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The linear response of a two-dimensional electron gas in a perpendicular magnetic field in the presence of
a spatially dependent classically smooth electrostatic potential is studied theoretically, by application of the
Kubo formula for a nonlocal conductivity tensor. In the classical transport regime, a general expression for the
conductivity tensor through the correlation functions of the homogeneous electron gas is derived. The quantum
transport regime, when Landau quantization is essential, is studied for the case of unidirectional periodic potential
modulation. Apart from the Shubnikov–de Haas oscillations, the resistivity can demonstrate quantum oscillations
with larger periods and smaller amplitudes, which survive when temperature increases. These oscillations exist
when the modulation amplitude considerably exceeds the cyclotron energy so the Landau subbands, formed out
of the Landau levels by the modulation potential, overlap in the energy domain. Both diagonal components of the
resistivity tensor demonstrate oscillations related to modification of the density of states by the modulation. In
addition, the resistivity component perpendicular to the modulation axis, which is caused by the scattering-assisted
hopping transport, shows another kind of oscillation related to enhancement of the hopping probability when the
guiding center of cyclotron orbit shifts by the doubled cyclotron radius. It is suggested that such high-temperature
oscillations can be detected under conditions when the modulation period considerably exceeds the cyclotron
radius.
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I. INTRODUCTION

Magnetotransport in a two-dimensional (2D) electron gas
is strongly influenced by the presence of a spatially varying
electrostatic potential energy U (r) that describes either large-
scale inhomogeneity of the system or intentional modulation
introduced by different methods. The magnetoresistance of
periodically modulated systems [1–53] demonstrates com-
mensurability effects, in particular, Weiss oscillations in a
unidirectionally modulated 2D electron gas, which have been
thoroughly studied both experimentally and theoretically.
These oscillations have a classical origin [2], and they appear
because of periodic dependence of the drift velocity, averaged
over the path of cyclotron rotation, on the ratio of cyclotron
radius R to modulation period a. Similar oscillations exist in
the case of periodic magnetic modulation created by a spatially
varying component of the magnetic field. With increasing
magnetic field, Landau quantization becomes important and
the resistance shows quantum oscillations as well.

Early experiments [1,3] employed a weak periodic modula-
tion, whose amplitude was smaller than the cyclotron energy in
the region of fields where Landau quantization was important.
In this case, the quantum effects are basically reduced to
the ordinary Shubnikov–de Haas oscillations (SdHO). Further
experiments [17,22,26,27,33,42,43] with larger modulation
amplitudes, employing either the potential modulation or the
magnetic one, have demonstrated that SdHO are considerably
modified by the modulation. In particular, a periodic variation
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of the SdHO amplitudes with magnetic field was observed.
This effect is explained by a periodic variation of the density
of states near the Fermi level due to the influence of mod-
ulation on the energy spectrum of electrons. Specifically, in
the periodic unidirectionally modulated systems the Landau
levels are transformed into one-dimensional Landau subbands
whose bandwidths, as well as the shape of the corresponding
density of states, oscillate with the subband number. This
quantum-mechanical picture also was used for explanation of
the classical Weiss oscillations, starting from Refs. [3,5,7].
The classical analog of the Landau subband spectrum is the
dependence of the average of U (r) over the path of cyclotron
rotation on the guiding center coordinate [4,7].

In spite of extensive studies of periodically modulated
2D electron gas in the past years, the theory of quantum
magnetoresistance in such systems is still incomplete. In the
previous theoretical works, calculations of magnetoresistance
were based on the Kubo formula for local conductivity.
However, a recent study [54] shows that it is necessary to
start with the Kubo formula for nonlocal conductivity in order
to obtain the results which are valid in a wide range of the
parameter R/a and conform with the results obtained from
the Boltzmann equation formalism in the classical region of
magnetic field B. Consequently, the nonlocal Kubo approach
should be used in the quantum region of B as well, and
this means that the problem of quantum magnetotransport
in a periodically modulated 2D electron gas needs to be
revisited. Next, more work is required for the systems with
large modulation amplitudes, as the existing theoretical studies
[27,33,43] of magnetotransport in such systems are limited.
In particular, the effect of transitions of electrons between the
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FIG. 1. Landau quantization in the presence of a classically
smooth potential energy U (r). For clarity, the potential is assumed
to be one-dimensional, and only a part of the Landau levels is shown.
An electron belonging to the Landau level N and orbiting around the
guiding center X sweeps during its cyclotron motion through several
other Landau levels and can jump to the state with guiding center
X′ of another Landau level N ′ as a result of elastic scattering near
the Fermi level. Such transitions have a substantial influence on the
resistance.

Landau levels has not been studied systematically. Meanwhile,
such transitions are important in magnetotransport because
they can lead to magnetoresistance oscillations of resonance
nature, which, unlike the SdHO, are not related to the position
of the Fermi level with respect to the Landau levels and, for
this reason, are not strongly suppressed by the temperature
T . Several kinds of such oscillations have been found in a
high-mobility 2D electron gas at moderately strong magnetic
fields below 1 T [55]. The resonance transitions between the
Landau levels in spatially homogeneous 2D systems occur both
under quasiequilibrium transport conditions, due to inelastic
scattering by phonons, and under nonequilibrium conditions
implying either a large current that leads to a tilt of the Landau
levels by the Hall electric field or microwave irradiation that
leads to photon-assisted scattering [55]. In modulated systems,
such transitions do not require either inelastic scattering or
nonequilibrium conditions, because the Landau levels are tilted
by the modulation potential itself (see Fig. 1). The underlying
physics is explained below in more detail.

Consider the regime of classically strong magnetic fields,
when the cyclotron frequency ωc is much larger than the
transport scattering rate 1/τtr . In high-mobility 2D systems
based on GaAs quantum wells, this regime is typical, as
it starts already in the magnetic fields smaller than 0.1 T.
Then, the electronic motion in the presence of potential U (r)
is subdivided into a fast cyclotron component and slower
components including a drift caused by the electric field E(r) =
−e−1∂U (r)/∂r, where e is the electron charge, and a diffusion
caused by scattering. Each mode of the fast degree of freedom
corresponds to a different Landau level, while the slow degrees
of freedom can be viewed as a drift of the guiding center in
the crossed magnetic and electric fields and random jumps
of this center when the electron changes its direction of motion
in the scattering processes. The latter are determined mostly by
the elastic impurity-assisted scattering if T is sufficiently low.
For weak and smooth potentials [see the conditions in Eq. (2)
below], the Landau level number N and the guiding center

coordinate X can be considered as good quantum numbers,
similar to the homogeneous case when the potential U (r) is
absent. In the general case, the electron associated with a
guiding center feels an effective potential averaged over the
path of cyclotron rotation [56]. With increasing magnetic field,
the limit of adiabatic motion is reached, which means that the
relative change of the potential on the scale of cyclotron radius
becomes small, so the electron feels the local potential U (X)
and is characterized by a local drift velocity proportional to
E(X).

Even within the quasiclassical picture of motion described
above, the problem of magnetotransport appears to be essen-
tially nontrivial if a variation of the potential energy U (r) on
the scale of cyclotron orbit diameter considerably exceeds the
Landau level separation h̄ωc (see Fig. 1). An electron in the
Landau level N , orbiting around the guiding center X, passes
through the region where the states belonging to the other
Landau levels exist at the same energy. Therefore, the electron
can scatter, even elastically, into another Landau level, and the
drift-diffusion motion of the guiding centers, which contributes
to conductivity, is generally accompanied with transitions
between Landau levels. This property causes a suppression
of the SdHO and, more importantly, can lead to other kinds
of magneto-oscillation phenomena if transitions between the
Landau levels have a resonance nature. In the case of periodic
modulation, the existence of elastic transitions between the
Landau levels implies that the doubled amplitude 2u of the
potential energy is larger than the Landau level separation.
If h̄ωc is much smaller than the Fermi energy εF (only this
situation is considered below), the necessary condition is still
achievable under the strong inequality u � εF satisfied in all
experiments on periodically modulated 2D systems.

Below it is shown (see also Ref. [54]) that in the classical
limit, when Landau quantization is neglected, application of
nonlocal Kubo formalism allows one to express the conductiv-
ity tensor of a weakly modulated 2D system through the cor-
relation functions of a homogeneous (unmodulated) system,
which are calculated analytically in the case of isotropic elastic
scattering. This result can be applied to any classically smooth
potential U (r). In particular, for a one-dimensional periodic
potential one obtains an expression for magnetoresistance
consistent with that derived from the Boltzmann equation in the
theory of Weiss oscillations [2,20,21]. The magnetoresistance
in a two-dimensional periodic potential demonstrates similar
commensurability oscillations.

The nonlocal Kubo approach applies to the quantum region
of magnetic fields as well, though the conductivity is no longer
reduced to the correlation functions of a homogeneous system.
The quantum transport regime is studied in this paper for
a particular case of unidirectional periodic modulation. The
calculation shows that the resistivity retains weak quantum os-
cillations at elevated temperatures, when SdHO are completely
suppressed. The resistivity components ρxx and ρyy (along and
perpendicular to the modulation axis, respectively), in general,
demonstrate oscillations of different origins. The resistivity
along the modulation axis oscillates as a periodic function of
the ratio of the Landau subband width to the cyclotron energy
h̄ωc, basically following slow oscillations of the density of
states caused by the modulation. These weak oscillations of ρxx

correlate with the amplitude modulation of the SdHO discussed
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in the previous studies [26,27,33,42,43]. The resistivity per-
pendicular to the modulation axis shows oscillations with the
same periodicity only in the region of low B, where R > a/4.
They occur because of periodic resonance enhancement of
the scattering between different Landau subbands when the
maxima of the density of states in these subbands become
aligned in energy. As the maxima are placed at the upper and
lower edges of the Landau subbands, the subband width plays
the role of the resonance energy. With increasing magnetic
field and modulation period a, these oscillations disappear
and another kind of oscillation emerges, whose periodicity
is well defined in the adiabatic limit R � a and determined
by the ratio 2|e|ER/h̄ωc, where E is approximately equal to
the amplitude of electric field created by the modulation. Such
oscillations are similar to those observed in nonlinear transport
in homogeneous 2D systems [57–67], with the difference that
E is replaced by the Hall electric field induced by the electric
current. The resonance energy 2|e|ER defines a variation
of electrostatic potential energy on the scale of cyclotron
diameter 2R and originates from the property of enhanced
backscattering in 2D systems: the scattering probability as a
function of the momentum transferred in the transition has a
maximum when this momentum is close to the doubled Fermi
momentum 2pF so that the guiding center shifts by 2R. The
difference in the oscillating behavior of the components ρxx

and ρyy described above is caused by two reasons. The first
one is the difference between the hopping transport and the
band transport, as the latter largely contributes to ρxx and does
not contribute to ρyy , and the second one is the anisotropy of
the hopping transport.

