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Spontaneous patterns in coherently driven polariton microcavities
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We consider a polariton microcavity resonantly driven by two external lasers which simultaneously pump both
lower and upper polariton branches at normal incidence. In this setup, we study the occurrence of instabilities of

the pump-only solutions towards the spontaneous formation of patterns. Their appearance is a consequence of the
spontaneous symmetry breaking of translational and rotational invariance due to interaction-induced parametric
scattering. We observe the evolution between diverse patterns which can be classified as single pump, where
parametric scattering occurs at the same energy as one of the pumps, and as two pump, where scattering occurs at
a different energy. For two-pump instabilities, stripe and checkerboard patterns become the dominant steady-state
solutions because cubic parametric scattering processes are forbidden. This contrasts with the single-pump case,
where hexagonal patterns are the most common arrangements. We study the possibility of controlling the evolution
between different patterns. Our results are obtained within a linear stability analysis and are confirmed by finite-size

full numerical calculations.
DOI: 10.1103/PhysRevB.97.245309

I. INTRODUCTION

In recent years, hybrid matter-light systems such as mi-
crocavity polaritons have been proven ideal for the study
of spontaneous pattern formation. Resulting from the strong
coupling between cavity photons and quantum well excitons,
microcavity polaritons share the properties of both components
and, thus, display unique properties: among those, optical and
electrical injection, a high degree of tunability and control,
easy detection, and direct readout [1-3]. Optical paramet-
ric oscillation [4], where exciton-exciton interactions trigger
parametric scattering from a pump state to a signal state
at a lower momentum and energy and an idler state at a
higher momentum and energy, is a paradigm of polariton
spontaneous pattern formation. Here, dynamical patterns are
generated by the interference between pump, signal, and idler
states forming a stripelike pattern in real space. However,
static geometrical patterns can be generated when parametric
scattering spontaneously occurs from a pump state, e.g., at
zero momentum, to two signal states at the same energy and
opposite momenta. This instability was recently realized in
triple [5] and double [6] cavities, as well as by blue-shifting
the pump above the polariton dispersion in one-dimensional
cavities [7,8]. For scattering at the same energy, scattering
processes between pump and signal states of cubic order can
lead to the formation of hexagonal patterns. This was predicted
by Refs. [9-12] and experimentally realized in [13] using a
double vertical cavity. Alternative patterns such as vortices
and vortex lattices [14-16], vortex rings [17], and solitons
[18] have also been investigated in polariton quantum fluids
driven by a resonant pump. These have the additional benefit
of carrying nontrivial phase configurations and, in case of
vortices, a nonzero net angular momentum.
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There is an analogy between optical patterns and Turing
patterns, where spontaneous self-organized repetitive spatial
configurations emerge out of a homogeneous distribution.
Turing patterns were first proposed in the context of chemical
reactions [19], and, since then, used to describe a wide range
of patterns in diverse fields [20], such as in animal coats, skin
pigmentation, and ridges on sand dunes. The common features
of Turing patterns are nonlocality, such as diffusion, and
nonlinear interactions. Diffusion promotes homogeneity, yet,
when the system is driven externally by, e.g., stress, instabilities
with certain preferred wavelengths can grow exponentially
because of the nonlinearities. With a similar mechanism,
Turing patterns can occur in nonlinear optical systems, such as
nonlinear media embedded in optical resonators [21].

In this paper, we consider a polariton microcavity resonantly
driven by two external lasers which simultaneously pump
both lower and upper polariton branches at normal incidence
so as not to explicitly break the system translational and
rotational invariance (see schematic Fig. 1). This pumping
setup was already suggested as a possible scheme for the
generation of entangled multiple polariton modes [22]. More
recently, a simpler but similar configuration was proposed in
the context of quantum exciton-polariton networks [23]: here,
an inverse four-wave mixing procedure practically implements
a two-mode squeezing Hamiltonian. However, the nature and
stability of different patterns following the spontaneous break-
ing of translational and rotational symmetry due to parametric
scattering has not been analyzed yet. The aim of our work
is the study of those patterns that can be generated by this
pumping scheme and the control over them in terms of the
system parameters.

By complementing the results of a linear stability analysis
with numerical simulations for finite-size pump profiles, we
observe the evolution between diverse patterns which can be
classified as “single pump” (where parametric scattering oc-
curs at the same energy as one of the pumps) and as “two pump”’
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FIG. 1. Schematic representation of the pumping configuration
and main scattering processes leading to two-pump (a) and single-
pump (b) instabilities. (a) Two driving laser fields are tuned at zero
momentum almost resonantly with the upper polariton (UP) at w),
(green dot) and lower polariton (LP) at w,, (orange dot); UP and
LP energy-momentum dispersions are plotted as (gray) surfaces.
Interactions between the two-pump states as well as in within each
single-pump state trigger scattering [(black) arrows] from the pump
states to signal S;, (cyan) and idler /; , (magenta) states. Panel (b)
describes the fixed-energy parametric scattering, which is allowed
when the interaction renormalization of the dispersion admits LP
states at the pump energy ,,. (c) Quadratic and quartic scattering
processes are permitted for both two-pump (a) and single-pump (b)
instabilities, while cubic processes are forbidden when pump and
signal states are at different energies (a).

(where scattering occurs at an energy equal to the average
of the two-pump energies). For two-pump instabilities, stripe
and checkerboard patterns become the dominant steady-state
solutions because cubic parametric scattering processes are
forbidden when pumps and signals are at different energies,
as schematically depicted in Fig. 1. This contrasts with the
single-pump case, where, because of cubic order processes,
hexagonal patterns are the most common instabilities [9-13].

In a “phase diagram” of momentum versus pump power, we
establish the regions of instability of the pump-only solutions,
i.e., those configurations for which only the states resonantly
injected by the external pumps are populated. At the same
time, we estimate, as a function of the pump strength, the
absolute value of the momentum typical of each instability.
The values extracted from the numerical simulations agree
very well with the values found for the most unstable modes
derived within the linear stability analysis, as well as with an
estimate obtained by a simplified description of the interaction-
induced renormalization of the bare dispersion branches. In
particular, we establish that the phase diagram is composed
by different branches which can be explained in terms of
both the blue-shift and the splitting induced by the interaction
between the two-pump states mediated by excitons. Among
the two-pump instabilities, checkerboard patterns typically
occur at low pump powers. Contrary to expectations, we do
not have a clear evolution from stripes at the lowest pump
powers to checkerboards at higher pump strength. Rather, we

obtain that these instabilities alternate at low pump powers
until, eventually, only stripe solutions are allowed at very high
pump powers.

If no single-pump instabilities develop, the momentum
typical of these patterns decreases monotonously as a function
of the pump strength. However, two-pump instabilities can
compete with single-pump ones, when the energy of the pump
which is tuned close to the upper polariton branch becomes
resonant with the interaction-renormalized lower polariton
branches. This can lead to the formation of hexagonal patterns
because of parametric scattering at the same energy, while the
system can also sustain two-pump scattering processes which
instead promote the formation of stripe and checkerboard
patterns. We can demonstrate the competition between single-
and two-pump instabilities by filtering the emission in energy,
showing that the system simultaneously undergoes different
instabilities at different energies.

