb,

γ ′
1 = γ1 − EP

3E0 + �0
, γ ′

2,3 = γ2,3 − 1

2

EP

3E0 + �0
;

μB is the Bohr magneton; q is the anisotropic contribution
to the bulk g-factor in the Luttinger Hamiltonian; σi are the
Pauli matrices; Ji are matrices of the j = 3/2 representation
of angular momentum; Ti are matrix representations of a
vector operator between j = 1/2 and j = 3/2 states, i.e.,
Tx/y = −(T (1)

+1 ∓ T
(1)
−1 )/

√
2, Tz = T

(1)
0 , with the matrix ele-

ments of the spherical components T (1)
q given in terms of the

Clebsch-Gordan coefficients 〈j1j2; m1m2|jm〉 by the Wigner-
Eckart theorem, 〈m|T (1)

q |m′〉 = −√
2/3〈3/2,m′; 1,q|1/2,m〉,

for m = ±1/2, m′ = −3/2, . . . ,3/2; and Tij = TiJj + TjJi .
A′

c, g′, and κ ′ are given by [41]

A′
c ≡ m0

m′ = m0

m∗ − 2

3

EP

E0
− 1

3

EP

E0 + �0
,

g′ = 2, κ ′ = −1

3
(γ ′

1 − 2γ ′
2 − 3γ ′

3 + 2).

To avoid A′
c < 0, which would result in a nonelliptical system

[49], we use EP = (m0/m∗ − 1)E0(E0 + �0)/(E0 + 2�0/3),
which guarantees A′

c = 1. In view of the inconsistency of
the reported values of q [41,50], we follow Ref. [51] and
use the perturbative formula q = (2/9)EQ�′

0/[E′
0(E′

0 + �′
0)],

where EQ, E′
0, and �′

0 are the 14-band k· p parameters
[41]; then P = h̄(EP /2m0)1/2. In numerical calculations, we
use the gauge-invariant discretization scheme [48] for the
covariant derivative. The material parameters used in our k· p
calculations are given in Table I.

Coupling to acoustic phonons is included in the standard
way in the long-wavelength limit by taking into account the
phonon-related contribution to the strain tensor in the k· p
Hamiltonian, expressing it in terms of the phonon-induced
displacements, and quantizing the latter. In addition, piezo-
electric coupling is taken into account by performing the same
procedure on the strain terms entering the Hamiltonian via
induced piezoelectric fields. The off-diagonal piezoelectric

TABLE I. Material parameters used in the calculations. After
Refs. [52] and [41], except for C2, which is extracted from the
measurement data in Ref. [53].

GaAs InAs Interpolation for InxGa1−xAs

Ev 0.0 eV 0.21 eV linear
E0 1.519 eV 0.417 eV 0.417x+1.519(1−x)−0.477x(1−x)
E′

0 4.488 eV 4.390 eV linear
EQ 17.535 eV 18.255 eV linear
m∗ 0.0665m0 0.0229m0 [0.0229x+0.0665(1−x)

−0.0091x(1−x)]m0

� 0.341 eV 0.39 eV 0.39x+0.341(1−x)−0.15x(1−x)
�′

0 0.171 eV 0.25 eV linear
ac −7.17 eV −5.08 eV −5.08x−7.17(1−x)−2.61x(1−x)
av 1.16 eV 1.00 eV linear
bv −2.0 eV −1.8 eV linear
dv −4.8 eV −3.6 eV linear
γ1 6.98 20.0 1/[(1−x)/6.98+x/20.0]
γ2 2.06 8.5 1/[(1−x)/8.5+x/2.06]
γ3 2.93 9.2 1/[(1−x)/9.2+x/2.93]
C2 3.3 eV

couplings are discussed in the Appendix and are shown to give
negligibly small contribution, hence we do not include them in
the Hamiltonian. The Zeeman splitting at 10 T is 1.065 meV,
which corresponds to the wave numbers of 0.31 and 0.58 nm−1

for longitudinal and transverse phonons, respectively. This cor-
responds to 2.8% and 5.2% of the Brillouin zone, respectively,
thus justifying the long-wavelength approximations, as well as
the linear dispersion model.

III. RESULTS AND INTERPRETATION

In this section, we present the results for the transition rate
between the states forming the Zeeman doublet of the electron
ground state, obtained from the eight-band k· p calculations.
First, in Sec. III A, we discuss the general division of the spin-
flip channels into two classes. Next, in Sec. III B, we present the
numerical results for the spin-flip rates resulting from various
channels. The dominant channel is then related to an effective
term in a reduced conduction-band Hamiltonian in Sec. III C.

A. Admixture and spin-phonon mechanisms

The purpose of our analysis is to assess the quantitative
importance of various spin-flip mechanisms and to identify
the leading ones. First, however, let us note that the direct
carrier-phonon coupling is spin-conserving and the original
conduction-band block of the multiband k· p Hamiltonian
is spin-diagonal, which precludes any spin-flip transitions
unless the coupling to valence bands is taken into account
via a perturbation theory (Löwdin partitioning [54]). The
resulting spin-flip mechanisms that may appear as higher-order
perturbations in the effective description of conduction-band
electrons can be of two kinds [27,28]. The first type are
admixture mechanisms, where the spin transition is due to
an admixture of states with opposite spin, which makes it
possible for phonons to couple two such states [27,28,55].
The second class are spin-phonon mechanisms, resulting from
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symmetry-lowering phonon-related strain fields, which, com-
bined with the spin-orbit coupling in the valence bands, lead
to direct “spin-phonon” terms in the effective conduction-band
Hamiltonian [55,56].