The paper is organized as follows. Section II contains the
details of calculation of the nonlocal conductivity tensor. In
Sec. III, the classical limit is considered, and the general
solution and its applications are discussed. In Sec. IV, the
quantum contributions to the conductivity are calculated for
the case of one-dimensional periodic modulation. Section V
presents plots of the resistivity components versus the magnetic
field, a detailed discussion of them, and concluding remarks.

II. GENERAL FORMALISM

In the following, the Planck’s constant h̄ is set at unity.
A parabolic spectrum of free electrons is assumed and the
Zeeman splitting is neglected, so the electron states are doubly
degenerate in spin. The Hamiltonian of noninteracting 2D
electrons in a perpendicular magnetic field B = (0,0,B) has
a standard form, Ĥ = ∑

j Ĥrj
, where the sum is taken over all

electrons, with a single-electron Hamiltonian

Ĥr = 1

2m

(
−i

∂

∂r
− e

c
Ar

)2

+ U (r) + V (r). (1)

In this expression, r = (x,y) is the 2D coordinate, m is the
effective mass of electron, A is the vector potential describing
the magnetic field, and V (r) is a random potential energy due
to impurities or other static inhomogeneities. It is assumed
that V (r) varies on a scale much smaller than the cyclotron
radius. The modulation potential energy U (r) is assumed to
be weak; its amplitude u is much smaller than the chemical
potential (Fermi energy) εF and classically smooth, which
means that the spatial scale of U (r), estimated in the case

of periodic modulation as the half period a/2 = π/Q, where
Q is the modulation wave number, is much larger than the
magnetic length � = √

c/|e|B. Furthermore, the drift velocity
vD(r) = c[E(r) × B]/B2 should be much smaller than the
Fermi velocity vF = √

2εF /m. This condition ensures that
the drift-induced shift of the guiding center per one cyclotron
rotation is much smaller than the cyclotron radius R = vF /ωc,
and can be rewritten in the form ηQR � 1, where η = u/εF

is the relative strength of the modulation. If QR < 1, such a
condition is always satisfied in view of η � 1. On the other
hand, at QR > 1 the drift of the guiding center is determined
by the average drift velocity [2] that depends on the average
potential acting on the electron during one cyclotron rotation
[56,68]. As the amplitude of the average potential is reduced
by a factor

√
QR compared to the amplitude of the actual

potential [56], it is sufficient to assume a softer condition,
namely η

√
QR � 1. In summary, the necessary conditions

applied throughout the paper are

ωc � εF , � � π/Q, η � 1, η
√

QR � 1. (2)

The steady-state nonlocal conductivity tensor is given by
the Kubo-Greenwood formula, which is written here in the
exact eigenstate representation:

σαβ(r,r′) = i

S2

∑
δδ′

〈δ′|Î α
r |δ〉〈δ|Î β

r′ |δ′〉(fεδ
− fεδ′ )

(εδ − εδ′ − iλ)(εδ − εδ′ )
, (3)

where Îr = e
∑

j {v̂rj
,δ(rj − r)} is the operator of current den-

sity expressed through the velocity operator v̂r = [−i∂/∂r −
(e/c)Ar]/m, the curly brackets {,} denote a symmetrized prod-
uct, λ → +0, S is the normalization area, δ is the eigenstate
index, and fε = [e(ε−εF )/T + 1]−1 is the equilibrium Fermi
distribution. It is convenient to transform Eq. (3) by applying
the operator identity

v̂r = �2ε̂
∂Ur

∂r
− i

ωc

ε̂[v̂r,Ĥr], (4)

where Ur = U (r) + V (r) is the total potential energy standing
in the Hamiltonian (1) and ε̂ is the antisymmetric unit matrix
in the Cartesian 2D coordinate space (εxy = −εyx = 1, εxx =
εyy = 0). After substituting Eq. (4) into Eq. (3), the second term
in Eq. (4) gives the nondissipative classical Hall conductivity.
The rest of the contributions come from the first term and
are proportional to the products of the gradients of the total
potential. The subject of interest is the dissipative part of
the conductivity, which is written below through the Green’s
functions in coordinate representation:

σd
αβ(r,r′) = 2πe2�4εαγ εβγ ′

∫
dε

(
−∂fε

∂ε

)

×
〈

∂Ur

∂rγ

∂Ur′

∂r ′
γ ′
Aε(r,r′)Aε(r′,r)

〉
. (5)

By convention, a summation over the repeating coordinate
indices γ and γ ′ is implied. The angular brackets define the
average over the random potential, and

Aε(r,r′) = (2πi)−1[GA
ε (r,r′) − GR

ε (r,r′)
]

(6)

is the spectral function in the coordinate representation, ex-
pressed through the nonaveraged Green’s functions Gs . The
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FIG. 2. Feynman diagrams representing different contributions
to the nonlocal conductivity tensor. The crosses denote the random
potential V , the filled circles denote its gradients in the points r and r′,
and the open circles in the diagram (a) denote gradients of the smooth
potential U (i.e., the electric fields E) in these points. The solid lines
terminating at circles or crosses are the averaged Green’s functions,
while the dashed lines denote pair correlation functions of V . The
diagram (a) actually implies a sum of infinite ladder series, beginning
with the term without the dashed lines and then adding these lines
one by one. The main contributions are given by the diagram (a) for
σ

(1)
αβ (r,r′) and diagram (b) for σ

(2)
αβ (r,r′). The higher-order diagrams (c)

lead to much smaller contributions under the condition (ωcτtr)2 � 1.

index s denotes the retarded (R) or advanced (A) Green’s func-
tion. Since the case of degenerate electron gas is considered,
the energy ε stands in a narrow interval around the Fermi level,
as defined by the energy derivative of the distribution function.

In the average over the random potential, the mixed terms
containing products of the gradients of U (r) and V (r) do
not survive because U (r) and V (r) do not correlate with
each other. The remaining terms can be evaluated within the
accuracy up to the first power in the correlator w(q) defined
as a Fourier transform of the pair correlation function of the
random potential. This leads to two distinct contributions [see
Figs. 2(a) and 2(b)], σd

αβ 	 σ
(1)
αβ + σ

(2)
αβ , which are given by the

following expressions:

σ
(1)
αβ (r,r′) = 2πe4�4εαγ εβγ ′Eγ (r)Eγ ′(r′)

×
∫

dε

(
−∂fε

∂ε

)
〈Aε(r,r′)Aε(r′,r)〉 (7)

and

σ
(2)
αβ (r,r′) = 2πe2�4εαγ εβγ ′

∫
dε

(
−∂fε

∂ε

)

×
∫

dq
(2π )2

qγ qγ ′w(q)eiq·(r−r′)Aε(r,r′)Aε(r′,r),

(8)

where Aε(r,r′) = 〈Aε(r,r′)〉 is the averaged spectral function.
The first contribution, σ (1), describes the conductivity directly
induced by the gradients of smooth potential, ∂U (r)/∂r =
−eE(r). It differs from the Kubo-Greenwood expression for
the dissipative part of the conductivity just by a formal
substitution of the local drift velocity in place of the velocity
operator. The second contribution, σ (2), is the leading term in
the expansion of the conductivity in powers of the ratio of
scattering rate to cyclotron frequency. Therefore, similarly to
the case of unmodulated systems, σ (2) describes scattering-
assisted hopping of electrons between the guiding centers
of the cyclotron orbits. Keeping the contributions (a) and

(b) is sufficient in the case of classically strong magnetic
fields. The diagram representation of the principal higher-order
contributions is shown in Fig. 2(c). In the self-consistent Born
approximation (SCBA), the contributions shown in Fig. 2,
complemented with the higher-order ones obtained from the
diagrams (c) by adding possible noncrossing dashed lines, form
a complete set for description of the conductivity.

One of the advantages of the approach based on the identity
Eq. (4) is that the expression for the conductivity tensor no
longer contains matrix elements of the velocity operator; they
are replaced by coordinate-dependent functions, the gradients
of U and V . Thus, there is no need to specify eigenstates and
Green’s functions on the early stage of calculation. Next, the
diffusion-induced and drift-induced contributions are already
separated. In particular, in the classical transport regime σ (2)

describes the Drude conductivity while σ (1) is responsible for
the commensurability oscillations. This makes a difference
between the present technique and previous applications of
the Kubo-Greenwood formalism to the problem. The most im-
portant difference, however, is a consideration of the nonlocal
linear response instead of the local one. This is essential for
evaluation of σ (1) as explained below.