Finally, we have studied the phase freedom of two-pump
instabilities. In spite of the coherent nature of the two driving
laser pumps, we demonstrate that the system is characterized
by phase freedom. In particular, the number of independent
phase constraints imposed by parametric scattering processes
from the pump to the signal and idler states is always less
than the number of generated signal and idler modes. We
show that the system spontaneously chooses the relative phase
between opposite momentum signals (which coincide with
the relative phase of opposite momentum idlers). Thus, a
U(1) phase symmetry is spontaneously broken in the case of
stripe patterns, while for checkerboard the phase symmetry
spontaneously broken is in the U(1) x U(1) class.

Phase freedom opens the possibility of realizing macro-
scopic phase coherent states and of investigating their super-
fluid behavior. These aspects have been recently analyzed for
optical parametric oscillation, either by studying the current
persistence [24,25] or by probing the system response to the
scattering against a defect [26]. Further, because of the different
continuous symmetry characterizing stripe and checkerboard
patterns, it would be interesting to study first-order correlation
functions both in space and time so as to establish the critical
behavior of this nonequilibrium two-dimensional system and
the class of nonequilibrium phase transition to which it be-
longs [27]. In addition, higher-order correlations would give
indications of a possible quantum behavior [22,23,28,29].

The paper is organized as follows: The model and the
pumping scheme, as well as the relevant scattering processes,
are introduced in Secs. II and II A. The choice of the system
parameters that are optimal for the analysis of two-pump
pattern formation is discussed in Sec. I[I B. In Sec. I1I we present
the results derived within a linear response theory, while these
are compared to the results obtained with finite-size numerical
simulations in Sec. IV. We argue about the system phase
freedom in Sec. IV A. Finally, conclusions and perspectives
form Sec. V.

II. MODEL

We describe the dynamics of microcavity polaritons reso-
nantly driven by two continuous-wave laser fields shined at
normal incidence (k,, =0 =Kk,,)

F(r,t) = fp,()e ' + f,,(r)e r! (1)
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by a Gross-Pitaevskii equation for coupled cavity [ (r,1)]
and exciton [y (r,?)] fields generalized to include decay and
resonant pumping (2 = 1) [30,31]:

. I/fx N 0 ~ gX|wx|2 0 l/fx
() = (o) [0+ (M0 D)) @

where the single-polariton Hamiltonian is given by

ﬁ B WX, —iv —il{x QR/2
0= Qr/2 we,—iv —ikc)’

3

Here, we assume the cavity dispersion to be quadratic, wc x =
wc.o + k*/(2mc), with me = 107my (my is the bare electron
mass),while we will neglect the exciton dispersion wx x =
wx.o as the exciton mass is much larger than the cavity photon
mass, typically mx >~ 0.4mg . Energies will be measured with
respect to the exciton one, wyx ¢, and we define the photon-
excitondetuningas§ = wc 9 — wx,. Exciton and photon fields
are coupled through the Rabi splitting Q2. The exciton-exciton
interaction is approximated as a contact interaction of strength
gx. This approximation follows from the fact that the typical
range of exciton-exciton interaction is of the order of the Bohr
radius ag ~ nm, and this length is much smaller than typical
polariton wavelengths £ = 1//mcQ2z ~ pm. Note that the
value of the interaction strength gx does not influence the
dynamics, as its dependence can be rescaled out from Egs. (2)

by defining Yy « = \/8xV¥x.c and fp, = \/8x fp.,. Finally,
kx and k¢ are the exciton and photon decay rates.

A. Two-pump instabilities

We briefly describe in this section the main scattering
processes that characterize single- and two-pump parametric
instabilities with the scope of schematically illustrating which
patterns are promoted by each process. The exciton-exciton
interaction term inducing scattering in the generalized Gross-
Pitaevskii equation (2) can be derived from a many-body action
written in terms of the exciton field vy (r,1):

Sint = g%/dl‘/dl‘hﬁx(r,t)r‘_ “4)

This expression is local both in space r as well as in time ¢,
which implies that the only scattering processes allowed are
those that simultaneously conserve energy and momentum. We
assume that, aside from the pump states resonantly injected
by the external lasers (w,,,K,, = 0) and (wp,.k,, =0), the
interaction allows the population of other states. These are
indicated as signal and idler states in Fig. 1(a). However,
here, in a simplified formulation, we assume that only signal
states with energy w, and different possible momenta k can be
populated:

Yx(r,t) = Z Piye iont 4 gmiont Z Se kT,
K

i=1,2

Assuming that only the pump states are macroscopically
occupied and perturbatively expanding in the additional signal
states leads, as explained in Sec. III, to the linear response
theory. This approximation scheme allows to ascertain the
stability of the pump-only solutions. However, by keeping in
the expansion of the action Sy all the terms in Sk, we can

describe the scattering processes illustrated in Fig. 1(c) which
are those responsible for the selection of specific patterns.
In particular, the second-order term

(2) _ * o
Sint = 8xPix Pox Z SkSZkbw,, +ap 20,
K

describes the quadratic process which populates the signal
energy ws; = (w,, + w,,)/2 and promotes the population of
opposite momentum states, i.e., stripe formation. This process
is allowed for both cases where either two pumps or a single
pump are present, the difference in this last case is that
scattering is only allowed when the signal states are at the same
energy as the pump. Because of energy conservation, third-
order processes are allowed only for single-pump instabilities,
i.e., for

3 _ *
St = &xPix E Sk, Sk25k35k|,kz+k35wm,wx-
ki.ka k3

Because of the system rotational symmetry, the signal mo-
menta K; have all to lie on the same circle, i.e., have the same
moduli. For this reason, —K;, k,, and k3 in the expression above
are arranged on a equilateral triangle and, thus, third-order
processes promote hexagonal patterns. Finally, the fourth-
order process

@ _ 8X Z . ok
Sim - 7 Sk1 Skz Sk_; Sk48k1+k2,k3+k4
ki.ko k3. Kky

populates pairs of opposite momenta states that, when arranged
at 90°, generate checkerboard, and, for any other angle,
produce rthombic patterns. Note that this argument does not
give any preference towards checkerboard patterns with per-
pendicular orientation over rhombiclike structures. However,
in the following, in our numerical simulations we will only
derive squared checkerboards.

If the two-pump frequencies w,, and w,, are tuned close to
the upper (UP) and lower polariton (LP) branches, respectively,
then the system parameters can be chosen so as to have
the signal energy o, = (w),, + w),)/2 relative to two-pump
processes resonant with the LP branch at a specific momentum.
The absence of third-order processes in two-pump parametric
scattering guarantees that other patterns than the hexagonal
ones, such as stripe and checkerboard, can be realized. In-
terestingly, there is an analogy between the pattern formation
mechanisms described for our typically nonequilibrium system
and the theory of weak crystallization, which is an equilibrium
theory and thus follows the principle of energy minimization.
This is briefly discussed in the Appendix. In the next section,
we describe the optimal choice of parameters that leads to a
large two-pump instability region.

B. Choice of parameters

_ Inabsence of interactions, the single-polariton Hamiltonian
Hj can be diagonalized in momentum space by rotating into
the lower (LP) and upper polariton (UP) basis,

<1ﬁLp(k)) _ ( cos O sin9k> <¢X(k)> 5)
Yup(kK))  \—sinf cosby) \Y(k)/)’
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TABLE I. Choice of the system parameters.