These two kinds of processes appearing in the effective
conduction-band description can be mapped back to the eight-
band k· p model and used to classify the results of the
multiband modeling. For this purpose, let us split the effective
conduction-band Hamiltonian into the spin-diagonal zeroth-
order part H0, the spin-conserving electron-phonon coupling
V0, and the perturbative correction resulting from decoupling
of the valence band. The latter contains strain-dependent terms,
kept up to the linear order, and is not diagonal in spin states. The
instantaneous strain field, represented by the strain tensor ε, is
composed of the static strain due to the system inhomogeneity
ε(s) and the phonon-induced contribution ε(ph), which leads to
decomposition of the perturbative correction into two spin-
nondiagonal terms with generic forms, respectively,

H1 =
3∑

i=0

3∑
jk=1

αijkσiε
(s)
jk , V1 =

3∑
i=0

3∑
jk=1

αijkσiε
(ph)
jk ,

where σ0 is the unit matrix, and σi for i = 1,2,3 are the Pauli
matrices. By diagonalizing H = H0 + H1 and computing
phonon-induced transition rates resulting from V = V0 + V1,
one obtains in principle all the spin-conserving and spin-
flipping transitions in the system. To leading order, however,
the latter can be induced either by a combination of H1

and V0 (admixture mechanisms) or H0 and V1 (spin-phonon
mechanisms). It is therefore clear that the distinction between
these two classes of processes can be traced back to the
place where phonons are coupled into the eight-band model,
namely in the conduction-band block of the multiband k· p
Hamiltonian (admixture mechanism) or in the other blocks,
mapped onto the conduction band upon Löwdin perturbative
decoupling (spin-phonon mechanisms).

B. Contributions to the spin-flip rate

In Fig. 1, we show the total spin-flip rate (solid red
line), as well as the rates resulting from admixture and
spin-phonon mechanisms only (dotted blue and dashed green
lines, respectively) as a function of the magnetic field B. The
admixture mechanisms dominate over the other by over an
order of magnitude in the whole range of magnetic fields. Both
contributions scale as B5 up to about 10 T, and at stronger fields
the B dependence saturates. The two contributions are almost
exactly additive (see Table II for explicit values).

The spin-nonconserving admixture can originate either
from the Dresselhaus spin-orbit coupling, represented by
quadratic terms in H6c8v and H6c7v (which is the dominant
mechanism in large QDs [27]), or from various terms in the va-
lence band, reflecting spin-orbit couplings in a nanostructure,
where the crystal symmetry is broken on the mesoscopic level
by composition inhomogeneity and strain. To determine the
dominant contribution in a self-assembled QD, we have studied
the spin-flip transition rate for individual contributions to the
admixture channel. To this end, we have identified terms in the
k· p Hamiltonian that lead to spin relaxation via the admixture
mechanism (with carrier-phonon coupling via diagonal terms
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FIG. 1. The total relaxation rate (solid red line) compared to the
rates due to the admixture (dotted blue) and spin-phonon (dashed
green) mechanisms only, as a function of the magnetic field.

in the conduction band only), and we calculated the rate with
all these terms switched off in our computational model, except
for a single one. The results are shown in Fig. 2(a), where we
plot the contributions relative to the total admixture-induced
rate. One can see that no single contribution dominates the
overall rate. The two most important ones stem from the shear
strain terms that are linear in both momentum and strain in the
band-off-diagonal blocks of the k· p Hamiltonian H6c8v and
H6c7v [dashed blue line, labeled “off-diag strain” in Fig. 2(a)]
and from the terms in the valence-band blocks H8v8v and H8v7v

proportional to the deformation potential dv (dashed red line).
To facilitate quantitative comparison, the rates at B = 1 T are
listed in Table II. The rate obtained when both the dominant
channels are turned on is nearly equal to the total rate for
admixture mechanisms, while the other mechanisms yield less
than 1% of the rate. Note that these two major rates are not
additive; in fact, their joint effect is larger than expected even
assuming constructive interference of transition amplitudes
(which is indeed the case; see Sec. III C for more insight).
The reason is the large impact of the strain terms in H6c8v

and H6c7v on the electron g-factor: with these terms on, the
Zeeman splitting increases by 77% (from 61 to 108 μeV),

TABLE II. Numerical values of the spin-flip transition rate at
B = 1 T for individual mechanisms and selected combinations of
mechanisms.

Spin-flip mechanisms and rates (s−1)

Total rate 16.31

Total admixture 15.42 Total spin-phonon 0.874

dv strain 1.385 dv phonons 1.169
off-diag strain 3.477 off-diag phonons 0.0237
dv + off-diag strain 15.36
Dresselhaus 0.238
C2 off-diag strain 0.175 C2 off-diag phonons 0.0353
“none” 0.185
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FIG. 2. (a) Relative contributions to the admixture mechanism
from various couplings in the valence band and band-off-diagonal
blocks of the k· p Hamiltonian as a function of the magnetic field.
Each line shows the ratio of the spin-flip rate with only one mechanism
turned on to the total admixture-induced rate shown in Fig. 1. The thin
gray solid line shows the results for all the explicit terms turned off.
(b) Contributions of the couplings to different phonon branches as a
function of the magnetic field.

which enhances relaxation due to growing phonon spectral
density at higher frequencies.

The contribution of the remaining channels is very small
and leads altogether to a 0.4% correction to the result. This
is mostly due to a small Rashba contribution from the overall
valence-band-edge inhomogeneity, piezoelectric field in the
valence band, and interfaces, which cannot be switched off in
our numerical model and remains after all the other explicit
couplings are removed; this is represented by the thin solid
gray line labeled “none” in Fig. 2(a). Actually, the effect of
interfaces is dominant: switching the piezoelectric field in
the valence band off reduces this contribution by 3% only.
The familiar Dresselhaus coupling (B7v and B8v terms in
H6c8v and H6c7v) adds some 50% to this Rashba spin-flip rate.
The strain terms proportional to the C2 deformation potential
contribute negligibly and turn out to interfere destructively
with the Rashba part, slightly decreasing the total rate when
switched on. These results are in strong contrast to what was
found for large QDs in a simple single-band confinement
model (corresponding to unstrained, gated QDs) [27], where
the single Dresselhaus coupling was shown to dominate.
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FIG. 3. Contributions to the spin-phonon mechanism from vari-
ous phonon couplings in the valence band as a function of the magnetic
field.