To find σ (1), one needs to calculate the pair correlation
function entering Eq. (7) by considering the standard “particle-
hole” ladder series; see Fig. 2(a). In the case of arbitrary
w(q), the problem cannot be solved analytically even in the
classical limit. This fact is consistent with the observation
[21] that a solution of the Boltzmann equation with a one-
dimensional periodic potential cannot be presented in a closed
analytical form for arbitrary w(q). Therefore, the case of a
white noise random potential will be considered, when w(q) is
replaced by a constant so the scattering is isotropic. Introducing
the correlation function Css ′

ε (r,r′) = w〈Gs
ε (r,r′)Gs ′

ε (r′,r)〉 and
applying a standard technique of the ladder series summation
leads to the integral equation

Css ′
ε (r,r′) = Kss ′

ε (r,r′) +
∫

dr1K
ss ′
ε (r,r1)Css ′

ε (r1,r′), (9)

where Kss ′
ε (r,r′) = wGs

ε(r,r′)Gs ′
ε (r′,r) is the “bare” correla-

tion function, which is expressed through the averaged Green’s
functions Gs

ε and corresponds to the diagram in Fig. 2(a)
without the dashed lines. Actually, only the terms with s 
= s ′,
CRA

ε and CAR
ε , are important in the pair correlation function of

Eq. (7). It is convenient to rewrite Eq. (9) for the double Fourier
transform Css ′

ε (q,q′) = ∫
dr

∫
dr′e−iq·r+iq′ ·r′

Css ′
ε (r,r′):

Css ′
ε (q,q′) = Kss ′

ε (q,q′) +
∫

dq1

(2π )2
Kss ′

ε (q,q1)Css ′
ε (q1,q′),

(10)

where Kss ′
ε (q,q′) is the Fourier transform of Kss ′

ε (r,r′).
The correlator Css ′

ε essentially differs from Kss ′
ε . While

Kss ′
ε (r,r′) describes correlations on the scale of cyclotron

diameter, Css ′
ε (r,r′) has no definite correlation length and

logarithmically depends on |r − r′|. This is a consequence
of the diffusion-pole divergence of Css ′

ε (q,q′) at q → 0 and
q ′ → 0. Indeed, in the limit of small q (in the classical
transport regimeq � R−1 is sufficient) Eq. (10) can be reduced
to a diffusion equation so that Css ′

ε (r,r′) and Css ′
ε (q,q′) are

proportional to the Green’s functions of the diffusion equation
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in the coordinate and momentum representation, respectively.
The long-range behavior of correlations is a general property of
2D systems [69,70], which makes necessary the consideration
of nonlocal conductivity.

In contrast to σ (1), the contribution σ (2) can be treated
locally, because it contains the exponential factor eiq·(r−r′),
where q means the momentum transferred in the scattering
of electrons by the potential V (r). Since q is comparable to
the Fermi momentum (except for the case of scattering on
very small angles), the correlation length |r − r′| appears to
be much smaller than both R and π/Q, and it is sufficient to
consider the local form

σ
(2)
αβ (r) =

∫
d�rσ (2)

αβ (r + �r/2,r − �r/2). (11)

A local approximation for σ (1) is possible when the mod-
ulation length is small enough so that relevant q and q ′ are
much larger than R−1, because in these conditions Kss ′

ε (q,q′)
becomes small and the integral term in Eq. (10) contains this
smallness in a higher order. Therefore, Eq. (10) can be solved
by iterations, and the zero iteration solution corresponds to
a neglect of the integral term, when the exact correlator Css ′

ε

is merely replaced by the bare correlator Kss ′
ε . In application

to periodically modulated systems, this approximation trans-
forms σ (1) into the band conductivity described in the previous
theoretical works based on the local Kubo approach, starting
from Refs. [3–5]; see the final part of Sec. IV for more details.

In the case of a periodic potential U (r), the problem
becomes macroscopically homogeneous and described by the
conductivity tensor

σαβ = 1

S

∫
dr

∫
dr′σαβ(r,r′). (12)

This conductivity can be also viewed as the average of the local
conductivity, σαβ (r), over the elementary cell of the modulation
lattice. It is important, however, that the calculation starts
with the expression for nonlocal conductivity, and only when
σαβ(r,r′) is found, which assumes calculation of the correlation
function C as described above, is a transition to the form of
Eq. (12) carried out.

III. CLASSICAL CONDUCTIVITY

The contribution σ (1) is proportional to the squared gradient
of U (r) and to the Green’s function correlators Css ′

ε . Account-
ing for the presence of U (r) in the Green’s functions leads to
higher-order terms in the expansion of σ (1) in powers of U (r)
and ∇U (r). In the quantum regime, when Landau quantization
is important, this leads to the terms depending on U (r)/ωc and
∇U (r)R/ωc that cannot be neglected (see the next section).
However, in the classical regime the expansion goes in the pow-
ers of small parameters U (r)/εF and ∇U (r)R/εF . Therefore,
to calculate σ (1) in the classical limit, it is sufficient to employ
the averaged Green’s function of a homogeneous system:

Gs
ε(r,r′) = eiθ(r,r′)

2π�2

∞∑
N=0

LN (|�r|2/2�2)e−|�r|2/4�2

ε − εN − �s
ε

, (13)

where �r = r − r′, the sum is taken over Landau level num-
bers, LN are the Laguerre polynomials, εN = ωc(N + 1/2)

is the Landau level spectrum, �s
ε is the self-energy, and

θ (r,r′) = (e/c)
∫ r

r′ dr1 · Ar1 is the gauge-sensitive phase. In
the SCBA, the self-energy is determined from the equation
�s

ε = (w/2π�2)
∑

N [ε − εN − �s
ε]−1, though in the classical

limit one can use �A
ε = −�R

ε = i/2τ , where τ = 1/mw is the
scattering time.

Because of the homogeneity of the problem, one has

Kss ′
ε (q,q′) = Kss ′

εq (2π )2δ(q − q′),
(14)

Css ′
ε (q,q′) = Css ′

εq (2π )2δ(q − q′),

and Eq. (10) is solved as

Css ′
εq = Kss ′

εq

1 − Kss ′
εq

. (15)

According to the definition of K and Eq. (13),

Kss ′
εq = w

2π�2

∑
N,N ′

(−1)N+N ′
e−βLN−N ′

N (β)LN ′−N
N ′ (β)

(ε − εN − �s
ε)(ε − εN ′ − �s ′

ε )
, (16)

where β = q2�2/2 and Lα
N (β) are the associated Laguerre

polynomials. The classical limit corresponds to treatment of
Landau level numbers as continuous variables and application
of the asymptotic form of Lα

N (q2�2/2) at large N , keeping in
mind that the relevant q is much smaller than the inverse quan-
tum lengths since the case of classically smooth modulation is
considered. Employing also �A

ε − �R
ε = i/τ , one obtains

KRA
εq = KAR

εq 	
∞∑

n=−∞

J 2
n (qRε)

1 + (nωcτ )2
,

(17)
Rε = �2pε, pε =

√
2mε,

where Jn is the Bessel function and Rε is the cyclotron radius
at the energy ε (by definition, RεF

= R), expressed through
the absolute value of electron momentum at this energy, pε.
Strictly speaking, Eq. (17) is valid when |n| = |N − N ′| is
much smaller than N , though the inequality N � 1 and a rapid
convergence of the series allow one to extend the range of n

to infinity. Moreover, if (ωcτ )2 � 1, it is sufficient to retain a
single term with n = 0, which leads to

CRA
εq = CAR

εq 	 J 2
0 (qRε)

1 − J 2
0 (qRε)

. (18)

Noticing that only CRA
εq and CAR

εq are essential in the correlation
function 〈Aε(r,r′)Aε(r′,r)〉 in Eq. (7), and taking into account
that the electron gas is degenerate, ε 	 εF , one obtains

σ
(1)
αβ (r,r′) = e2τ

πmω2
c

εαγ εβγ ′

∫
dq1

(2π )2

∫
dq2

(2π )2

∫
dq

(2π )2

× q1γ q2γ ′U−q1Uq2e
i(q−q1)·rei(q2−q)·r′ J 2

0 (qR)

1 − J 2
0 (qR)

,

(19)

where Uq is the Fourier transform of U (r).
Next, application of the homogeneous Green’s functions

Eq. (13) to calculation of σ
(2)
αβ (r) in the classical limit gives

a coordinate-independent isotropic Drude conductivity at
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(ωcτ )2 � 1:

σ
(2)
αβ = δαβ

e2

2πmω2
c τ

∫
dε

(
−∂fε

∂ε

)
p2

ε = δαβ

e2ns

mω2
c τ

, (20)

where ns is the electron density. Calculating the contribution
of the four diagrams in Fig. 2(c) leads to an additional term
σ

(3)
αβ = −σ

(2)
αβ /[1 + (ωcτ )2] that complements the conductivity

to the full Drude form. A generalization of these results to
the case of arbitrary w(q) is straightforward and leads to a
substitution of transport time τtr , defined in a standard way, in
place of τ . The effect of the potential energy U (r) on σ (2) leads
to a contribution of the order (ωcτ )−2σ (1) and can be neglected.
Therefore, in the classical limit the contribution σ (2) does not
depend on U (r). However, in the quantum transport regime
σ (2) is essentially modified by the presence of U (r), as shown
in the next section.