Case A Case B
mc (mo) 1073
Qr (meV) 10
S (meV) -5
w,, — wx,0 (MeV) 3.05
Ay (meV) —0.04
w,, — wx,0 (MeV) -9.0 —8.5
A,, (meV) —0.91 —0.41
kx = kc (meV) 0.3 0.4

to give the LP and UP branches (see top panels of Fig. 1):

wx,0 + Oc k \/[“)C,k — wx.0]® + Q5

The Rabi splitting Qg and the photon-exciton detuning §
determine the photon and exciton percentage that LP and UP
have along their dispersion, i.e., the Hopfield factors:

WLP,UP.k =

cos’ O 1
= = 5 1+
sin” G \/[wC,k — wx ol + Q3

We rescale each overall pump strength differently, according
to

wck — WX,0

N

fp (1) =sin6g Fp(r), fp,(r) = cosbpF,(r). ®)

This condition approximatively guarantees that, for a fixed
value of F,, each pump injects the same density of UPs at
wp, and LPs at w,,. This condition is only approximatively
guaranteed because, as soon as the pump strength is finite,
UPs and LPs are affected by different blue-shifts and thus
their photon fraction is not determined by the Hopfield factors,
which instead refer to the bare LP and UP dispersions.

We fix the Rabi splitting to 2z = 10 meV, a value available
in GaAs-based structures. For this value, £ = 1//mcQpr =~
0.58 um. The other microcavity parameters, such as § and
Kx,c, as well as the pump frequencies w,,, ,, are chosen so as to
maximize the region of the two-pump instability [see Fig. 1(a)].
Clearly, such a scattering is not allowed at positive detunings,
for which wip ¢ + wup,0 > 2wx 9. We thus choose a negative
value for the detuning § = —5 meV, which we will see in the
next section guarantees a large region of two-pump parametric
instability.

The pump frequencies w,, , are chosen so as to eliminate
the possibility of bistable behavior of each pump separately
[32]. When both frequencies are red-detuned just below the
UP and LP dispersions, i.e., when the pump detunings

Apl = Wp, — WyuP,0, Apz = Wp, — WLP,0 (9)

are negative, the populations of these states grow monotoni-
cally as a function of each pump intensity, a regime known as
optical limiter.

In the following, we consider two specific choice parameters
specified in Table I. As explained in the next section, by
carrying on a linear response approximation, we have deter-
mined that these parameters are optimal in order to observe
two-pump instabilities. Note that the chosen values of the

exciton and photon decay are larger than those in currently
available cavities, even more so for the state-of-the-art high-Q
microcavities which have been recently grown [33]. Clearly,
decreasing the quality of a cavity is not difficult to achieve. As
discussed in detail later on, we find that the chosen values of
the decays are optimal for having a large region of two-pump
instabilities and, at the same time, for guaranteeing a fast
convergence of two-pump patterns to a steady-state solution.

III. LINEAR RESPONSE THEORY

For homogeneous pumping F,(r) = F),, we can evaluate
the region of instability of the pump-only solutions by applying
a linear response approximation [34]. Here, the two-pump
states P;, (where i = 1,2 indicates the pump component and
o = X,C indicates the excitonic and photonic component) are
macroscopically occupied, while signal (S,,) and idler (/;,)
terms are treated perturbatively:

1//a(l',t) — e_iw”'th + e—iu),;ztpza
+e—iu)l,]t Z[lla,kei(k'r_wt) + S;kayke—i(ki‘—wt)]
k

_i_efiw,,zt Z[Sza’kei(k-rfwt) + Iz*a’kefi(k-rfwt)]'
k

(10)

The notation is the same one of Fig. 1(a): Pump 1 scatters
at higher energy w,, +  into the idler state I;, and at lower
energy w,, — w into the signal state S, while pump 2 scatters
at higher energy w,, + w into the signal state S, and at lower
energy w,, — o into the idler state /5.

Substituting this ansatz into the equation of motion (2),
one obtains, at zeroth order, i.e., neglecting the signal and
idler contributions, four mean-field equations for the pump
states [35]:

) Q

(wx,0 — wp, —ikx +G2)Px + TRPIC =0,
. Qp

(w0 — wp, — ikc) Py + B3 Pix+ fp, =0,

. Qg
(a)X’() — (,()p2 — IKX + G21)P2X + TPZC == 05

, Q
(wc.0 — wp, — ikc) Py + TRPZX + £, =0, (11)

where G;; = gx(|Pix|* + 2| Pjx|*). The same equations have
been already solved in Ref. [35] to demonstrate that two
pumping lasers can lead to tunable multistable hysteresis cycles
with up to three stable pump-only solutions. Here, in this work,
we want to avoid multistable regimes as they might compete
with the two-pump instability described in Fig. 1(a). For this
reason, we choose negative values for the pump detunings (9),
a necessary condition to guarantee the optical limiter regime.
In fact, as later shown in the bottom panels of Figs. 3 and 4, for
our choice of parameters A and B (see Table I), the pump states
Pi, grow monotonously as a function of the pump strength F,.
In particular, in these figures, we plot the total exciton density
in the pump states ' = | Pix|> + | Pax|%.

Expanding (2) to the first order in the signal and idler terms,
we can carry on a linear stability analysis of the pump-only
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solutions of (11): the formalism is the same as the erratum
of Ref. [36]. In this expansion, one only keeps the terms
oscillating with frequencies w,, & w, while terms oscillating
with frequencies 2w), — w,, £ w are neglected. As a result,
one obtains the eigenvalue equation Lx Wy = oWy (diagonal
in momentum space) for the eight-component eigenvector

T
W' = (Iix k. lick s Sixk,S1c,k » S2x k> 920,k » 12Xk, T2c k),
——— — —

)4 h )4 h

where we have explicitly indicated the particlelike (/14 x
and S, k) and holelike (S, and I, x) components. The
Bogoliubov matrix Ly,

Lk ]Lk12>
L = s 12
) (Lkzl Lko» (12)

can be decomposed in terms of the pump index block-diagonal
terms

Eix x % gXPzzx 0
% Eicx 0 0
Lkii * 2 ' * Qr ’
—8xPx 0 —Eix 72
Q
0 0 _TR Ei*C,k

where
tot .
Eixx = wxk — wp, +2gxny — ikx,
Eicx = wck — @y, — ikc,
tot __

and ny' = |Pix|? 4 | Px|?, and in terms of the off-diagonal
terms

PxPx 0 PxPix 0
L o 0 0 0
ki#j = <8X —PS(P;X 0 —P;;(P]X 0

0 0 0 0

The eigenvalues of L give the eight branches for the complex
spectrum of excitation a)l(("). Then =1, ...,8 branches can be
labeled by the pump i = 1,2 index, the excitonic and photonic
index o = X,C, and the particle-hole £ = p,h index. In fact, in
the k — oo limit, one recovers the rescaled exciton and photon
dispersions and thus one can associate to each of the eight
branches one specific value of these three indices according to

tot
= 0y | wx k + 2gxl’l)(() — Wy

2
—Ui\/(zgxn?(”)z + <—wpl 5 wPZ) — ikx,

where w; = (v, + wp,)/2 and

lim w,

(i,X,0)
k—o00 k

>~ oy(wck — wp,) — IKc,

where the sign o, = % corresponds to the particle and hole
branches £ = p,h, respectively and the sign o; = =+ refers to
the pump index i = 1,2. These expressions have been derived
by neglecting the pairing terms between the particle and hole
degrees of freedom and thus are approximate and only valid at
low pump powers. Note, however, that each branch is in general

Re(w) [meV]
| |
e hewb B

e 2
~

_
6

g DA\
[

Im(w) [meV]
=

| |
e e
o) L

N
Y —

S
Q
3
K &
~ Ho e wpi * wp
4 2 0 2 4 4 2 0 2 4
k [um™'] k [um™']