In Fig. 2(b), we have compared the contributions from
the deformation-potential (DP, short-dashed orange line) and
piezoelectric (PE, dashed blue line) couplings to phonons in
H6c6c, which may lead to spin flip in the admixture mecha-
nisms. Up to about 5 T, the total rate (solid black line), as
well as its individual components (not shown in the plot), are
nearly entirely due to the piezoelectric coupling. As a result,
all the rates scale with the magnetic field as B5. Deformation-
potential coupling produces a B7 contribution that is negligible
at low and moderate fields but becomes important from about
10 T.

In Fig. 3 we show selected contributions to the spin-phonon
mechanism. Here, the total rate due to this mechanism is
clearly dominated by one coupling: the terms proportional to
dv in the valence blocks (with some destructive interference
with the other channels). The couplings in off-diagonal blocks
have much less importance here at low and moderate fields.
However, while the dominant coupling shows a B5 behavior
up to about 5 T, the C2 coupling grows as B7 in the range
of fields shown (it has a B5 to B7 crossover at about 0.2 T)
and becomes relatively important at field magnitudes of a few
Tesla.

C. Interpretation in terms of an effective Hamiltonian
for the conduction band

We shall now relate the dominant spin-flip contributions to
the effective strain-related corrections to the electron Hamil-
tonian, most of which have been known in different contexts
in the literature. Perturbative decoupling of the valence band
leads to a correction to the conduction-band Hamiltonian, the
relevant part of which can be written as [57]

Heff = SD−1S†, (3)

where S = ∑
j l kj (δjl − εjl)TlP + iC2

∑
j εjTj . Here, Ti =√

3Ti ⊕ (−1/
√

3)σi (a 2 × 6 matrix), εx ≡ εyz, etc. (by cyclic
permutations), D = χcI6×6 − H̃v represents the structure of
the valence band, with H̃v approximating the 6 × 6 valence-
band block of the k· p Hamiltonian, renormalized by the
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Löwdin procedure (the details can be found in Ref. [57], but
are not relevant here), and χc is the local conduction-band edge
(neglecting magnetic contributions, the conduction-band block
H6c6c [Eq. (2a)] is proportional to the unit matrix and can be
represented by a scalar function χc).

To extract the admixture contribution of the terms pro-
portional to dv, we write D = D0 − H (dv)

v , where D0 =
diag(Eg,Eg,Eg,Eg,Eg + �SO,Eg + �SO) is a diagonal ap-
proximation to D accounting for the major position-dependent
band-edge shifts due to composition and strain (heavy-hole–
light-hole splitting could be included here as well, in order to
slightly improve accuracy, but is neglected for simplicity), and

H (dv)
v = −

√
3dvε

(s)
xy

(
1
3 {Jx,Jy} 2T

†
xy

2Txy 0

)
+ c.p.

is the part of the valence-band block proportional to dv. Here,
the blocks of the matrix notation refer to the �8v (heavy- and
light-hole) and �7v (spin-orbit split-off) bands. Substituting
this approximate form of D into Eq. (3), one gets for the
relevant part of the conduction-band Hamiltonian

H
(dv)
eff = k · σ

2
√

3P 2dv

Eg(Eg + �SO)

(
Txyε

(s)
xy + c.p.

)
T † · k + H.c.

− k · T

√
3P 2dv

E2
g

({Jx,Jy}ε(s)
xy + c.p.

)
T † · k, (4)

where we omitted the strain-related contributions to S in order
to keep the result linear in strain. The spin-dependent contri-
butions result from the antisymmetric parts of the two terms
in Eq. (4), defined as [TjOTl]as ≡ (1/2)(TjOTl − TlOTj )
and [σjOTl]as ≡ (1/2)(σjOTl − σlOTj ) for any operator O.
Substituting the explicit forms of the matrices, one finds

[Tx{Jx,Jy}Tz]as = 4[σxTxyTz]as = i

3
σx,

[Tz{Jx,Jy}Ty]as = 4[σzTxyTy]as = i

3
σy,

with other nonzero terms obtained by asymmetry and by cyclic
permutation of indices. Neglecting the noncommutativity of
kj with P , dv, and Eg and using the relations [kj ,kl] =
−i(e/h̄)

∑
n εjlnBn, eP 2/h̄ = μBEP, one obtains

H
(dv)
eff = 1

2
μB Bδĝ(dv)σ , (5)

where δĝ is a tensor with elements

δg
(dv)
j l = 2√

3

EP dv�SO

E2
g (Eg + �SO)

ε
(s)
j l

and EP = 2mP 2/h̄2. This strain-induced mixing term is
known in the literature [56,58] and can be interpreted as a
correction δg

(dv)
j l to the electron Landé tensor [27,28].

The second largest contribution, which is due to strain
terms in the off-diagonal block of the k· p Hamiltonian, enters
the effective conduction-band Hamiltonian via strain terms
proportional to P in S. We now approximate D ≈ D0, which

yields, up to linear order in strain,

H
(od)
eff = −

∑
jnl

kjP ε
(s)
jnTnD−1

0 TlP kl + H.c. (6)

Again, only the antisymmetric part yields a spin-dependent
term. Using the explicit form of Tj , one finds

[
TnD−1

0 Tl

]
as = − i

3

�SO

Eg(Eg + �SO)

∑
m

εnlmσm, (7)

from which one gets

H
(od)
eff = 1

2
μB Bδĝ(od)σ ,

where

δg
(od)
j l = −2

3

EP �SO

Eg(Eg + �SO)
ε

(s)
j l .

This term has exactly the same structure as the previous one,
which explains why the two contributions to spin admixture
interfere constructively (note that dv is negative).