For any periodic modulation, application of Eq. (12) to
Eq. (19) leads to the expression

σ
(1)
αβ = e2τ

πmω2
c

εαγ εβγ ′

∫
dq

qγ qγ ′�qJ
2
0 (qR)

1 − J 2
0 (qR)

, (21)

with �q = ∑
k1,k2

|Uk1,k2 |2δ(q − k1Q1 − k2Q2), where k1 and
k2 are integers, Q1 and Q2 are the Bravais vectors of the
reciprocal lattice, and Uk1,k2 are the Fourier coefficients of
the periodic potential U (r). For harmonic unidirectional mod-
ulation, U (r) = u cos(Qx), the vectors are Q1 = (Q,0) and
Q2 = (0,0), while nonzero elements are U1,0 = U−1,0 = u/2.
Thus, only the component σ (1)

yy survives, and it is identified
with the Weiss oscillation term

σ (1)
yy = e2nsτ

m

(
η

2

)2 (QR)2J 2
0 (QR)

1 − J 2
0 (QR)

. (22)

If (ωcτ )2 is not large, J 2
0 (QR) should be replaced by KRA

εF Q

from Eq. (17). The result Eq. (22) [see also the resistivity
ρxx of Eq. (24) derived from Eq. (22)] is in full accordance
with the result of theories based on the Boltzmann equation
[2,20,21]. Previous theories based on the Kubo formula for
local conductivity miss the term J 2

0 (QR) in the denominator.
Within the formalism described in this paper, this would occur
if the correlator C were replaced by the bare correlator K (see
the discussion in the end of Sec. II). Such an approximation is
sufficient at QR � 1, when J 2

0 (QR) 	 (2/πQR) cos2(QR −
π/4) � 1, but becomes invalid at QR < 1, where J 2

0 (QR) 	
1 − (QR)2/2.

For harmonic bidirectional rectangular modulation, U (r) =
u1 cos(Q1x) + u2 cos(Q2y), one has Q1 = (Q1,0), Q2 =
(0,Q2), and nonzero elements are U1,0 = U−1,0 = u1/2,
U0,1 = U0,−1 = u2/2. This leads to a simple superposition of
the Weiss oscillations of Eq. (22), with σ (1)

yy ∝ u2
1 depending

on Q1 and σ (1)
xx ∝ u2

2 depending on Q2. A particular case is
the symmetric square lattice with u1 = u2 and Q1 = Q2, for
which σ (1) is isotropic. Similar results have been obtained in
Ref. [9]. One should be careful, however, about the range of
applicability of these results, because in the case of bidirec-
tional modulation a drift of electrons along closed equipotential
contours becomes important [29,31]. If the scattering that
transfers electrons from these contours to other states is weak
enough, the conductivity should be suppressed [25] and, more-
over, a transition to stochastic motion of electrons is possible.

The localization effects associated with the closed contours
of motion are not described within the Born approximation
applied in this paper, as well as within any perturbation-based
approach. The problem of localization in electron transport
under bidirectional modulation was discussed in more detail
in Refs. [29,31,56].

Once the conductivity is known, the resistivity tensor ραβ

is determined in a standard way by calculating the inverse of
the conductivity tensor. If only the diagonal components of
the dissipative conductivity exist (for example, in the case of
unidirectional modulation along x, or bidirectional modulation
along x and y), the dissipative resistivity is also diago-
nal: ρxx = σd

yy/(σ 2
H + σd

xxσ
d
yy) and ρyy = σd

xx/(σ 2
H + σd

xxσ
d
yy),

where σH = e2ns/mωc is the Hall conductivity. For classically
strong magnetic fields, the contribution σ (2)

αα is always much
smaller than σH . Then, assuming that σ (1)

αα is also much smaller
than σH , one has simply ρxx = σd

yy/σ
2
H and ρyy = σd

xx/σ
2
H .

Strictly speaking, this assumption is not always valid, because
with increasingB the contributionσ (1)

αα becomes larger thanσ (2)
αα

and may even exceed σH under the condition ωcτη2 > 1, so
the relation between the resistivity and conductivity becomes
more complicated. Nevertheless, in the case of unidirectional
modulation, when σ (1)

xx = 0, the product σd
xxσ

d
yy is equal to

σ (2)
xx (σ (1)

yy + σ (2)
yy ) and is always much smaller than σ 2

H , in view
of the third and the fourth strong inequalities of Eq. (2).
Therefore, for unidirectional modulation along x the resistivity
components are

ρxx 	 (
σ (1)

yy + σ (2)
yy

)
/σ 2

H , ρyy 	 σ (2)
xx /σ 2

H , (23)

which is true as well in the quantum transport regime con-
sidered in the next section. In the classical limit, according
to Eqs. (20), σ (2)

xx /σ 2
H = σ (2)

yy /σ 2
H = ρ0, where ρ0 = m/e2nsτ

is the zero-field resistivity. Then, according to Eq. (22), the
classical resistivity is given by

ρxx 	 ρ0 + ρ0

(
η

2

)2 (vF τQ)2J 2
0 (QR)

1 − J 2
0 (QR)

, ρyy 	 ρ0. (24)

The Weiss oscillations occur in the regionQR > 1, while in the
regionQR � 1 the adiabatic limit is reached, whereρxx ∝ B2,
in agreement with experiment [10].

The formalism developed above can be also extended
to describe the classical magnetotransport in the cases of
magnetic modulation and random modulation [54].

IV. QUANTUM CONDUCTIVITY

The problem of classical conductivity studied in the previ-
ous section does not require consideration of the influence of
potential energy U (r) on the spectrum and wave functions of
electron system. When studying the quantum contribution, this
influence should be specified in detail, which is done below for
the case of classically smooth one-dimensional potential U (x).

A. Green’s function and density of states

After choosing the Landau gauge, Ar = (0,Bx,0), and
searching for the wave function in the absence of the scattering
potential V in the form eipyψ(x), where p is the momentum
along the y axis, the eigenstate problem is reduced to a
one-dimensional Schrödinger equation for ψ(x). When the
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first two of the strong inequalities in Eq. (2) are satisfied, it
is sufficient to apply quasiclassical methods [71] for solution
of this problem. In particular, the energy spectrum can be found
from the Bohr-Sommerfeld quantization rule by integrating the
classical momentum between the turning points x1 and x2 for
finite motion in the combined potential formed by a parabolic
potential due to magnetic-field confinement and an additional
potential U (x):∫ x2

x1

dx

√
2m[ε − U (x)] − (x − X)2

�4
= π

(
N + 1

2

)
, (25)

where X = −�2p is the x-axis projection of the guiding center
X = (X,Y ). In the case of weak U (x) [the third of the strong
inequalities in Eq. (2)], an expansion of the integrand up to the
first power of U (x) is sufficient, and the spectrum is given by
the following implicit equation:

ε = εN + UεX, εN = ωc(N + 1/2), (26)

where

UεX =
∫ Rε

−Rε

dx
U (X + x)

π
√

R2
ε − x2

=
∫ π

0

dϕ

π
U (X + Rε cos ϕ). (27)

Since X + Rε cos ϕ is the x-axis projection of the coordinate
of the electron rotating in a cyclotron orbit around the guiding
center, the quantity UεX is a classical expectation value of U (x)
or, equivalently, the average potential energy [4,7]. Finally, by
noticing that UεX slowly varies with ε on the scale of ωc if the
last strong inequality of Eq. (2) is satisfied, one may replace
UεX by UNX ≡ UεN X, which is equivalent to a substitution
of the quantized cyclotron orbit radius, RN = �

√
2N + 1, in

place of Rε in Eq. (27). For a particular case of periodic
modulation with the period a = 2π/Q and the symmetry
U (x) = U (−x), one has

UNX =
∞∑

l=−∞
UlJ0(lQRN ) cos(lQX), (28)

where Ul are the Fourier coefficients of U (x). For har-
monic modulation, only the coefficients U1 = U−1 = u/2 are
nonzero.

The electron energy spectrum

ε = εN + UNX (29)

is widely used for description of commensurability oscillations
within the quantum linear response theory. Whereas in the
present study UNX is identified with the average potential
energy found from the Bohr-Sommerfeld quantization rule,
most often UNX is explained as a first-order perturbation
correction to the Landau quantization energy εN . Indeed, a
calculation of the diagonal matrix elements of the potential
with the Landau eigenstates ψ(x) = ψNX(x) gives the result
Eq. (28) at N � 1. Then Eq. (29) describes one-dimensional
Landau subbands whose bandwidth, according to Eq. (28),
oscillates as a function of the subband number. It is important
to note that when the conditions of Eq. (2) are satisfied,
Eq. (29) remains valid even if the amplitude u of the potential
U (x) considerably exceeds the cyclotron energy so that several
Landau subbands overlap in the energy domain. Some reasons

why the first-order perturbation theory actually works in these
conditions are described in the next paragraph.

By expanding the wave function in the full basis of Landau
eigenstates, ψ(x) = ∑

N bN (X)ψNX(x), one obtains a set of
linear equations

(εN + UNX − ε)bN +
∑

N ′(N ′ 
=N)

UNN ′ (X)bN ′ = 0, (30)

where UNN ′ = UN ′N are the nondiagonal matrix elements
of U (x). Equation (30) is exact. In the case of peri-
odic potential, the quasiclassical approach gives UNN ′ (X) =∑

l UlJN−N ′ (lQR(N+N ′)/2) cos[lQX + π (N − N ′)/2], which
can be obtained either from the asymptotic form of ψNX(x) or
from the general rule for calculation of quasiclassical matrix
elements [71]. Since the spectrum is established in the form
of Eq. (29), the contribution of the sum in Eq. (30) has to
be negligibly small for all large N , which means that the
diagonal approximation ψ(x) 	 ψNX(x) is valid. The mutual
cancellation of the terms in the sum of Eq. (30) occurs because
the quasiclassical matrix elements slowly change with N + N ′
and rapidly change with N − N ′. A numerical solution of
the eigenstate problem Eq. (30), carried out for the case of
harmonic potential, confirms that the spectrum (29) at large
N is a fairly good approximation whose accuracy rapidly
improves with decrease of the parameter η

√
QRN . Note also

that in the adiabatic limit QRN � 1 the eigenstate problem
is reduced to an exactly solvable problem for electron in the
crossed magnetic and electric fields, when the latter is constant
and given by the gradient of U (x) in the point x = X. The exact
solution has the form of a Landau eigenstate with a shifted
guiding center; the small shift is proportional to drift velocity
and can be safely neglected. Consistently, the nondiagonal
matrix elements in Eq. (30) in the adiabatic limit are small
as (QRN )|N−N ′| and can be neglected as well. The above
consideration also shows that the wave functions of electrons
can be taken as the ordinary Landau eigenstates ψNX(x) within
the accuracy of the approach.