FIG. 2. Upper panels: the real part of the excitation spectrum
Re(wl(f’”’l)) [thin (black) lines], where its eight branches can be
labeled by the pump i = 1,2 index, the excitonic and photonic index
a = X,C, and the particle-hole £ = p,h index (see text). The real part
of the simplified particlelike excitation spectrum, resulting from the
diagonalization of (13), where we have neglected the particle-hole
coupling terms, have been plotted as thick (gray) lines. Middle
panels: imaginary part of the spectrum of excitations Im(a)f: by Gray
shaded regions indicate the unstable models for which Im(wl((i 'M)) >
0. The (red) vertical dotted lines mark the momenta of the most
unstable modes. Bottom panels: the interaction-renormalized LP
and UP dispersions [thick (gray) lines] show that, at finite values
of the pump strength, the interaction between the two-pump states
in the particle-particle channel induces a blue-shift and a splitting
of both the LP and the UP bare dispersions [(black) thin lines]. The
dashed (cyan) line indicates the energy of the signal o, = (w), +
wp,)/2 expected for the two-pump instability, while the dotted-dashed
(green) line indicates the pump-1 energy w,,, at which one can have
scattering at large enough values of F), (right panels). In all panels, the
choice of parameters corresponds to the case A described in Table I,
while the pump strength has been fixed to /gxF, = 2.79 meV>/2
(left panels) and to ,/gx F), = 11.18 meV3/? (right panels).

characterized by the “particle-hole” symmetry a)(fl)(

which is a consequence of the symmetry of L.

The real part of the excitation spectrum Re(w:(”a’a) gives
information about the renormalization of the LP and UP bare
dispersions induced by the interaction between excitons. We
plot the real part of the entire spectrum with its eight branches
in the top panel of Fig. 2 [thin (black) lines] for two values of the
pump power; the system parameters for this figure correspond
to the case A described in Table I. We can observe that the
“particle-hole” symmetry is satisfied. Further, one can observe
that there are intervals in momenta for which particlelike

_ (n)*
= -y ,
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branches “stick together” with holelike branches. This is due to
the anomalous terms in the Bogoliubov matrix characterizing
the coupling between the particle and hole degrees of freedom
which induce a nontrivial (i.e., different from —«x and —«¢)
imaginary part of the spectrum Im(wl(("a’z)) (middle panel of
Fig. 2).

While crucial for determining the imaginary part of the
spectrum, as discussed later, these anomalous terms can be
safely neglected if one needs a simplified yet approximated
information about the interaction-induced blue-shift of the LP
and UP dispersions. To show this, we consider a reduced ver-
sion of the Bogoliubov matrix where we neglect the coupling
terms between the particle and hole degrees of freedom and
consider the particle-particle components only:

ElX,k % 2gXP1XP2*X 0
. 2 E 0 0
L= : o TIek 0 | 13
2gx Pox P 0 Eyx 5
Q
0 0 TR E2C,k

In the top panel of Fig. 2 we plot as thick (gray) lines the real
part of the four corresponding particlelike branches obtained
by diagonalizing L. Note that the imaginary part of the
eigenvalues of Iy consists solely of the decay terms, i.e., either
—kx or —kc, depending on the branch one refers to. From
these plots we can appreciate that, as soon as the external
pumps induce finite values of both pump fields P, i.e., as
soon as F, # 0, the interaction between the two-pump states
in the particle-particle channel 2gx P;x P,y induces a splitting
of the LP and UP branches, resulting in a total of four particle
branches. In addition, each branch is blue-shifted because
of the 2gxn" term in the diagonal components E; , of the
Bogoliubov matrix. Note that, according to the definition (10),
the frequency w characterizing the excitation spectrum is the
frequency measured with respect to either pump frequency w,,
or w,,. Thus, in order to characterize the splitting and blue-shift
of the LP and UP bare dispersions [thin (black) lines in the
bottom panels of Fig. 2] induced by the interaction, we set
to zero the terms in w), and w,, in the diagonal components
E,,, of the simplified Bogoliubov matrix Ly (13) and plot

the corresponding eigenvalues cbl((' ) in the bottom panels of

Fig. 2 as thick (gray) lines. Thus, we can quantify the splitting
and blue-shift of the bare LP and UP modes. In addition,
we can describe how both splitting and blue-shift grow when
increasing the pump power F), (from the left to the right panel).

This estimate of the interaction-renormalized dispersions
allows to deduce the approximate values of the expected mo-
menta for both two-pump as well as single-pump instabilities.
To this end, in the bottom panels of Fig. 2 we plot as a
dashed (cyan) line the value of the two-pump signal energy
ws = (wp, + wp,)/2. Because of the splitting of the LP mode,
we obtain in this way two values of the expected two-pump
instability momenta. While at low enough pump powers (as
for the left panels of Fig. 2), the blue-shift of the LP is not
large enough to get any LP state at the pump-1 energy w,,
[dotted-dashed (green) line], for big enough values of F),
(right panels) the blue-shift of at least one split LP branch
is large enough to allow single-pump parametric scattering.
As discussed next, the values obtained this way for both

two-pump and single-pump instability momenta are close to
those obtained evaluating the imaginary part of the spectrum
and the most unstable modes.

An additional and better estimate of the momenta at which
we expect two-pump and single-pump instabilities to occur
can be obtained by evaluating the most unstable modes. The
pump-only solutions of the mean-field equations (11) are stable
as far as the population of signal and idler modes in (10)
does not grow exponentially in time, and thus the spectrum
of excitations satisfies Im(a)l(("a’e) ) < 0. When this condition is

not met and there are values of k for which Im(w{"*") > 0
for at least one of the branches, the pump-only solutions
are dynamically unstable towards the exponential growth of
these modes. The imaginary part of the excitation spectrum
is plotted in the middle panels of Fig. 2 for two different
values of the pump strength. As observed previously, there
is a trivial contribution to the imaginary part of the spectrum
coming from the decay terms: i.e., at large values of momenta,
limy_ o0 Im(a)l((’ ,a.Z)) = —K, (in the plot we have chosen kx =
«c). However, for smaller values of momentum, the anomalous
terms in the Bogoliubov matrix characterizing the coupling
between the particle and hole degrees of freedom induce a
nontrivial k-dependent contribution to Im(a)g ’D"Z)). The region
in momentum for which Im(wg’“‘z)) > 0 characterizes the
region of instability of the pump-only solutions. In Figs. 3
and 4, we plot the regions of instabilities as a function of
momentum & and pump strength F,. Because of the interaction
between the two-pump states and thus the splitting of the
LP and UP branches previously described, these regions of
instability are characterized by separate regions or branches.
Note that larger decay parameters «, imply smaller instability
regions within the linear response analysis. Thus, even though
it might seem desirable to have small values of «, so as to
obtain large regions of instability, numerically, convergence of
both two-pump and single-pump patterns occurs more quickly
for larger values of k. The choices reported in Table I as cases
A and B are a compromise between these two tendencies.
The most unstable modes, i.e., those modes for which
Im(a)(i’“'g)) is maximum as a function of k, provide information
k
about which mode is growing faster and, thus, about the
expected momentum of the instability pattern. In the middle
panels of Fig. 2 we indicate the most unstable modes as dotted
(red) lines. The evolutions of the most unstable mode as a
function of the pump strength are plotted also as dotted (red)
lines in the top panels of both Figs. 3 and 4. There is a good
agreement between these values of instability momenta and
those previously obtained by estimating the renormalized LP
and UP dispersions. Using the same style (and color) scheme
of the bottom panels of Fig. 2, we plot in Figs. 3 and 4 as
(cyan) dashed lines the expected momenta for the two-pump
instability at w; = (w,,, + ®),)/2 and as (green) dotted-dashed
line those for the single-pump instability at @), . Note that, as a
consequence of the assumed isotropy of the exciton-exciton
interaction, the spectrum of excitation is also isotropic in
momentum, i.e., wl((”“’é) only depends on k = |k|. Thus, the
most unstable modes only give information about the ring in
momentum at which the instability can occur, but not about
its direction. In other words, one cannot differentiate between
stripe, checkerboard, or any other pattern. In order to obtain
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FIG. 3. Top panel: regions of instability of the pump-only so-
lutions in the momentum k and pump strength F, space. The
contour plot represents the region of dynamical linear instability
Im(a)l({i ) ) > 0. The estimates of the expected momenta for the
two-pump instability at w, = (w,, + w,,)/2 [(cyan) dashed line] and
for the single-pump instability at w,, [(green) dotted-dashed line]
are obtained as described in the bottom panels of Fig. 2. The dotted
(red) lines indicate the most unstable modes as in the middle panels
of Fig. 2: filled (red) dotted lines are those with the highest value of
Im(a)l({i 6 ) > 0. Symbols are the results of numerical simulations for
finite-size pump spots as described later in Sec. IV. Bottom panel:
evolution of the total excitonic population n§' of the pump states as a
function of the rescaled pump strength. For both panels, parameters
are fixed as in the case A described in Table I. In this case, there is an
interval in pump strength for which two- and single-pump instabilities
compete against each other.