The most important mechanism in the class of direct spin-
phonon couplings at low and moderate fields, stemming from
the dv terms, can be mapped onto an effective conduction-band
Hamiltonian in exactly the same way as the dv term discussed
above. The static strain is replaced by ε(ph), expressed in terms
of lattice displacements, and expanded in plane-wave modes.
Upon quantization of the latter, one obtains an effective spin-
phonon coupling Hamiltonian, discussed already in Refs. [28]
and [27], which describes spin transitions due to phonon-
induced dynamical anisotropic modulation of the g-factor.

The spin-phonon contribution proportional to C2 appears
via terms linear in both C2 and strain in Eq. (3),

H
(C2)
eff = iC2

∑
j l

εjTjD−1
0 TlP kl + H.c.

Using Eq. (7), one immediately finds

H
(C2)
eff = 1

3

∑
j lm

εjlm

{
C2�SOP

Eg(Eg + �SO)
εj ,kl

}
σm. (8)

A similar term was derived in the context of the calculation
of the energy spectrum of strained semiconductors [53,55,59].
It was discussed as a spin-phonon coupling in the analysis of
spin relaxation channels in large QDs [27,28], where it was
shown to be much less effective than the “dv” spin-phonon
channel discussed above. Interestingly, in a simple model of the
“particle-in-a-box” confinement with real ground-state wave
functions, the effective Hamiltonian H

(C2)
eff leads to the B5

dependence of the spin-flip rate [27], while the numerical
values from the eight-band k· p theory yield a crossover
to the B7 dependence already below 1 T, as discussed in
Sec. III B.

Another spin-phonon term in the effective Hamiltonian
appears from off-diagonal piezoelectric couplings to phonons
(see the Appendix). This term is nonzero only in an inhomo-
geneous system, but even here its effect is small.
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IV. CONCLUSIONS

In this paper, we have presented the results of theoretical
modeling of spin-flip relaxation between Zeeman sublevels of
a single electron in a self-assembled InAs/GaAs QD. By an-
alyzing the spin relaxation process with eight-band envelope-
function k· p theory, we have identified individual spin-flip
channels divided into two classes: admixture and spin-phonon
mechanisms. We have shown that the former dominates, like
in large unstrained dots, although not so overwhelmingly (95%
of the total rate). However, in sharp contrast to the latter, the
dominant channel of spin relaxation in strained self-assembled
QDs is spin admixture induced by symmetry-breaking shear
strain, which accounts for 99.6% of the total admixture-
induced rate. The dominant processes can be mapped onto
two different effective spin-phonon terms in a conduction-band
(effective-mass) Hamiltonian that interfere and interplay in a
nontrivial way in producing the total spin-flip rate.

The most important practical consequence of our findings
is that the dominant contribution to spin relaxation in self-
assembled QDs relies on the particular distribution of shear
strain in the structure and, therefore, cannot be modeled by
a unique standard term in the Hamiltonian. This is in sharp
contrast to larger, unstrained dots, where spin relaxation is
dominated by the Dresselhaus coupling easily accounted for
by the well-known generic spin-orbit term in the Hamiltonian.

The second observation that we find important is that
in magnetic fields up to about 5 T, the rates of all the
important spin-flip channels, both admixture and spin-phonon,
are proportional to B5. Therefore, this simple characteristic
cannot be used as a key to distinguishing the dominant spin-flip
mechanisms in an experiment.

Finally, identifying the dominant spin-flip mechanism as
being due to strain suggests that considerable enhancement of
spin lifetime may be possible in structures with reduced strain.
This is consistent with the results concerning an impurity-
bound electron [60], which is a strain-free system, where the
dominating spin-flip channels are related to direct spin-phonon
and Dresselhaus SO couplings.

ACKNOWLEDGMENTS

The authors acknowledge support from the Polish Na-
tional Science Centre under Grant No. 2014/13/B/ST3/04603
(A.M.-P., K.G., P.M.) and Grant No. 2014/14/M/ST3/00821
(M.G.). Calculations have been carried out using resources
provided by Wroclaw Centre for Networking and Supercom-
puting (http://wcss.pl), Grant No. 203.

APPENDIX: OFF-DIAGONAL
PIEZOELECTRIC COUPLINGS

In this appendix, we derive the general structure of the off-
diagonal piezoelectric carrier-phonon couplings and estimate
the resulting spin-phonon terms in the effective Hamiltonian
for conduction-band electrons.

The strain due to phonons, written in the coordinate rep-
resentation with respect to the electron and in the second

quantization with respect to phonons, has the form

εij(r) =
∑
q,λ

ε
(q,λ)
ij eiq·r ,

where

ε
(q,λ)
ij = −1

2

√
h̄

2ρV ωq,λ

[(êq,λ)i qj

+ (êq,λ)j qi](bq,λ + b
†
−q,λ). (A1)

Here V is the normalization volume of the phonon system,
êq,λ = −ê∗

−q,λ is the mode polarization, and b
†
q,λ,bq,λ are

phonon creation and annihilation operators. The resulting
piezoelectric potential in a zinc-blende crystal is then

V (r) = i
∑

q

v(q)eiq·r ,

where

v(q) = 2Ep
1

q2

∑
λ

(
qxε

(q,λ)
yz + c.p.

)
.

The above equation is correct for an inhomogeneous system
in the long-wavelength limit, when the small-scale details
become irrelevant and the system can be approximated by
a virtual uniform medium characterized by a constant Ep =
ee14/ε0εs , which should be close to the GaAs matrix value of
1.4 eV/nm.

In the envelope-function approach, one separates the meso-
scopic length scales (coarse-grained position R) from the
atomic scales (position ξ within a unit cell). It is assumed that
material parameters vary only on the mesoscopic scales. The
matrix elements of a multiband k· p Hamiltonian at a position
R are then obtained as matrix elements of the original Hamil-
tonian between the Bloch functions uμ,uν corresponding to the
two bands μ,ν, calculated over one unit cell (u.c.) of volume v,
located at R. Writing r = R + ξ , one obtains the contribution
of the piezoelectric coupling to the matrix elements of the k· p
Hamiltonian

Vμν = i
∑

q

v(q)eiq·R〈μ|e−q·ξ |ν〉u.c.,

where

〈μ|O(ξ )|ν〉u.c. = 1

v

∫
u.c.

d3ξ u∗
μ(ξ )O(ξ )uν(ξ ).