As the spectrum and eigenstates are specified, one can write
the Green’s function, averaged over the random potential V ,
in the following form:

Gs
ε(r,r′) =

∞∑
N=0

∫
dX

2π�2

e−iX(y−y ′)/�2
ψNX(x)ψNX(x ′)

ε − εN − UNX − �s
εNX

, (31)

where the self-energy, determined within the SCBA, is

�s
εNX =

∞∑
N ′=0

∫
dq

(2π )2

w(q)�NN ′ (q2�2/2)

ε − εN ′ − UN ′X′ − �s
εN ′X′

,

X′ = X + �2qy, (32)

and �NN ′(β) = (N !/N ′!)βN ′−Ne−β[LN ′−N
N (β)]2 is the

squared matrix element of eiq·r in the basis of the eigenstates
e−iXy/�2

ψNX(x). In the quasiclassical case, the function
�NN ′ (β) rapidly oscillates with β and exponentially rapidly
decays at β > 2(N + N ′ + 1). It is sufficient to take into
account only a smooth envelope of this function, which
has the form �NN ′ (β) 	 [π

√
β
√

2(N + N ′ + 1) − β]−1 for
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FIG. 3. Scattering diagram for electrons moving in cyclotron
orbits with radii RN and RN ′ around guiding centers X and X′. The
momentum p is uniquely related to the radius vector RN = �2ε̂p. The
scattering rate of the electron belonging to the state |NX〉 into all
other states |N ′X′〉 is determined by a double integral over the angles
of momenta p and p′. Because of the presence of potential U (x),
the integrand depends on the difference X′ − X = RNN ′

ϕϕ′ between the
projections of the guiding centers on the axis x.

|N − N ′| � N + N ′. Then Eq. (32) is rewritten as

�s
εNX = 1

2π�2

∞∑
N ′=0

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

× w(qNN ′
ϕϕ′ )

ε − εN ′ − UN ′X+RNN ′
ϕϕ′

− �s

εN ′X+RNN ′
ϕϕ′

,

RNN ′
ϕϕ′ = RN sin ϕ − RN ′ sin ϕ′, (33)

where qNN ′
ϕϕ′ is approximately equal to 2pε| sin[(ϕ − ϕ′)/2]|.

Equation (33) has a clear physical meaning (see Fig. 3). The
self-energy describes the real and the imaginary corrections
to electron energy because of electron scattering from the
specified state |NX〉 into all other states. For electrons moving
in cyclotron orbits, the scattering probability is formed by an
integral over the angles of electron momenta in the initial and
final states. The integrand depends on the scattering angle ϕ −
ϕ′ through w(q), because the scattering in general is sensitive
to transferred momentum, and on the difference in guiding
center projections, RNN ′

ϕϕ′ , through the average potential. The
maximum shift of the guiding center, RN + RN ′ , is realized for
backscattering, when p 	 −p′ and the cyclotron orbits touch
each other in a single point.

The equation for the self-energy generally requires a
numerical solution. However, if the amplitude of quantum
oscillations of �s

εNX is small compared to 1/τ , it is sufficient
to replace �

R,A

εN ′X+RNN ′
ϕϕ′

under the integral in Eq. (33) by ∓i/2τ .

When the amplitude of the average potential energy exceeds
the cyclotron energy, this approximation is valid in a wider
range of B compared to unmodulated systems, because the
modulation suppresses the quantum oscillations of �s

εNX. In
the quasiclassical conditions, UNX slowly depends on Landau

level number N and the contribution to the sum in Eq. (33)
comes mostly from a narrow interval of Landau levels near
the energy ε. For this reason, �s

εNX weakly depends on N

and can be denoted as �s
εX, assuming that N 	 ε/ωc − 1/2.

Accordingly, one may replace all N and N ′ in Eq. (33) by
N = N ′ = ε/ωc − 1/2, except for the term εN ′ which depends
on N ′ much stronger than UN ′X′ . Similarly, UNX can be
replaced by UεX; this equivalence is already discussed above.
Finally, the model of isotropic scattering will be used, when
w(q) is a constant. An approximate quasiclassical expression
for � then takes the form

�A
εX 	 w

2π�2

∞∑
N ′=0

∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

× 1

ε − εN ′ − UεX+Rϕϕ′ − i/2τ
,

Rϕϕ′ = Rε(sin ϕ − sin ϕ′), (34)

and �R
εX = �A∗

εX . In the case of harmonic modulation, U (x) =
u cos(Qx), the calculation, based on the expansion of the
integrand in the series of oscillating harmonics both in the
energy and in the coordinate domains, leads to the following
expression:

�A
εX = i

2τ

∞∑
n=−∞

σne
inQX, σn = δn,0 + 2

∞∑
k=1

(−1)k

× dk exp

(
−ik

2πε

ωc

)
inJn(2πkũQ/ωc)J 2

0 (nQRε),

d = exp(−π/ωcτ ), ũQ = uJ0(QRε), (35)

where d is the Dingle factor and ũQ is the amplitude of the
average potential UεX. The terms in the sum over k describe
quantum oscillations that are suppressed not only by the
scattering but also by the smooth potential. Similar oscillations
appear in the density of states. The average density of states
ρε is given by the expression

ρε = 2

πS
Im

∫
drGA

ε (r,r) = m

π

1

a

∫ a

0
dXDε(X),

Dε(X) = ωc

π

∞∑
N=0

Im
1

ε − εN − UεX − �A
εX

, (36)

where Dε(X) is the dimensionless (expressed in units m/π )
local density of states, which is equal to unity in the classical
limit. Being combined with Eqs. (27) and (34), the expression
for Dε(X) is valid for arbitrary U (x) and describes the density
of states for electrons orbiting around the guiding centers
with projection coordinate X. Under the approximation �A

εX 	
i/2τ and for the case of harmonic modulation, one gets the
result

Dε(X) =
∞∑

n=−∞

∞∑
k=−∞

(−1)kd |k|Jn(2πkũQ/ωc)

× cos

(
k

2πε

ωc

− nQX − πn

2

)
(37)
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and

ρε = m

π

∞∑
k=−∞

(−1)kd |k| cos

(
k

2πε

ωc

)
J0(2πkũQ/ωc). (38)

The average density of states in the form of Eq. (38) has been
also obtained in Ref. [43]. This quantity describes equilibrium
properties of the system but not the transport coefficients.
As shown in the following subsections, the conductivity is
determined by the local density of states Dε(X), which gives
a more detailed description of the modulated 2D electron gas.

B. Contribution σ (2)

Consider the contribution σ (2) first. A substitution of the
Green’s function Eq. (31) into Eq. (8), with subsequent use
of Eq. (11), leads to the following expression for the local
conductivity:

σ (2)
αα (x) = e2m

2π

∫
dε

(
−∂fε

∂ε

)

×
∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π

R2
ε cα

τ
Dε(X)Dε(X′),

X = x − Rε sin ϕ, X′ = x − Rε sin ϕ′, (39)

with cx = (sin ϕ − sin ϕ′)2 and cy = (cos ϕ − cos ϕ′)2, where
ϕ and ϕ′ are the angles of electron momenta. Equation (39)
is valid for arbitrary (not necessarily periodic) U (x) and
describes the conductivity due to hopping transitions of elec-
trons between the guiding centers with projection coordinates
X and X′. The hopping conductivity is proportional to the
transition probability, expressed through the scattering rate
1/τ and the product of the densities of states, and to the
squared hopping distance R2

ε cα along the axis α. Therefore,
Eq. (39) can be viewed as a generalization of the well-
known Titeica formula [72,73] to the case of electrons in
a smooth potential, when the hopping is accompanied by
transitions between the Landau levels. A combined effect
of the potential and Landau quantization makes the hopping
conductivity anisotropic. The theories of Refs. [33,43] lead to
isotropic hopping conductivity because they do not account for
higher-order quantum corrections (see below). An extension
of Eq. (39) to arbitrary w(q) is straightforward and implies
a substitution of the angle-dependent scattering rate νε(ϕ −
ϕ′) = mw(2pε| sin[(ϕ − ϕ′)/2]|) in place of 1/τ .

The calculation of angular integrals in Eq. (39) is relatively
simple under the approximation �A

εX 	 i/2τ and for harmonic
modulation, U (x) = u cos(Qx). Then, after averaging over
the period according to σ (2)

αα = a−1
∫ a

0 σ (2)
αα (x), one obtains the

following expression:

σ (2)
αα = σd

∞∑
n=−∞

∞∑
k,k′=−∞

(−1)k−k′
d |k|+|k′|

× Tk−k′ exp

[
i(k′ − k)

2πεF

ωc

]
× Jn(2πkũQ/ωc)Jn(2πk′ũQ/ωc)Bα(nQR), (40)

where ũQ is taken at ε = εF , σd = e2ns/mω2
c τ is the classical

Drude conductivity at (ωcτ )2 � 1, and Tk = Xk/ sinhXk ,

with Xk = 2π2k2T/ωc, is the thermal damping factor. The
anisotropy is described by the functions

Bx = J 2
0 − J0J2 − 2J 2

1 , By = J 2
0 + J0J2, (41)

where the Bessel functions have the same argument as Bα . The
classical conductivity contribution corresponds to k = k′ = 0.
The principal harmonics of the SdHO come from the terms
with k = 0, k′ = ±1 and k = ±1, k′ = 0. The terms with k =
k′ 
= 0 describe quantum corrections which are not suppressed
by temperature and, therefore, are also important. Both the
SdHO terms and the other quantum corrections show additional
oscillations related to the presence of U (x). These oscillations
are described by the Bessel functions Jn standing in Eq. (40)
and by those entering Bα . When transport in high Landau
levels is considered, it is often sufficient to keep only the
principal SdHO harmonics together with k = k′ = ±1 terms,
which produces the following result:

σ (2)
αα 	 σd

[
1 − 4dT1J0 cos

(
2πεF

ωc

)]
+ δσ (2)

αα ,

δσ (2)
αα = σd2d2

∞∑
n=−∞

J 2
n Bα(nQR). (42)

Here and below, for the sake of brevity,

Jn ≡ Jn

(
2πũQ

ωc

)
. (43)

The SdHO term in Eq. (42) is proportional to d. It is isotropic,
and its oscillations follow those of the density of states given
by Eq. (38). The second-order quantum correction δσ (2),
proportional to d2, is anisotropic and describes transitions
between the Landau levels.