this information, we have to carry on a full numerical analysis,
as discussed in the next section.

Finally, we note that in Fig. 3 (parameter choice A) there is a
region in pump strength for which both two- and single-pump
instabilities are allowed and compete against each other. As
discussed in the next section, this competition between insta-
bilities hinders the numerical convergence of the dynamics
to a steady state. For this reason, the parameters of case B are
chosen so as to eliminate the regions of single-pump instability,
as shown in Fig. 4. The absence of competition between two-
and single-pump instabilities leads to an easier convergence
of patterns in the numerical simulations, which is what we are
going to discuss in the next section.

IV. NUMERICAL ANALYSIS

As already mentioned in Sec. ITA, the linear response
analysis contains only the quadratic scattering processes

3.5

3.0

2.0

® Stripe
* Hexagon
+ Chequerboard

® Broaden chequerboard

gx n¥' [meV]

10

\ex F, [meV]*?

S N B QX O N

FIG. 4. Top and bottom panels are the same as in Fig. 3 but for
the system parameters fixed as in the case B described in Table 1. The
parameters have been fixed so as to eliminate the region of instability
corresponding to single-pump parametric scattering at the pump-1
energy wy, . As discussed later, the absence of competition between
two- and single-pump instabilities leads to an easier convergence of
stripe and checkerboard patterns in the numerical simulations.

[see Fig. 1(c)]. As such, it allows to ascertain the stability
of the pump-only solutions, and thus it provides us with
the information about the region of system parameters for
which we expect single- and two-pump instabilities to occur.
However, a linear response analysis does not permit to deduce
the specific patterns associated to each instability. For this
reason, we carry on here a full numerical analysis of the
generalized Gross-Pitaevskii equation (2) for finite-size pump
spots (1). In particular, in order not to break the original
rotational symmetry when both pumps are shined at normal
incidence, we consider circularly symmetric smoothed top-hat
profiles with a full width at half-maximum (FWHM) o, ~
34 um and a strength F, (evaluated at the maximum value of
the pump profile in real space). Note that, as already done for
the linear response theory, also in the numerical simulations
we rescale the two pump strengths according to (8) and thus
we have a single pumping strength parameter F), to be varied.
In order to be able to compare the numerical results with those
obtained from the linear response theory, we have chosen the
same system parameters as in Table I, and, later on, we will
report results for both parameter choices of cases A and case B.
Equation (2) is numerically solved on a two-dimensional (2D)
grid of N x N = 28 x 2% points and a separation of 0.32 zm,
ina L x L =81 um x 81 um box, by using a fifth-order
adaptive-step Runge-Kutta algorithm. We have checked all our
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TABLEII. Typical times required to reach a steady-state solution
tw as a function of the white-noise variance o2 of the initial

conditions (14). These data refer to the system parameter choice B of
Table I and correspond to the checkerboard pattern in Fig. 6.

02 (meVpum?) 001 006  0.14 144 1440

Fest (ns) 473.4 220.9 99.9 42.1 36.8

results are converged with respect to the temporal and spatial
resolution.

We impose white-noise random initial conditions with zero
mean (Y, _y c(r,t = 0)) = 0 and variance 0.3 :

noise*

ex (W@, 0yl (r,0) = 02, Suwd@® —1).  (14)

This is a standard procedure done in order not to bias the
steady-state solution selected by the dynamics. At the same
time, random initial conditions introduce a small explicit
breaking of the translational and rotational symmetries. This
helps the numerics evolving towards solutions for which both
symmetries are spontaneously broken, only when the system
parameters are such that the symmetric pump-only solution is
unstable. We let the dynamics evolve until a steady state, if any,
is reached and select only those solutions that do reach a steady
state. We have checked that none of our results depend on the
choice of the initial conditions. We find that the specific value
of the noise variance o2, only affects the typical time t the
system needs to reach a steady state. In particular, larger values
of 0.2 typically lead to a faster convergence in time, as shown
in Table II. This tendency of faster convergence in time for a
stronger noise in the initial conditions is valid only for values
of o2, . above a certain threshold. For a weaker noise, 02, <
0.01 meV m?, we do not observe a monotonic behavior of 7.
Finally, note that the orientation of each pattern is randomly
selected. By fixing the system parameters and choosing a
different realization of initial conditions, the system evolves
exactly to the same pattern but with a different orientation.

As previously observed in Sec. III, larger values of the
decay parameters k, tend to stabilize pump-only solutions
and reduce the region of instability towards spontaneous
pattern formation. However, from a numerical point of view,
choosing too small values of the decay parameters hinders the
stabilization of a determinate pattern to a steady-state regime.
A compromise between these two behaviors has led us to the
optimal values of «, reported in Table I.

Once the parameters are fixed as either in case A or case
B of Table I, we scan through different values of the pump
strength F, and let the dynamics evolve until a steady state is
reached for ¢ > fs. As shown in Figs. 3 and 4, at either very
low or very high pump powers, the only stable solutions are
those where only the two-pump states at energies w,, and wp,
are populated, and thus no pattern is generated. However, at
intermediate pump strengths, we observe that the pump-only
solutions are unstable towards the formation of either stripe,
checkerboard, or hexagonal patterns. By filtering the emission
at different energies, we will later be able to ascribe stripes
and checkerboards to two-pump instabilities at an energy
w; = (wp, + wp,)/2, while hexagonal patterns to one-pump
instabilities only at an energy w,,.

F =6.48 F =2.79
e 1 um']I . .
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\ - \ k3
-
F,=6.70 F,=4.92
L ]
. -
- s o ¢
. .
L ]
F,38.61 F,=5.37
a P
£l -
< -
.
F,=16.77, F,=6.71
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-
[ ] 3
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F=44.72 F=44.72
e @
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FIG. 5. Photon emission |¢.(k,?)|? in reciprocal space k (xm~!

units) in the steady-state regime ¢ > f.. System parameters are those
of case A of Table I for the left column and case B for the right
column, while the rescaled pump strength F, = JexF, (meV?3/?
units) increases from the top panels to the bottom ones as indicated.