In a mesoscopic structure, the magnitude of q for phonons that
are efficiently coupled to confined carriers is effectively limited
to the range q � 1/l � 1/a, where l is the spatial extension of
the envelope function and a is the lattice constant. Therefore,
q · ξ � 1 and the exponent can be expanded in series,

eiq·ξ  1 + iq · ξ − (q · ξ )2

2
.

The zeroth-order term is diagonal due to the orthogonality of
Bloch functions and for each of the bands it reproduces the
standard piezoelectric carrier-phonon coupling. The higher-
order terms contribute to interband couplings, for which the
zeroth-order term vanishes.

With the known composition of Bloch functions in terms
of atomic orbitals, one can relate the required matrix elements
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to those between angular momentum eigenstates. Here, we
will take the standard assumption that the cb states are
s-type and the vb states are purely p-type. Then, due to
parity, the linear term in the expansion contributes only to
the off-diagonal cb-vb block of the k· p Hamiltonian. Denot-
ing 〈1/2,1/2,cb|ξx |3/2,3/2,vb〉 = d1/

√
2, one finds from the

Wigner-Eckart theorem

{〈μ|ξ |ν〉u.c.}μ,ν =
√

3d1T ,

where μ and ν run through the two conduction and six
valence bands, respectively. Hence, the resulting first-order
Hamiltonian term is

H (PE,1) =
√

3d1E · T + H.c., (A2)

where

E(R) = −∇V (R) =
∑

q

v(q)qeiq·R

is the piezoelectric field.
The quadratic term has nonvanishing matrix

elements only between valence-band states. Denoting
〈3/2,3/2,vb|ξxξy |3/2, − 1/2,vb〉 = −id2/

√
3, with d2 real,

one finds the relevant part of the valence-band piezoelectric
perturbation

H (PE,2) = i

6
d2

∂Ey(R)

∂x

(
{Jx,Jy} 6T

†
xy

6Txy 0

)
+ c.p., (A3)

where we neglected terms proportional to q2
i that do not induce

spin relaxation.
To assess the effect of the linear term (A2) on the electron

spin-flip processes, we go back to Eq. (3), where we extend
S → S ′ = S + SPE with SPE = H (PE,1). From the resulting
terms we again select the spin-dependent antisymmetric part,
according to Eq. (7). The resulting effective Hamiltonian for

the conduction band can be written in two equivalent forms,

H
(PE,1)
eff = − i√

3

�SOPd1

Eg(Eg + �SO)
σ · (E × k) + H.c.

= 1√
3

[
E × ∇ �SOPd1

Eg(Eg + �SO)

]
· σ , (A4)

where we used the fact thatE is longitudinal. The first equation
represents the effective Hamiltonian in the usual Dresselhaus
form with the piezoelectric field as the symmetry-breaking
factor. The final equation shows explicitly that the block-off-
diagonal terms contribute to electron spin-phonon coupling
only in an inhomogeneous system. By comparing Eq. (A3)
with Eq. (8), one can see that the overall magnitude of the
piezoelectric spin-flip term is reduced by a factor d1Ep/C2. In
GaAs, d1 = 0.11 nm (estimated in a model of hydrogenlike
orbitals with equal distribution of wave functions between
the anion and the cation [61,62]). Hence, d1Ep/C2 = 0.047
and we expect the resulting rate (proportional to the square
of the coupling) to be at least three orders of magnitude
lower than that resulting from the C2 coupling, which is small
itself.

The effective Hamiltonian corresponding to Eq. (A3) is
constructed by closely following the derivation of Eq. (5). One
obtains the analogous term

H
(PE,2)
eff = 1

2μB Bδĝ(PE,2)σ ,

with

δg
(PE,2)
j l = −2

3

EP d2�SO

E2
g (Eg + �SO)

∂Ej

∂xl

, j �= l.

Comparison to Eq. (5) shows that the piezoelectric term is
smaller by a factor Epd2q0/dv = 1.1 × 10−4, where we used
the estimate d2 = 9.3 × 10−3 nm2 (obtained in the same way as
d1 above), and q0 = gμBB/(h̄c) ≈ 0.04 nm−1 is the resonant
wave vector for a transition between Zeeman sublevels. It
follows that this term is negligible.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[2] P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85,

1962 (2000).
[3] M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh,

G. Abstreiter, and J. J. Finley, Nature (London) 432, 81
(2004).

[4] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K.
C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K.
Vandersypen, Nature (London) 442, 766 (2006).

[5] K. C. Nowack, F. H. L. Koppens, Y. V. Nazarov, and L. M. K.
Vandersypen, Science 318, 1430 (2007).

[6] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313
(1998).

[7] M. V. Gurudev Dutt, J. Cheng, B. Li, X. Xu, X. Li, P. R. Berman,
D. G. Steel, A. S. Bracker, D. Gammon, S. E. Economou, R.-B.
Liu, and L. J. Sham, Phys. Rev. Lett. 94, 227403 (2005).

[8] A. Greilich, R. Oulton, E. A. Zhukov, I. A. Yugova, D. R.
Yakovlev, M. Bayer, A. Shabaev, A. L. Efros, I. A. Merkulov,

V. Stavarache, D. Reuter, and A. Wieck, Phys. Rev. Lett. 96,
227401 (2006).

[9] M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, and
A. Imamoglu, Science 312, 551 (2006).

[10] M. Kroner, K. M. Weiss, B. Biedermann, S. Seidl, S. Manus,
A. W. Holleitner, A. Badolato, P. M. Petroff, B. D. Gerardot,
R. J. Warburton, and K. Karrai, Phys. Rev. Lett. 100, 156803
(2008).