The case of very weak modulation, when 2u � ωc, corre-
sponds to the situation when hopping transport is not affected
by the presence of U (x). Then, σ (2) is reduced to the con-
ductivity of the homogeneous 2D electron gas, demonstrating
the ordinary SdHO on the background of positive magneto-
conductance. Formally, in this limit only a term with n = 0
survives in the sum in Eq. (42), which leads to δσ (2)

αα /σd 	 2d2.
The case of 2u > ωc is far more interesting. Experimentally,
it is found that the SdHO are considerably modified in this
regime, showing the amplitude modulation with node points
where the phase of SdHO is inverted [17,22,26,27,33,43]. This
behavior is consistent with Eq. (42) as well as with the results
of previous studies [26,27,33,43] based on simpler theoretical
models. The quantum contribution δσ (2) has not been described
in the previous theories. This contribution, however, is im-
portant, because it contains the oscillations that survive when
temperature increases and SdHO disappear; see Sec. V.

In the adiabatic limit, QR � 1, it is more convenient to
represent the term δσ (2)

αα as an average of the local conductivity
δσ (2)

αα (x) over the modulation period. This local conductivity is
given by the following expression:

δσ (2)
αα (x) = σd2d2Bα

(
2πeE(x)R

ωc

)
, (44)

which is valid for arbitrary modulation and can be derived
from Eq. (39) by expanding the densities of states in powers
of Rε. The high-temperature conductivity oscillations in this
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limit are described entirely by the oscillating properties of
the functions Bα defined by Eq. (41). The oscillations of Bx

are much stronger than the oscillations of By . This anisotropy
exists because the transport along the modulation axis is much
more often accompanied with the hopping transitions between
Landau levels than the transport perpendicular to this axis.
Equation (44) is a particular case of a more general expression
describing the ∝ d2 quantum correction to the local conduc-
tivity σ (2) for arbitrary potential U (r) and for arbitrary w(q):

δσ
(2)
αβ (r) = e2ns

mω2
c

2d2
∫ π

0

dθ

π
(1 − cos θ )νεF

(θ )

×
[
δαβJ0

(
2πeE(r)R

ωc

2 sin
θ

2

)

+ J2

(
2πeE(r)R

ωc

2 sin
θ

2

)(
δαβ−2

Eα(r)Eβ(r)

E2(r)

)]
.

(45)

Thus, in the adiabatic limit the quantum contribution δσ (2)

depends on the local potential through the gradient of this
potential. The physics behind Eqs. (44) and (45) is described
in more detail in Sec. V.

C. Contribution σ (1)

The nonlocal contribution σ (1) has only one compo-
nent, σ (1)

yy (r,r′) = δ(y − y ′)σ (1)
yy (x,x ′), in the case of the one-

dimensional potential. The homogeneity of the system along
the y axis implies that the correlator C is representable in
the form Css ′

ε (q,q′) = 2πδ(qy − q ′
y)Css ′

ε,qy
(qx,q

′
x). The same

representation is valid for the bare correlator K . Next, since
only the correlators with qy = 0 enter σ (1)

yy (x,x ′), one needs to

find Css ′
ε (q,q ′) ≡ Css ′

ε,0(qx,q
′
x). Here and below, qx is denoted

as q for brevity. Equation (10) is now rewritten as

Css ′
ε (q,q ′) = Kss ′

ε (q,q ′) +
∫

dq1

2π
Kss ′

ε (q,q1)Css ′
ε (q1,q

′), (46)

where Kss ′
ε (q,q ′) is obtained from Kss ′

ε (q,q′) in the same way
that Css ′

ε (q,q ′) is obtained from Css ′
ε (q,q′). Only the terms

with s 
= s ′ (RA and AR) are important. Applying the Green’s
function of Eq. (31), one gets

KRA
ε (q,q ′) = w

∑
N,N ′

∫
dX

2π�2

∫
dx

∫
dx ′e−iqx+iq ′x ′

× ψNX(x)ψNX(x ′)
ε − εN − UNX − �R

εNX

× ψN ′X(x)ψN ′X(x ′)
ε − εN ′ − UN ′X − �A

εN ′X
. (47)

Similarly to the homogeneous case considered in the previous
section, only the terms with N = N ′ are to be taken into
account in the sum at (ωcτ )2 � 1 and KRA

ε = KAR
ε ≡ Kε. By

using the asymptotic form of ψNX(x) at N � 1 and taking
into account that q and q ′ are small compared to the Fermi
momentum, Eq. (47) is reduced to

Kε(q,q ′) 	 J0(qRε)J0(q ′Rε)
∫

dXe−i(q−q ′)Xμ(X), (48)

where

μ(X) = Dε(X)

[∫ 2π

0

dϕ

2π

∫ 2π

0

dϕ′

2π
Dε(X + Rϕϕ′)

]−1

. (49)

To obtain Eqs. (48) and (49), the identity 2Im�A
εX =

mw
∫ 2π

0
dϕ

2π

∫ 2π

0
dϕ′
2π

Dε(X + Rϕϕ′), based on a comparison of
Eqs. (34) and (36), was applied. In the case of periodic
modulation, μ(X) can be expanded in the Fourier series with
coefficients μn. As a result,

Kε(q,q ′) = 2πJ0(qRε)J0(q ′Rε)
∑

n

δ(q − q ′ − nQ)μn. (50)

Since U (x) is real, μ∗
n = μ−n and K∗

ε (q,q ′) = Kε(q ′,q). Be-
low, the symmetry U (x) = U (−x) is assumed, when the
Fourier coefficients Un = U−n are real, and so are μn and
Kε(q,q ′). The function μ(X) becomes equal to unity, resulting
in μn = δn,0, either in the absence of a potential, when Dε is in-
dependent of coordinate, or in the classical case, when Dε = 1.
This leads to the form Kε(q,q ′) = 2πδ(q − q ′)J 2

0 (qRε) and to
a simple solution for Cε(q,q ′) exploited in the previous section.
A combined effect of the potential and Landau quantization
causes a significant dependence of μ(X) on X.

The conductivity σ (1)
yy of a periodically modulated system

involves only the terms with q = nQ and q ′ = n′Q, where
n and n′ are integers. After introducing dimensionless coeffi-
cients Cn,n′ = L−1

x Cε(nQ,n′Q), where Lx is the normalization
length, and applying Eq. (12), this contribution is represented
as

σ (1)
yy = e2τ

πmω2
c

∑
n,n′

nn′Q2UnUn′

∫
dε

(
−∂fε

∂ε

)
Cn,n′ , (51)

where Cn,n′ is a solution of a set of linear equations

Cn,n′ = Kn,n′ +
∑

l

Kn,lCl,n′ . (52)

In this equation, Kn,n′ = J0(nQRε)J0(n′QRε)μn−n′ is a
real symmetric matrix possessing also a symmetry Kn,n′ =
K−n,−n′ . Since μn−n′ = δn,n′ + δμn−n′ , where δμn−n′ denotes
the quantum contribution, one has Kn,n′ = δn,n′J 2

0 (nQRε) +
δKn,n′ , where δKn,n′ = J0(nQRε)J0(n′QRε)δμn−n′ .

In the case of harmonic modulation, U (x) = u cos(Qx), it
is convenient to introduce a function Fn(ε) = (Cn,1 − Cn,−1 −
C−n,1 + C−n,−1)/2, which can be considered only for n � 1
in view of the symmetry Fn(ε) = −F−n(ε). For this function,
Eq. (52) is rewritten as

[
1 − J 2

0 (nQRε)
]
Fn−

∞∑
l=1

MnlFl = δn,1J
2
0 (QRε) + Mn1,

(53)

where Mnl = δKn,l − δKn,−l . Equation (51) is then rewritten
as

σ (1)
yy = e2nsτ

m

(
η

2

)2

(QR)2
∫

dε

(
−∂fε

∂ε

)
F1(ε), (54)

and describes both the classical and the quantum contributions
to the conductivity. Generally, Eq. (53) requires a numerical
solution. However, assuming that the quantum contributions
are small, one can solve Eq. (53) analytically by iterations.
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With the accuracy up to the second-order quantum terms, the
solution is

F1(ε) 	 J 2
0 (QRε)

1 − J 2
0 (QRε)

[
1 + δμ0 − δμ2

1 − J 2
0 (QRε)

+ 1

1 − J 2
0 (QRε)

×
∞∑

n=1

(δμn−1 − δμn+1)2J 2
0 (nQRε)

1 − J 2
0 (nQRε)

]
, (55)

where the first term leads to the classical contribution. Within
the required accuracy,

δμl = −2d
[
1 − J 2

0 (lQRε)
]
Jl cos

(
2πε

ωc

− πl

2

)

− 2d2 cos
πl

2

∞∑
n=−∞

JnJn+l

× J 2
0 ((n + l)QRε)

[
1 − J 2

0 (nQRε)
]
. (56)