Typical stable steady-state patterns for different values of
the pump strength are shown in Fig. 5, where we plot the
full photon emission |¥(k,#)|* in momentum space k at
a fixed time ¢ > fi. Note that, plotting the emission at a
given time implies an integration in energy, i.e., ¥(k,t) =
f dw e’ Y(K,w), and thus it includes the emission from all
possible energy states, including both pump states as well as
signal and idler states all emitting at different energies. In
fact, we can appreciate that all the patterns in Fig. 5 include
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emission around k = 0 due to both pump states. Emission
is broadened in momentum space because of the pumps
being finite size; note that in some panels the broadening
appears falsely increased because of the contour plot chosen
interval. In addition to the emission at zero momentum, the
emission at finite momentum characterizes different patterns.
We can clearly distinguish in the patterns of Fig. 5 a dominant
stronger emission on a momentum ring of radius kpgimary and,
in some of these panels, we can appreciate a secondary weaker
emission on a different momentum ring Ksccondary- AS analyzed
later, the origin of primary and secondary patterns can be
easily explained by filtering the full emission at different
energies.

For each pattern at a given pump strength F,,, we extract the
value of the primary pattern momentum Kpimary and we com-
pare these numerical results with the results obtained within the
linear response theory in Figs. 3 and 4. Here, the results from
the numerical analysis are plotted as symbols. We can observe
that stripe patterns occur at either low pump powers (as the
panels of Fig. 5 corresponding to F, = 2.79 meV¥/?, F, =
8.61 meV*2, and F,, =6.71 meV3/€) or high pump powers
(as for F p, =44.72 meV?/?). Instead, checkerboard patterns
occur only at low pump powers (as for ), = 4.92 meV*/? and
F, = 6.70 meV*?), including what we indicate as “broaden
checkerboards™ at F,, = 6.48 meV>/? and F,, = 5.37 meV>3/2.
It is evident in both Figs. 3 and 4 that the primary pattern
momentum Kpimary We extract from the numerical simulations
agrees extremely well with the lowest momentum branch of the
most unstable modes extracted from the imaginary part of the
excitation spectrum derived within the linear response theory.
If no single-pump instability is allowed, as it happens for the
parameter choice B of Fig. 4 and the right column of Fig. 5, the
primary pattern momentum Kprimary decreases monotonously
as a function of the pump strength F,. Here, there is no
clear transition from stripe to checkerboard patterns, rather
both instabilities alternate as the pump strength increases.
However, if single-pump instabilities are allowed as for the
parameter choice A of Fig. 3 and the left column of Fig. 5,
at intermediate pump strengths, we observe the formation of
hexagonal patterns. By filtering the emission in energy we can
show that hexagonal patterns only occur at the energy w,, of
the pump which is tuned closer to the UP. Here, single- and
two-pump instability compete against each other.

In order to show that different patterns can appear because
of scattering processes at different energies, in Figs. 6, 7, and
8 we filter in energy the emission of typical checkerboard,
stripe, and hexagonal patterns, respectively. To do this, in all
these three figures we plot, in the top left panel, the photon
spectrum integrated over the momentum angle Z(k,w) =
f d(phhc(k,a))lz, where k = (k,¢), versus the rescaled energy
o — wx ¢ and the absolute value of momentum k. On the right
top panel we instead plot the momentum-integrated photon
spectrum Zi (@) = f dk|wc(k,a))|2. Here, we can observe that
the emission in energy is deltalike peaked at energies equally
spaced by (w),, — w),)/2: aside from the strong emission at
the two-pump energies w,, and w,,, we can observe the
emission at the signal energy w; = (w,, + w,,)/2 whichis the
energy characteristic of two-pump instabilities. In addition,
we can appreciate a weak emission at one idler energy w;, =
(Bwp, — wp,)/2, above the pump 1. The other idler energy
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FIG. 6. Top left panel: photon spectrum integrated over the mo-
mentum angle Z(k,w) = [ do|y(k,¢,w)|* [(gray) contour plot]. The
LP and UP dispersions renormalized and split because of interaction
effects are plotted as (green) solid lines: these are obtained by
diagonalizing the simplified Bogoliubov matrix (13). Top right panel:
momentum-integrated photon spectrum Z;, (w) = f dk|1//C(k,g0,a))|2.
The four bottom panels represent the photon emission momentum
(left) and space (right) profiles filtered at the energy of the signal
0, = (@), + ®p,)/2 [t0p left [Ye(k,w,)? and top right |Ye(r,o,)]
and at the energy of the pump-1 ), [bottom left [{c(k,w,,)|* and top
right |c(r,w,, )|*]. System parameters are fixed to case B of Table I
and the pump strength is F, , =492 meV¥/2,

w;, = Bwp, — wp,)/2, below pump 2, is extremely weakly
populated because far from being in resonance to both the
LP and the UP renormalized dispersions. This also happens
to the additional satellite states equally spaced at a distance
(w])] - wl’z)/z'

In all three Figs. 6, 7, and 8, in the bottom four panels,
we filter the emission in energy at both the signal w, as well
the pump-1 energy w,, and plot the filtered emission both in
momentum [left panels [Ye(K,wy)|? and [k, w), )|%] as well
as in space [right panels |/c(r,w;)|? and |wc(r,a)pl)|2]. We
observe that, for both cases of two-pump instabilities leading
to checkerboards (Fig. 6) and stripes (Fig. 7), primary and
secondary instabilities correspond to the same pattern even if at
different absolute values of momenta and kprimary < Ksecondary-
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FIG. 7. Same as Fig. 6 for system parameters as case A of Table [
and for a rescaled pump strength F, = 8.61 meV>/2,

However, for single-pump instabilities such as the one in
Fig. 8, we observe that primary and secondary patterns are not
only characterized by a different absolute value of momentum
and that Kprimary > Ksecondary, 1N addition they correspond to
different pattern. The stronger emission in Fig. 8 is at the
pump-1 energy and describes a hexagonal pattern with kpgimary-
From the spectrum plotted in the top left panel of Fig. 8, we
can appreciate that Kpimary is in very good agreement with
the estimate we get from the renormalized LP dispersion
(green) solid line. The emission at the signal energy w; is
instead weaker and the filtered emission shows a distorted
checkerboard with some weaker emission along the entire
momentum ring of radius Kecondary-

A. Phase freedom

To conclude our study, we want to establish the phase
freedom of two-pump instabilities. To do this, we first carry on
an analytical study valid for homogeneous pumping. Later, we
compare our analytical results with the numerical simulations
for finite-size pumps.