[11] X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D.
Gammon, and L. J. Sham, Nat. Phys. 4, 692 (2008).

[12] F. Dubin, M. Combescot, G. K. Brennen, and R. Melet, Phys.
Rev. Lett. 101, 217403 (2008).

[13] A. J. Ramsay, S. J. Boyle, R. S. Kolodka, J. B. B. Oliveira, J.
Skiba-Szymanska, H. Y. Liu, M. Hopkinson, A. M. Fox, and
M. S. Skolnick, Phys. Rev. Lett. 100, 197401 (2008).

[14] D. Brunner, B. D. Gerardot, P. A. Dalgarno, G. Wuest, K. Karrai,
N. G. Stoltz, P. M. Petroff, and R. J. Warburton, Science 325, 70
(2009).

245313-8

https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevLett.85.1962
https://doi.org/10.1103/PhysRevLett.85.1962
https://doi.org/10.1103/PhysRevLett.85.1962
https://doi.org/10.1103/PhysRevLett.85.1962
https://doi.org/10.1038/nature03008
https://doi.org/10.1038/nature03008
https://doi.org/10.1038/nature03008
https://doi.org/10.1038/nature03008
https://doi.org/10.1038/nature05065
https://doi.org/10.1038/nature05065
https://doi.org/10.1038/nature05065
https://doi.org/10.1038/nature05065
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1148092
https://doi.org/10.1103/PhysRevLett.80.4313
https://doi.org/10.1103/PhysRevLett.80.4313
https://doi.org/10.1103/PhysRevLett.80.4313
https://doi.org/10.1103/PhysRevLett.80.4313
https://doi.org/10.1103/PhysRevLett.94.227403
https://doi.org/10.1103/PhysRevLett.94.227403
https://doi.org/10.1103/PhysRevLett.94.227403
https://doi.org/10.1103/PhysRevLett.94.227403
https://doi.org/10.1103/PhysRevLett.96.227401
https://doi.org/10.1103/PhysRevLett.96.227401
https://doi.org/10.1103/PhysRevLett.96.227401
https://doi.org/10.1103/PhysRevLett.96.227401
https://doi.org/10.1126/science.1126074
https://doi.org/10.1126/science.1126074
https://doi.org/10.1126/science.1126074
https://doi.org/10.1126/science.1126074
https://doi.org/10.1103/PhysRevLett.100.156803
https://doi.org/10.1103/PhysRevLett.100.156803
https://doi.org/10.1103/PhysRevLett.100.156803
https://doi.org/10.1103/PhysRevLett.100.156803
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1038/nphys1054
https://doi.org/10.1103/PhysRevLett.101.217403
https://doi.org/10.1103/PhysRevLett.101.217403
https://doi.org/10.1103/PhysRevLett.101.217403
https://doi.org/10.1103/PhysRevLett.101.217403
https://doi.org/10.1103/PhysRevLett.100.197401
https://doi.org/10.1103/PhysRevLett.100.197401
https://doi.org/10.1103/PhysRevLett.100.197401
https://doi.org/10.1103/PhysRevLett.100.197401
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684
https://doi.org/10.1126/science.1173684


DOMINANT ROLE OF THE SHEAR STRAIN INDUCED … PHYSICAL REVIEW B 97, 245313 (2018)

[15] T. M. Godden, J. H. Quilter, A. J. Ramsay, Y. Wu, P. Brereton,
S. J. Boyle, I. J. Luxmoore, J. Puebla-Nunez, A. M. Fox, and M.
S. Skolnick, Phys. Rev. Lett. 108, 017402 (2012).

[16] O. Gywat, H. J. Krenner, and J. Berezovsky, Spins in Optically
Active Quantum Dots: Concepts and Methods (Wiley-VCH,
Weinheim, 2010).

[17] A. J. Ramsay, Semicond. Sci. Technol. 25, 103001 (2010).
[18] R. J. Warburton, Nat. Mater. 12, 483 (2013).
[19] K. De Greve, D. Press, P. L. McMahon, and Y. Yamamoto, Rep.

Prog. Phys. 76, 92501 (2013).
[20] W. B. Gao, A. Imamoglu, H. Bernien, and R. Hanson, Nat.

Photon. 9, 363 (2015).
[21] S. Mackowski, T. A. Nguyen, T. Gurung, K. Hewaparakrama,

H. E. Jackson, L. M. Smith, J. Wrobel, K. Fronc, J. Kossut, and
G. Karczewski, Phys. Rev. B 70, 245312 (2004).

[22] B. Pal and Y. Masumoto, Phys. Rev. B 80, 125334 (2009).
[23] D. Heiss, V. Jovanov, F. Klotz, D. Rudolph, M. Bichler, G.

Abstreiter, M. S. Brandt, and J. J. Finley, Phys. Rev. B 82, 245316
(2010).

[24] C.-Y. Lu, Y. Zhao, A. N. Vamivakas, C. Matthiesen, S. Fält, A.
Badolato, and M. Atatüre, Phys. Rev. B 81, 035332 (2010).

[25] I. A. Akimov, D. H. Feng, and F. Henneberger, Phys. Rev. Lett.
97, 056602 (2006).

[26] M. Syperek, D. R. Yakovlev, I. A. Yugova, J. Misiewicz, I. V.
Sedova, S. V. Sorokin, A. A. Toropov, S. V. Ivanov, and M.
Bayer, Phys. Rev. B 84, 085304 (2011).

[27] A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 64, 125316
(2001).

[28] A. V. Khaetskii and Y. V. Nazarov, Phys. Rev. B 61, 12639
(2000).

[29] L. M. Woods, T. L. Reinecke, and Y. Lyanda-Geller, Phys. Rev.
B 66, 161318 (2002).

[30] A. Alcalde, O. Diniz Neto, and G. Marques, Microelectronics J.
36, 1034 (2005).