Similarly to the previous subsection, only the principal SdHO
harmonics should be taken into account so that a rapidly
oscillating function of energy is retained only in the first term
of this expression. Combining Eqs. (54), (55), and (56), one
obtains

σ (1)
yy 	 σ (1c)

yy

[
1 − 2dT1J2 cos

2πεF

ωc

× 1 − J 2
0 (2QR)

1 − J 2
0 (QR)

]
+ δσ (1)

yy , (57)

where σ (1c)
yy denotes the classical conductivity given by

Eq. (22). The second term in the square brackets of Eq. (57)
describes the SdHO. In contrast to the SdHO contribution to
σ (2)

αα [see Eq. (42)], which is proportional to J0, this term is
proportional to J2. The contribution with J0, which describes
the average density of states, does not enter the SdHO term in
Eq. (57) because in view of the assumed isotropy of scattering
the average scattering rate a−1

∫ a

0 dX2Im�A
εX depends on ε

exactly in the same way as the average density of states,
so the corresponding quantum terms in the nominator and
denominator of Eq. (49) compensate each other, making the
first term in Eq. (56) equal to zero at l = 0. As a result, the
SdHO in σ (1)

yy and σ (2)
αα are shifted in phase by π in the region

ũQ > ωc, where J0 and J2 oscillate in antiphase. Finally,
the term δσ (1)

yy describes the second-order (∝ d2) quantum
correction:

δσ (1)
yy = σ (1c)

yy

2d2(S1 − S2)

1 − J 2
0 (QR)

,

S1 =
∞∑

n=1

{
Jn−1

[
1 − J 2

0 ((n − 1)QR)
]

+Jn+1
[
1 − J 2

0 ((n + 1)QR)
]}2 J 2

0 (nQR)

1 − J 2
0 (nQR)

,

S2 =
∞∑

n=−∞

{
J 2

n J 2
0 (nQR)

[
1 − J 2

0 (nQR)
]

+ JnJn+2J
2
0 ((n + 2)QR)

[
1 − J 2

0 (nQR)
]}

. (58)

The contribution S1 is obtained from the last term of F1 [see
Eq. (55)] by substituting there the first (∝ d) term of δμ and
then retaining the terms that do not contain rapid oscillations
with energy, while S2 is obtained from the second term of
F1 by substituting the second (∝ d2) term of δμ. Both these
contributions are equally important.

As discussed in Sec. II, if the modulation length is small
enough, the correlation function C can be approximated by the
bare correlation function K . In the classical transport regime,
this requires the condition QR � 1 so that J 2

0 (QR) � 1. A
formal substitution of Kε(q,q ′) in place of Cε(q,q ′) allows one
to skip consideration of the integral equation (46). As a result,
σ (1)

yy is presented in a closed analytical form:

σ (1)
yy = e2�4u2Q2

πw

∫
dε

(
−∂fε

∂ε

)
J 2

0 (QRε)

× 1

a

∫ a

0
dX sin2(QX)μ(X), (59)

where the harmonic modulation is already assumed. By em-
ploying the density of states ρεX = (m/π )Dε(X), the scat-
tering time τεX = 1/2Im�A

εX, and the group velocity vεX =
∂UεX/∂p = uJ0(QRε)Q�2 sin(QX) (recall that X = −�2p

and that vεX is equivalently described as the average drift
velocity [2]), one may rewrite Eq. (59) in a more general way:

σ (1)
yy = e2

a

∫ a

0
dX

∫
dε

(
−∂fε

∂ε

)
ρεXv2

εXτεX. (60)

Therefore, under the approximation C 	 K the contribution
σ (1), similarly to σ (2), is presentable as an average of a well-
defined local conductivity over the modulation period a, which
is consistent with the observation (see the end of Sec. II)
that σ (1) can be treated locally in this case. The conductivity
Eq. (60) has the form and the meaning of one-dimensional
band conductivity, in contrast to the conductivity σ (2), which
has a hopping nature. The presentation of the conductivity as
a sum of the band contribution and hopping contribution has
been in use since the earliest theoretical works on modulated
2D electron gas [3–5]. The conductivity Eq. (60) is identified
with the band contribution obtained in the previous theories;
for a more direct correspondence one may replace the integral
over energy by the sum over Landau levels according to∫

dερε(X) . . . = (π�2)−1 ∑
N . . . with ε = εN + UNX.

Equation (60) can be used for description of the quantum
transport regime by taking into account rapid oscillations
of ρεX and τεX with energy due to Landau quantization. It
remains to discuss whether the approximation Cε(q,q ′) 	
Kε(q,q ′) leading to this equation is justified in the quantum
transport regime. For description of SdHO, this approximation
is applicable at J 2

0 (QR) � 1, similarly to the classical regime.
However, the second-order quantum contribution δσ (1)

yy is
beyond the accuracy of this approximation, because δσ (1)

yy

contains an extra smallness of the order J 2
0 (QR); see Eq. (58).

Therefore, the consideration of the integral equation (46) is
indispensable even at QR � 1.

At low magnetic fields and small modulation periods, the
quantum contribution to σ (2) dominates both in σxx and σyy .
However, since the quantum contribution to σ (1)

yy is proportional
to the classical conductivity σ (1c)

yy (see also Ref. [43]), it
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FIG. 4. Resistivity as a function of magnetic field calculated for
GaAs quantum well with electron density ns = 5 × 1011 cm−2 and
mobility 3 × 105 cm2/V s for modulation strength η = 0.1 and period
a = 0.45 μm. The upper part shows ρxx and the lower one shows ρyy

expressed in units of zero-field resistivity ρ0 = m/e2nsτ . Thin (black)
lines correspond to T = 1 K, thick (colored) lines to T = 10 K, and
the dashed line in the upper part shows the classical contribution
containing the Weiss oscillations.

becomes larger than the quantum contribution to σ (2) as the
magnetic field increases.

V. NUMERICAL RESULTS AND DISCUSSION

It is important to plot the magnetic-field dependence of
the resistivity in order to demonstrate the essential features
of the linear response. Figures 4, 5, and 6 show the resistivity
of periodically modulated 2D electron gas in GaAs quantum
wells, where m is equal to 0.067 of the free electron mass.
The electron density ns = 5 × 1011 cm−2 and mobility 3 ×
105 cm2/V s are chosen, which corresponds to parameters
of the experiment of Ref. [10]. The calculations are carried
out for the case of harmonic modulation by using Eqs. (42),
(57), (58), and (23), the latter defines a relation between the

FIG. 5. The same as in Fig. 4 for η = 0.15 and a = 1 μm.

FIG. 6. The same as in Fig. 4 for η = 0.15 and a = 3 μm.

resistivity and the conductivity contributions calculated in the
previous section. The scattering time τ entering the prefactors
σd in Eq. (42) and σ (1c)

yy in Eqs. (57) and (58) is derived directly
from the mobility, while the scattering time entering the Dingle
factor d is assumed to be 5 times smaller than τ , to account for
a considerable difference between the transport time and the
quantum lifetime typical for 2D systems [55]. The results for
three different periods a are shown. The modulation is assumed
to be strong enough so that the amplitude of U (x) considerably
exceeds the cyclotron energy in the quantum transport region
of B: η = 0.1 for a = 0.45 μm and η = 0.15 for a = 1 μm
and a = 3 μm. In each of these figures, two components of
the resistivity are shown at T = 1 K and at T = 10 K.

For low temperature, both ρxx and ρyy in each of the
plots show the SdHO, which are significantly modified by the
presence of the periodic potential. The basic properties of these
oscillations have already been explored for the systems with the
periods a � 1 μm typical for experiments on modulated 2D
electron gas, and a qualitative agreement between experiment
and theory is demonstrated [26,27,33,43]. The most important
feature is the nonmonotonic dependence of the SdHO ampli-
tude on the magnetic field, originating from the modulation
of the density of states by the periodic potential and formally
described by the slowly oscillating factors Jn defined by Eq.
(43) and entering the SdHO terms in Eqs. (42) and (57).
An indication of such a behavior is also seen in an earlier
experiment [10] on a system with a = 1 μm. Similar behavior
is expected for a = 3 μm (Fig. 6). One more interesting feature
that follows from the present theory is the phase inversion
of the SdHO in ρxx . For small-period systems and at low B,
the SdHO of ρxx and ρyy are in phase, because they are both
determined mostly by the contribution σ (2). For large-period
systems and at higher B, the SdHO of ρxx and ρyy are in
antiphase, because ρxx is now determined by σ (1)

yy , while ρyy is
again determined by σ (2)

xx . The origin of the phase shift between
the SdHO contributions in σ (1) and σ (2) is explained in the
previous section.