Let us start from stripe patterns. In this case, the expansion
(10) in signal (S;,) and idler (/,,) terms is limited to two
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FIG. 8. Same as Fig. 6 for system parameters as case A of Table I
and for a rescaled pump strength F, = 16.77 meV>/2.

opposite momentum states +k:

_ —lwp t —iwp,,t
1l’oz,slripe(r’t) =e " Ploz te 2 P2a
—iwgt ik —ik-
+e 0] [Sikael T + S2ae 1 ]‘]

+ efzw;]tllaefzk-r + e*t(uiz112>k0tezk-r7 (15)

where the signal energy is w; = (wp, + @p,)/2, while the two
idler energies are w;, = Bw,, — wp,)/2 and w;, = Bw,, —
wp,)/2. By substituting the expression for the stripe fields (15)
into the equations of motion (2) and expanding to all orders, we
can infer the constraints that have to be satisfied between the
pump phases ¢, , which are fixed externally and the signal ¢, ,
and idler ¢;, , phases, where P,, = | P, |e'%", S, = |S,,|e'®,
and I,, = |I,,|e'% . Note that the & = X,C components have
their phase locked to each other because of the Q2 coupling in
the equations of motion (2). We obtain that the scattering term
(4) imposes only three independent constraints:

¢P1 + ¢Pz = ¢sl + ¢sz,
2¢[71 = ¢X1 + ¢i17
2¢pz = ¢Sz + ¢i2

245309-10



SPONTANEOUS PATTERNS IN COHERENTLY DRIVEN ...

PHYSICAL REVIEW B 97, 245309 (2018)

for the four phase terms ¢, , and ¢;,,. In fact, the constraint
for the idler phases ¢,, + ¢,, = ¢;, + ¢;, can be obtained by
the above equations and it is not therefore independent from
them. Thus, out of the four signal and idler phases, the system
is free to spontaneously choose one relative phase only, e.g.,
either the relative phase between the two signals ¢;, — ¢, or
the one between the two idlers ¢;, — ¢;,, and thus the stripe
patterns are characterized by the spontaneous breaking of a
U(1) phase symmetry.

We can carry on a similar analysis for the checkerboard
solution, where we have now two pairs of opposite momenta
states =Kk; and +ko, resulting into four signal states S ; ;3 4,
(see notation of Fig. 6) and four idler states, two of which (’I 1 4a)
at the energy w;, and the other two (1, 3,) at the energy w;,:

I/Ia,check(r’t)
—iwp, t —iwp,t —iwst
=e ' P,t+e P, +e '

* ikpr —iky-r * ikyr —ikyr
X [See™ " + Syem T+ S50 A Sy e

—iwit —ik;- ik,
+e la)/l [Ilae l ]r+]:ael 2[‘]

+ e—iu),'2l[12ae—ik2»r + I:;kaeikll‘]. (16)

Substituting into the equations of motion (2) we now obtain
the following independent equations:

Gpr + Op, = b5, + &,
Gpy + Gp, = b5, + &,
2¢p, = b5 + iy
2¢p, = ¢, + ¢y,
20, = b5, + birs
20, = ¢y, + ¢y

We get six constraints for eight phases. The system thus
spontaneously chooses two phases and is characterized by the
spontaneous breaking of a U(1) x U(1) symmetry.

The phase freedom of hexagonal patterns due to single-
pump instabilities was already derived in Ref. [6]. Here, one has
asingle-pump field oscillating at the energy w,, and with phase
¢p, and six signal states, at the same energy as the pump, which
we distinguish with anindex 4, with j =1, ...,6 (we assume
the six signal states are arranged clockwise, see notation of
Fig. 8). Now, the constraints for the phases read as

2¢[7 = ¢/’lj +¢hj+37 ¢p +¢/’lj = ¢/’lj,1 + ¢hj+1‘

One can easily check that out of these 12 equations only 4 are
independent, thus again giving a U(1) x U(1) phase freedom,
as in the case of the checkerboard pattern.

In order to confirm the phase freedom derived analytically
for homogeneous pumping, we extract the signal phase profiles
from the finite-size numerical results. Let us refer in particular
to the case of the checkerboard pattern of Fig. 6, yet the same
procedure can be applied to any pattern. We filter the emission
at the signal energy in momentum space, evaluating ¥c(k, wy).
The amplitude of this field, for a checkerboard pattern, is
peaked at four momenta k| » 3 4, all arranged on the same ring

3 [ q)'sl,run'l L B ¢'Sz, run’l 1€

¢'S]+ ¢s3', run I’

'¢S4, runl 7 ][

3 [ ¢Is7’ run 2

-10 0 10 -10 0 10 -10 0 10
Xy [um] Xy [nm] Xy [um]

FIG. 9. First two columns: extracted signal phase profiles
¢5155,(r) of the four signal states for the same system parameters
leading to the checkerboard pattern of Fig. 6 and for two different
noise realizations of the random initial conditions (14) (labeled as run
1 and run 2). In particular, we plot the cut at x = 0 vs y [(red) solid
line] and the cut at y = 0 vs x [(blue) dotted line]. Third column: we
plot the sums ¢y, (r) + ¢y, (r) and ¢, (r) + ¢y, (r) for the two runs in
order to demonstrate the phase locking between them independently
on the run.

four states can be extracted by evaluating
Ve (r.w)le”s ™

=Y Yok, (kew — [k — ki )e " T (17)
k

where we have chosen a momentum k¢, =~ 0.7 m,bfl for
filtering the emission in momentum around the four signal
momentak;—p 4. We plot the phase profiles ¢;,_,

and ¢,_, ,(x =0,y) of the four signal states in Fig. 9 for the
same system parameters leading to the checkerboard pattern
of Fig. 6 and for two different noise realizations of the random
initial conditions (14) (run 1 and run 2). Even though we
have subtracted in Eq. (17) the leading current k; to each
phase profile, we can observe in all the panels of the first
two columns of this figure that singularly all four phases
@5, (r) display a residual finite current j,, (r) = =V, (r) # 0
due to the system being finite size. However, we find that
these residual currents are pairwise equal and opposite, i.e.,
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Js () 4+ js, () = 0 = i, (r) + js,(r), so that the phase sums
@5, (r) + ¢5,(r) and @y, (r) + ¢, (r) shown in the panels of
the last column are almost homogeneous in space. Further,
we observe that ¢, (r) + ¢, (r) = ¢, (r) + ¢, (r) within the
same run, but also between different runs, i.e., for different
random initial conditions. The fact the sums of these phases
give the same value independently on the run we consider,
while the phase of each singular phase ¢ (r) is different
for different runs, demonstrates the phase locking between
opposite momentum states, as well the spontaneous election
of their phase difference, i.e., the pattern phase freedom.

The specific value of the phase sums ¢y, (r) + ¢, (r) =
@5, (1) + ¢5,(r) would be ideally zero, as they are equal to
the sum of the two-pump phases. However, as the Fourier
transform from time to frequency is evaluated numerically
over a finite interval of time once the system has evolved
long enough to reach a steady state, the filtering process in
energy produces a fictitious numerical accumulated phase. This
does not, however, influence our main conclusion about phase
locking and phase freedom.

Note that, as we have extracted the signal state phases, we
could similarly extract the idler phases so as to numerically
check the phase locking between ¢;, + ¢;,, ¢s5, + @iy, b5, +
¢i,, and ¢, + ¢;,. However, the population of the idler states,
particularly the ones at an energy w;, = 3w, — w,,)/2 below
the pump-2 energy and below the LP dispersion, is so low to
render the corresponding phases quite noisy and thus difficult
to analyze. We have numerically extracted the phases of both
stripe and hexagonal pattern and reached a similar conclusion
about phase locking and phase freedom.