[31] S. T. Pavlov and Y. A. Firsov, Fiz. Tverd. Tela 7, 2634 (1965)
[Sov. Phys. Solid State 7, 2131 (1966)].

[32] S. T. Pavlov and Y. A. Firsov, Fiz. Tverd. Tela 9, 1780 (1967)
[Sov. Phys. Solid State 9, 1394 (1966)].

[33] A. Alcalde, Q. Fanyao, and G. Marques, Physica E 20, 228
(2004).

[34] C. L. Romano, G. E. Marques, L. Sanz, and A. M. Alcalde, Phys.
Rev. B 77, 033301 (2008).

[35] Z.-W. Wang and S.-S. Li, Solid State Commun. 152, 1098
(2012).

[36] H. Westfahl, A. O. Caldeira, G. Medeiros-Ribeiro, and M. Cerro,
Phys. Rev. B 70, 195320 (2004).

[37] J. L. Cheng, M. W. Wu, and C. Lü, Phys. Rev. B 69, 115318
(2004).

[38] E. Zipper, M. Kurpas, J. Sadowski, and M. M. Maśka, J. Phys.
Condens. Matter 23, 115302 (2011).

[39] W.-P. Li, S.-J. Li, J.-W. Yin, Y.-F. Yu, and Z.-W. Wang, Solid
State Commun. 192, 1 (2014).

[40] H. Wei, M. Gong, G.-C. Guo, and L. He, Phys. Rev. B 85, 045317
(2012).

[41] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems, Vol. 191 of Springer Tracts in
Modern Physics (Springer, Berlin, 2003).

[42] L. C. Lew Yan Voon and M. Willatzen, The k p Method (Springer,
Berlin, 2009).

[43] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger,
J. Appl. Phys. 83, 2548 (1998).

[44] T. Eissfeller and P. Vogl, Phys. Rev. B 84, 195122 (2011).
[45] G. Bester, A. Zunger, X. Wu, and D. Vanderbilt, Phys. Rev. B

74, 081305 (2006).
[46] M. A. Migliorato, J. Pal, R. Garg, G. Tse, H. Y. Al-Zahrani, U.

Monteverde, S. Tomić, C.-K. Li, Y.-R. Wu, B. G. Crutchley, I. P.
Marko, and S. J. Sweeney, in Electronic, Photonic, Plasmonic,
Phononic and Magnetic Properties of Nanomaterials, edited by
Mahi R. Singh, AIP Conf. Proc. No. 1590 (AIP, New York,
2014), p. 32.

[47] M. A. Caro, S. Schulz, and E. P. O’Reilly, Phys. Rev. B 91,
075203 (2015).

[48] T. Andlauer, R. Morschl, and P. Vogl, Phys. Rev. B 78, 075317
(2008).

[49] S. Birner, Ph.D. thesis, Technische Universität München, 2011.
[50] P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
[51] T. Eissfeller, Ph.D. thesis, Technische Universität München,

2012.
[52] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys.

89, 5815 (2001).
[53] M. I. D’yakonov, V. A. Marushchak, V. I. Perel’, and A. N.

Titkov, Zh. Eksp. Teor. Fiz. 90, 1123 (1986) [Sov. Phys. JETP
63, 655 (1986)].

[54] P.-O. Löwdin, J. Chem. Phys. 19, 1396 (1951).
[55] G. E. Pikus and A. N. Titkov, in Optical Orientation, edited by

F. Meier and B. P. Zakharchenya (Elsevier, Amsterdam, 1984),
p. 73.

[56] L. M. Roth, Phys. Rev. 118, 1534 (1960).
[57] A. Mielnik-Pyszczorski, K. Gawarecki, and P. Machnikowski,

Sci. Rep. 8, 2873 (2018).
[58] J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
[59] G. L. Bir and G. E. Pikus, Fiz. Tverd. Tela 3, 3050 (1961) [Sov.

Phys. Solid State 3, 2221 (1962)].
[60] X. Linpeng, T. Karin, M. V. Durnev, R. Barbour, M. M. Glazov,

E. Ya. Sherman, S. P. Watkins, S. Seto, and K.-M. C. Fu, Phys.
Rev. B 94, 125401 (2016).

[61] E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson,
P. Senellart, A. Lemaître, M. S. Skolnick, and A. I. Tartakovskii,
Nat. Phys. 9, 74 (2012).

[62] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).