As the temperature increases and the thermal damping fac-
tor T1 becomes small, the SdHO terms are suppressed and the
quantum contribution to resistivity is determined by the terms
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δσ (1)
yy , δσ (2)

yy , and δσ (2)
xx . In this case, the resistivity, apart from the

classical Weiss oscillations, shows long-period oscillations of
quantum origin. For small-period systems (Fig. 4), the quantum
corrections to ρxx can lead, depending on parameters, either
to a flattening of the minima of Weiss oscillations or even
to weak bumps inside these minima, as shown in Fig. 4.
Apparently, experimental indications of such a behavior are
seen in experiments [27,33], though in view of weakness
of these features one cannot make a definite conclusion on
this subject. The effect of enhancement of resistivity near
the minima of Weiss oscillations takes place because the
amplitude of the average potential, ũQ, goes to zero in these
minima, and the positive quantum correction δσ (2)

yy is no longer
suppressed by the modulation. The experimentally observed
enhancement of SdHO around these minima, discussed in
Refs. [27,33], occurs for a similar reason. In general, the
high-temperature quantum oscillations of ρxx correlate with
the amplitude modulation of SdHO as their minima coincide
with the nodes of SdHO pattern. This behavior is most clearly
seen at higher magnetic fields in the system with a = 3 μm
(Fig. 6), when the quantum correction in ρxx is determined by
the contribution δσ (1)

yy . Thus, the origin of these oscillations is
traced directly to the slow oscillations of the density of states
caused by the modulation. Formally, according to Eq. (58),
the oscillating behavior of δσ (1)

yy at R < a is determined by a
sum of the terms quadratic in the Bessel functions Jn of the
same parity. The terms with even n prevail in this sum, so
the oscillations basically follow the behavior of J 2

0 and have
minima under conditions 2ũQ/ωc 	 l − 1/4 with integer l,
corresponding to zeros of J0, when the principal oscillating
contribution to the density of states is suppressed; see Eq. (38).
In the limit QR � 1, when ũQ is independent of B and equal to
u, the oscillations are periodic in B−1. The effect of a periodic
spatial modulation on the density of states of 2D electrons
was previously discussed [26,27,33,43] in connection with
amplitude modulation of SdHO. The present study shows that
this effect also leads to long-period resistivity oscillations in
ρxx that survive at high temperatures. The existence of such
oscillations is not surprising, because the modification of the
density of states occurs at an energy scale much larger than the
cyclotron energy, and, therefore, is robust to thermal averaging.

The component ρyy also demonstrates oscillating behavior
at high temperatures, though it is more complicated and
requires a different explanation. In the lower part of Fig. 5, one
can see two types of oscillations, the short-period ones in the
region of low B and the long-period ones at higher B, which
have different origin. The first type of oscillation has been
observed and theoretically reproduced within a simple model
assuming that the conductivity is proportional to the integral of
the squared average density of states over energy [27]. Below,
more details are added to the explanation of this phenomenon.
The low-B quantum oscillations, similar to the oscillations of
ρxx , appear because of the modification of the density of states
by the modulation. However, in contrast to the oscillations of
ρxx , they exist only in the region of low B, where QR � 1. The
reason for this can be understood by noticing that ρyy ∝ σ (2)

xx

is caused by the scattering-assisted hopping transitions, and,
therefore, ρyy is proportional to the product of the densities
of the states between which the transition takes place; see

Eq. (39). As the magnetic field varies, σ (2)
xx oscillates each

instant when the maxima of the density of states belonging
to different Landau subbands are aligned. The density of states
has maxima at the top and bottom edges of the subbands; this
is a general consequence of the parabolic dependence of UNX

on X near X = lπ/Q, leading to Van Hove singularities of
the density of states in one-dimensional subbands [7,11,33] in
the collisionless limit. Thus, the Landau subband width 2ũQ

plays the role of the resonance energy, and the oscillations
of ρyy are periodic in 2ũQ/ωc; one period corresponds to a
change of this ratio by unity. However, the resonance hopping
between the upper and lower edges of two different Landau
subbands cannot occur if the maximal hopping distance, equal
to the cyclotron diameter 2R, is smaller than the modulation
half-perioda/2. For the case ofa = 1 μm shown in Fig. 5, such
a cutoff corresponds to B 	 0.5 T. Indeed, this is the field when
the low-B oscillations of ρyy in Fig. 5 disappear and another
type of oscillation emerges. These new oscillations are better
seen in the case ofa = 3 μm (the lower part of Fig. 6), when the
condition QR < 1 is realized at B > 0.25 T. The oscillations
do not correlate with the amplitude modulation of the SdHO,
so they are not periodic in 2ũQ/ωc. Their period increases with
increasing B faster than the period of the oscillations of ρxx .
To explain the origin of these oscillations, it is again essential
to recall that the quantum contribution to ρyy is determined
by the hopping transitions and that the hopping distance is
an important parameter of the transport. In the regime of
high Landau levels, N � 1, when electron motion can be
treated quasiclassically, the probability of such transitions
has a maximum when the hopping distance is equal to the
cyclotron diameter, which corresponds to a backscattering of
the electron rotating in a cyclotron orbit. The property of
enhanced backscattering probability in 2D systems is a purely
kinematic effect, which is not related to the presence of mag-
netic field. Being combined with the cyclotron motion, Landau
quantization, and spatial dependence of the potential energy,
this property leads to oscillating behavior of the resistance,
which becomes most clear in the case of U (x) = |e|Ex, when
the electric field E is constant. Then, the states with the same
energy in different Landau levels N and N ′ are separated by
the distance |N − N ′|ωc/|e|E. When this distance is equal
to 2R, a resonance takes place, so the conductivity oscillates
each instant when the ratio 2|e|ER/ωc is changed by unity.
The resonance energy 2|e|ER is the variation of the potential
energy on the distance of cyclotron diameter. For arbitrary
potential and in the adiabatic limit, when R is much smaller
than the modulation length, the resonance energy is expressed
through the local electric field and is equal to 2|e|E(r)R. This
resonance effect leads to the oscillating quantum correction
to the local conductivity given by Eqs. (44) and (45). In
periodically modulated systems, such oscillations survive after
averaging of the local conductivity over the modulation period,
though their amplitude becomes smaller, and the conductivity
oscillates as a function of 2|e|ER/ωc, where the parameter E

approaches the amplitude of the electric field as the product
QR decreases. The mechanism discussed above is responsible
for high-temperature oscillations of ρyy at large a and B. It
is also responsible for a special kind of nonlinear phenomena
studied in the past decades [57–67], in particular, the Hall-field
induced resistance oscillations (HIRO), when the electric field
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E that tilts the Landau levels is the Hall field proportional to
the electric current. Since the Hall field is proportional also
to the magnetic field B, the product ER is independent of
B, and HIRO are periodic in B−1. Thus, the present study
demonstrates that the physical mechanism that leads to HIRO
also produces a special kind of resistance oscillation that can
be observed in modulated 2D electron systems. In contrast to
HIRO, these oscillations exist in the linear transport regime
and have a well-defined periodicity only in the adiabatic limit
QR � 1, when they are periodic in B−2, because ER ∝ B−1.
They should be better seen in the systems with a significant
amount of short-range scatterers, where backscattering is
efficient.

In summary, a linear magnetotransport theory of 2D elec-
tron gas modulated by a weak and classically smooth potential
is developed. It is shown that a consistent approach to the
problem within the quantum linear response (Kubo) formalism
requires a consideration of nonlocal conductivity tensor. The
conductivity tensor is subdivided into the local part, σ (2)(r),
and the nonlocal part, σ (1)(r,r′), proportional to a product of
the potential gradients in the points r and r′. In the classical
limit, the local part describes the Drude conductivity, while
the nonlocal part is responsible for the commensurability
oscillations. The nonlocal part in this limit is expressed through
the correlation functions of a homogeneous 2D electron gas
[54]. When Landau quantization becomes important, both local
and nonlocal parts contain quantum contributions described
above for a particular case of one-dimensional (unidirectional)
periodic modulation. The approximations used in the paper
include (i) the conditions of quasiclassical transport under
classically smooth and weak modulation, as summarized in
Eq. (2), (ii) the condition of classically strong magnetic fields,
relevant for observation of both commensurability phenom-
ena and quantum oscillations, (iii) the self-consistent Born
approximation, which does not describe the effects of both
weak and strong localization but nevertheless is reasonable
for description of transport at weak modulation away from
the quantum Hall effect regime, and (iv) the assumption
of isotropic scattering, which is not good in application to
realistic 2D electron systems with smooth disorder [74] but
technically necessary in order to obtain a closed equation for
the correlation function describing the nonlocal conductivity
and to express σ (1) in the analytical form in the classical limit.
Even within these approximations, the problem of quantum

magnetotransport remains complicated, because determination
of the correlation functions describing the nonlocal part of
the conductivity requires a solution of the integral equation,
Eq. (46). Evaluation of the local part is simpler and leads
to the expression Eq. (39) generalizing Titeica’s formula for
hopping conductivity in magnetic field. Analytical expressions
for both parts of the conductivity tensor are obtained in the
case of moderately strong magnetic fields, when the quantum
contributions are not large and an expansion of the conductivity
in powers of the Dingle factors is possible. It is found that the
Shubnikov–de Haas oscillations coming from the contributions
σ (1) and σ (2) have opposite phases. The theory suggests that,
apart from the Shubnikov–de Haas oscillations modified by
the modulation potential, there exist other kinds of quantum
oscillations with smaller amplitudes, which survive when the
temperature increases. The resistance in the direction perpen-
dicular to the modulation axis,ρyy , shows two different kinds of
such oscillations. For detection of this behavior, experimental
studies of 2D electron systems with enhanced modulation
strength (10%–15%) and larger modulation periods (several
microns) are desirable, as demonstrated above by the numerical
calculations. These conditions are required to make the am-
plitude of the modulation potential U (x) considerably larger
than the cyclotron energy in the region of B where Landau
quantization is important, essentially including the region
R < a, where the quantum oscillations caused by enhanced
backscattering are expected in ρyy and the high-temperature
quantum oscillations of ρxx are no longer obscured by the
presence of Weiss oscillations. In the majority of experiments,
mostly focused on the magnetotransport in the regime of Weiss
oscillations, GaAs samples with the period a smaller than
0.5 μm were used. Only a few experiments [10,27,33] on the
samples with a = 1 μm are available, and the author is not
aware of experiments on samples with larger periods. While
the experiments in Refs. [10,27,33] employ sufficiently strong
modulation, the quantum contribution to resistance in Ref. [10]
is weak, apparently because of the effect of disorder, and the
resistance in Refs. [27,33], measured for samples with higher
mobilities, is shown only in the region of fields below 0.5 T,
where R > a. Thus, the available experimental data do not
allow us to verify the existence of the oscillations discussed in
this paper and demonstrated in the high-temperature magne-
toresistance plots in Fig. 6 and high-field part of Fig. 5. Further
experiments are required for this purpose.
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