Finally, we would like to discuss here the experimental
implications of the pattern phase freedom characterizing our
proposed setup. Similarly to the optical parametric oscil-
lator regime, phase freedom can be indirectly ascertained
experimentally by questioning the persistency of flow via a
pulsed Laguerre-Gauss beam as a diagnostic for superfluid
behavior (see Refs. [24,25]). At the same time, if a vortex
of, e.g., charge m = 41 is imprinted on one of the signal
states (say S; of Figs. 6 and 7), then phase locking can be
demonstrated by showing that the associated idler state (i.e.,
S5 for a checkerboard in Fig. 6 and S, for a stripe in Fig. 7)
spontaneously develops a vortex of opposite charge m = —1
at the same position. Further, the U(2) phase freedom of the
checkerboard pattern implies that, even if the states S; and S3
are characterized by a vortex of different charge, the other two
signal states S, and S4 keep their phase free of vortices, and
thus are characterized by an independent phase.

In addition, our setup offers an interesting advantage over
the broadly studied case of the optical parametric oscillator
regime. In both cases, direct interference between one of the
pumping lasers and one of the signal states cannot be performed
because they emit at different frequencies. However, in our
setup, signal states all emit at the same frequency. Thus, in
the checkerboard configuration, the relative phase between
the state S; and S, (see Fig. 6) can be measured by direct
interference between the two signals after their emission is
filtered in momentum.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we analyze the occurrence of Turing patterns
in a polariton microcavity which is resonantly driven by two
external lasers simultaneously pumping both lower and upper
polariton branches. The pumps are shined at normal incidence
so as not to explicitly break the system translational and
rotational invariance. We show that, by increasing the intensity
of both pumps, can lead to parametric scattering instabilities to
signal states at finite momentum, thus spontaneously breaking
the system translational and rotational symmetries. For two-
pump instabilities, pumps and signals are at different energies,
and we show that stripe and checkerboard patterns become
the dominant steady-state solutions because cubic parametric
scattering processes are forbidden. This contrasts with the case
of single-pump instabilities, for which parametric scattering
occurs at the same energy as one of the two pumps. In this
case, it was already shown that hexagonal patterns are the most
common instabilities [9-13]. We demonstrate that our setup
allows two-pump instabilities to compete against single-pump
instabilities, and that the system can simultaneously undergo
different instabilities at different energies.

Our pumping setup has been previously suggested as a pos-
sible scheme for the generation of entangled multiple polariton
modes [22]. In that work, it was assumed that parametric
scattering would generate two signal states arranged into a
stripe configuration. Taking into account the spin-polarization
degrees of freedom, this would generate a total of four signal
states, i.e., a square-type cluster state, for which four-mode
entanglement was demonstrated. In our work, we analyze the
nature and stability of different patterns that can emerge from
two-pump instabilities. Already without taking into account
the polarization degrees of freedom, we show that we can
tune the system parameters so as to realize both stripe and
checkerboard patterns. This would allow the realization of both
four- and eight-mode polariton entanglement if the polarization
degrees of freedom would be taken into account.

Further, by using the pump power as a tuning parameter,
we have demonstrated that we can control the transition from
stripe to checkerboard patterns. While stripes are characterized
by the spontaneous breaking of a U(1) phase symmetry, in
the case of checkerboard patterns, we show that the phase
symmetry spontaneously broken is in the U(1) x U(1) class.
We can thus tune the system across the nonequilibrium phase
transition between these two states characterized by a dif-
ferent symmetry class. This opens intriguing questions about
the critical behavior of this nonequilibrium two-dimensional
system, and the nature of the transition from the normal
phase to the ordered phase where the phase symmetry is
spontaneously broken. It has been recently shown [27] that
polaritons driven into the optical parametric oscillator steady-
state regime undergo a transition from a normal to a superfluid
phase [24] that is of the Berezinskii- Kosterlitz-Thouless type.
The optical parametric oscillator regime is characterized by
the spontaneous breaking of a U(1) phase symmetry. For this
parametric scattering instability, it was shown that despite the
presence of a strong drive and dissipation, the transition from
the normal to the superfluid state is governed by the binding
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and unbinding of vortex-antivortex pairs, sharing similarities
to the equilibrium counterpart transition. It is therefore natural
to ask whether our stripe pattern undergoes the same transition
and to investigate the nature of the transition in the case of
checkerboard patterns. These would be the subject of future
studies.

To conclude, we would like to observe that our results apply
to the case of clean microcavity heterostructures, where the
effect of disorder both for photons and excitons is negligible.
In our case, the broadening of exciton and photon lines is
dominated by the homogeneous component, i.e., losses, rather
than the inhomogeneous one. Studying the implications of
disorder in pattern formation clearly goes beyond the scope
of this work. Nevertheless, we can anticipate that sample
disorder can provide a weak breaking of spatial homogene-
ity which might help stabilizing the orientation of stripe
and checkerboard patterns and thus help their experimental
observation.
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APPENDIX: ANALOGY WITH WEAK CRYSTALLIZATION

It is interesting to note that there is some analogy be-
tween the spontaneous appearance of a determined pattern
in polariton parametric scattering and the theory of weak
localization [37,38]. The attempt to study the phase transition
from a liquid to a crystal is notoriously a hard problem
to analyze which goes back to Landau, as it implies the
comparison between an infinite set of possible crystalline
and quasicrystalline structures. However, a Ginzburg-Landau
expansion in the density modulation order parameter ¥ (r) can
be applied when the crystallization transition is weakly first
order, greatly simplifying the problem. The resulting theory of
weak crystallization assumes that the density modulations

U(r) = Z2Re(a AR (A1)

n=1
are small and only select a single wave vector |q,| = go.
The modulated pattern, whether stripe (N = 1), checkerboard
(N = 2), hexagonal (N = 3), and so on, is found by minimiz-

ing a Ginzburg-Landau—type free-energy functional:

Fy] = /dr{fwz +e[(V+ad)v] - Svt + ivf“}.
2 6 24

In two dimensions, it is easy to show that in absence of the
cubic term u = 0, there is a continuous transition from a liquid
¥ = 0 phase for t > 0 to a stripe phase [N = 1, i.e., ¥(r) =
2|ay| cos(qq - r + )] for T < 0 with |a;| = +/2|t|/A, where
both phase ®; and direction of ; are randomly selected. How-
ever, in presence of the cubic term p # 0, which contributes if
at least three vectors are arranged in 120°, q; + q2 + q3 = 0,
the transition is to a 2D hexagonal crystal, N = 3, with |a;| =
laz] = las| = |pl[1 + /1 — 10A|T|/p?1/(Sh).

The free energy F[v] is never minimized by a checkerboard
N = 2 modulation. However, for two real order parameters

N M
Yi(r) = ) 2Re(@,e' V™), ya(r) =) 2Re(b,e™),
n=1

m=1

(A2)

with modulations in different directions q, # p,, butbelonging
to the same shell with momentum gy, it can be shown that the
free energy

2
F[wlst] 2/ {Z’Q V2+q0 wl]
i=1

A
+ S+ vd) + S +vd) +yvivi

(A3)

undergoes a transition for 7 <O from stripe N =1,
M =0 when y > A/4 to checkerboard, N =1 = M when
—A <y <A/4

Note that in the formulation above we have chosen real
order parameters (Al) and (A2) rather than complex ones.
This choice is dictated by the phase constraints discussed
in Sec. IVA, where we have shown that the sum of signal
phases corresponding to opposite momenta is locked to the
pump phases. Note also that in its standard formulation with
local interactions, the theory of weak crystallization selects
randomly the directions q; of the modulated phases. Thus,
similarly to the case of our local interaction term (4), the
weak crystallization theory does not distinguish between a
checkerboard arranged in a square and the one arranged in a
rhombus. However, this possibility can be phenomenologically
added by including the dependence of the free energy on the
angles between ordering wave vectors.
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