245313-9

https://doi.org/10.1103/PhysRevLett.108.017402
https://doi.org/10.1103/PhysRevLett.108.017402
https://doi.org/10.1103/PhysRevLett.108.017402
https://doi.org/10.1103/PhysRevLett.108.017402
https://doi.org/10.1088/0268-1242/25/10/103001
https://doi.org/10.1088/0268-1242/25/10/103001
https://doi.org/10.1088/0268-1242/25/10/103001
https://doi.org/10.1088/0268-1242/25/10/103001
https://doi.org/10.1038/nmat3585
https://doi.org/10.1038/nmat3585
https://doi.org/10.1038/nmat3585
https://doi.org/10.1038/nmat3585
https://doi.org/10.1088/0034-4885/76/9/092501
https://doi.org/10.1088/0034-4885/76/9/092501
https://doi.org/10.1088/0034-4885/76/9/092501
https://doi.org/10.1088/0034-4885/76/9/092501
https://doi.org/10.1038/nphoton.2015.58
https://doi.org/10.1038/nphoton.2015.58
https://doi.org/10.1038/nphoton.2015.58
https://doi.org/10.1038/nphoton.2015.58
https://doi.org/10.1103/PhysRevB.70.245312
https://doi.org/10.1103/PhysRevB.70.245312
https://doi.org/10.1103/PhysRevB.70.245312
https://doi.org/10.1103/PhysRevB.70.245312
https://doi.org/10.1103/PhysRevB.80.125334
https://doi.org/10.1103/PhysRevB.80.125334
https://doi.org/10.1103/PhysRevB.80.125334
https://doi.org/10.1103/PhysRevB.80.125334
https://doi.org/10.1103/PhysRevB.82.245316
https://doi.org/10.1103/PhysRevB.82.245316
https://doi.org/10.1103/PhysRevB.82.245316
https://doi.org/10.1103/PhysRevB.82.245316
https://doi.org/10.1103/PhysRevB.81.035332
https://doi.org/10.1103/PhysRevB.81.035332
https://doi.org/10.1103/PhysRevB.81.035332
https://doi.org/10.1103/PhysRevB.81.035332
https://doi.org/10.1103/PhysRevLett.97.056602
https://doi.org/10.1103/PhysRevLett.97.056602
https://doi.org/10.1103/PhysRevLett.97.056602
https://doi.org/10.1103/PhysRevLett.97.056602
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.84.085304
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevB.61.12639
https://doi.org/10.1103/PhysRevB.61.12639
https://doi.org/10.1103/PhysRevB.61.12639
https://doi.org/10.1103/PhysRevB.61.12639
https://doi.org/10.1103/PhysRevB.66.161318
https://doi.org/10.1103/PhysRevB.66.161318
https://doi.org/10.1103/PhysRevB.66.161318
https://doi.org/10.1103/PhysRevB.66.161318
https://doi.org/10.1016/j.mejo.2005.04.012
https://doi.org/10.1016/j.mejo.2005.04.012
https://doi.org/10.1016/j.mejo.2005.04.012
https://doi.org/10.1016/j.mejo.2005.04.012
https://doi.org/10.1016/j.physe.2003.08.009
https://doi.org/10.1016/j.physe.2003.08.009
https://doi.org/10.1016/j.physe.2003.08.009
https://doi.org/10.1016/j.physe.2003.08.009
https://doi.org/10.1103/PhysRevB.77.033301
https://doi.org/10.1103/PhysRevB.77.033301
https://doi.org/10.1103/PhysRevB.77.033301
https://doi.org/10.1103/PhysRevB.77.033301
https://doi.org/10.1016/j.ssc.2012.04.013
https://doi.org/10.1016/j.ssc.2012.04.013
https://doi.org/10.1016/j.ssc.2012.04.013
https://doi.org/10.1016/j.ssc.2012.04.013
https://doi.org/10.1103/PhysRevB.70.195320
https://doi.org/10.1103/PhysRevB.70.195320
https://doi.org/10.1103/PhysRevB.70.195320
https://doi.org/10.1103/PhysRevB.70.195320
https://doi.org/10.1103/PhysRevB.69.115318
https://doi.org/10.1103/PhysRevB.69.115318
https://doi.org/10.1103/PhysRevB.69.115318
https://doi.org/10.1103/PhysRevB.69.115318
https://doi.org/10.1088/0953-8984/23/11/115302
https://doi.org/10.1088/0953-8984/23/11/115302
https://doi.org/10.1088/0953-8984/23/11/115302
https://doi.org/10.1088/0953-8984/23/11/115302
https://doi.org/10.1016/j.ssc.2014.05.001
https://doi.org/10.1016/j.ssc.2014.05.001
https://doi.org/10.1016/j.ssc.2014.05.001
https://doi.org/10.1016/j.ssc.2014.05.001
https://doi.org/10.1103/PhysRevB.85.045317
https://doi.org/10.1103/PhysRevB.85.045317
https://doi.org/10.1103/PhysRevB.85.045317
https://doi.org/10.1103/PhysRevB.85.045317
https://doi.org/10.1063/1.366631
https://doi.org/10.1063/1.366631
https://doi.org/10.1063/1.366631
https://doi.org/10.1063/1.366631
https://doi.org/10.1103/PhysRevB.84.195122
https://doi.org/10.1103/PhysRevB.84.195122
https://doi.org/10.1103/PhysRevB.84.195122
https://doi.org/10.1103/PhysRevB.84.195122
https://doi.org/10.1103/PhysRevB.74.081305
https://doi.org/10.1103/PhysRevB.74.081305
https://doi.org/10.1103/PhysRevB.74.081305
https://doi.org/10.1103/PhysRevB.74.081305
https://doi.org/10.1103/PhysRevB.91.075203
https://doi.org/10.1103/PhysRevB.91.075203
https://doi.org/10.1103/PhysRevB.91.075203
https://doi.org/10.1103/PhysRevB.91.075203
https://doi.org/10.1103/PhysRevB.78.075317
https://doi.org/10.1103/PhysRevB.78.075317
https://doi.org/10.1103/PhysRevB.78.075317
https://doi.org/10.1103/PhysRevB.78.075317
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1748067
https://doi.org/10.1063/1.1748067
https://doi.org/10.1063/1.1748067
https://doi.org/10.1063/1.1748067
https://doi.org/10.1103/PhysRev.118.1534
https://doi.org/10.1103/PhysRev.118.1534
https://doi.org/10.1103/PhysRev.118.1534
https://doi.org/10.1103/PhysRev.118.1534
https://doi.org/10.1038/s41598-018-21043-3
https://doi.org/10.1038/s41598-018-21043-3
https://doi.org/10.1038/s41598-018-21043-3
https://doi.org/10.1038/s41598-018-21043-3
https://doi.org/10.1103/PhysRev.57.426
https://doi.org/10.1103/PhysRev.57.426
https://doi.org/10.1103/PhysRev.57.426
https://doi.org/10.1103/PhysRev.57.426
https://doi.org/10.1103/PhysRevB.94.125401
https://doi.org/10.1103/PhysRevB.94.125401
https://doi.org/10.1103/PhysRevB.94.125401
https://doi.org/10.1103/PhysRevB.94.125401
https://doi.org/10.1038/nphys2514
https://doi.org/10.1038/nphys2514
https://doi.org/10.1038/nphys2514
https://doi.org/10.1038/nphys2514
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573
https://doi.org/10.1063/1.1733573



