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Charge and spin conductivity of a two-dimensional electron gas with a random Rashba interaction
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We calculate the transport relaxation time τtr and spin transport relaxation time τs,tr for a two-dimensional
electron gas with spatially fluctuating Rashba spin-orbit interaction. These relaxation times determine the electrical
and spin conductivity of the two-dimensional system, respectively. It is shown that the transport relaxation time
τtr is a nonmonotonic function of electron energy ε, whereas the spin transport relaxation time τs,tr decreases with
increasing ε, similarly to the conventional electron relaxation time τ that characterizes the decay of an electron
state corresponding to certain values of the momentum and spin. Such a behavior of the relaxation times leads to
unusual temperature dependence of the electrical and spin conductivity.
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I. INTRODUCTION

It is well known that Rashba spin-orbit interaction in two-
dimensional (2D) electron systems appears due to asymmetry
in confining potentials on both sides of the corresponding
heterostructure [1–5]. Such an interaction leads to various
spin-orbit related effects, like spin Hall effect, current-induced
spin polarization, spin-orbit torque, and others [6–12]. These
phenomena have been extensively studied in recent years.
However, the Rashba spin-orbit coupling should disappear
in two-dimensional electron systems that exhibit symmetry
with respect to reflection in the 2D plane. In other words,
the corresponding coupling constant [2] vanishes then by
symmetry reasons. An example of such a system is a symmetric
semiconductor quantum well.

However, even though the symmetry precludes the presence
of a uniform Rashba interaction, such a symmetry does not
exclude the existence of spatially fluctuating Rashba field
with the corresponding mean value equal to zero. It was
already shown in detail how the spatially fluctuating Rashba
field can appear due to a deviation from homogeneity of
the doping impurity distribution in the vicinity of a semi-
conductor quantum well [13–15]. The main characteristics
of the random Rashba coupling in such systems have been
studied theoretically in Refs. [13–17]. Moreover, recent exper-
iments on scanning tunneling spectroscopy of InSb surfaces
produced a pattern of the Rashba coupling with the ∼1 nm
spatial resolution, which revealed strong randomness of this
coupling [18].

It was also demonstrated that the fluctuating Rashba field
can induce a variety of experimentally observable effects.
For example, the spin Hall conductivity in a 2D system with
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homogeneous Rashba interaction vanishes in the presence
of spin-independent disorder [7,8,12], but it is robust to
scattering on impurities in the presence of spatially fluctu-
ating Rashba field [19,20]. This nonzero value of spin-Hall
conductivity not only agrees with the analysis based on the
SU(2) symmetry of the spin-orbit coupling [21] and detailed
numerical calculations [22], but also can be considered as
a mechanism of the spin-charge conversion in 2D systems
[23]. Furthermore, the fluctuating spin-orbit interaction is
responsible for spin relaxation [14,15,24]. For instance, it is
possible that the electron spin relaxation in a free standing
graphene is related to the fluctuating Rashba field arising
from rippled graphene sheet [15,25], random impurity-induced
spin-orbit coupling [26], or strong effects of the randomness
introduced by the corrugation [27]. In addition, the random
Rashba fields play an important role in transport properties of
the edge states in topological insulators [28–32], and also can
be crucially important in systems with very strong spin-orbit
coupling [33].

In this paper we consider the effect of spatially fluctuating
Rashba field on the charge and spin conductivity of a 2D elec-
tron gas. We assume that the mechanism of electron scattering
from the Rashba field is dominant for both momentum and spin
relaxation of electrons, which may happen at very low density
of impurities and defects. On the other hand, the contribution
of any other scattering mechanism can be taken into account
effectively by assuming a certain relaxation time (e.g., due to
impurities and defects), and then by using the Matthiessen rule
to add the rates related to different relaxation mechanisms.

In Sec. II we describe the model Hamiltonian assumed to
describe the system with spatially fluctuating Rashba field and
also introduce the Hamiltonian describing interaction of the
system with external electromagnetic field. Relaxation time is
calculated in Sec. III, whereas the vertex function is derived
in Sec. IV. Electrical conductivity is calculated and discussed
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in Sec. V. In turn, in Sec. VI we calculate the spin current and
spin conductivity. Final conclusions are in Sec. VII.

II. MODEL

To describe the 2D electron system with fluctuating Rashba
field we use the following Hamiltonian:

Ĥ = Ĥ0 + Ĥ (so), (1)

where the first term corresponds to the kinetic energy of 2D
electrons with parabolic energy spectrum,

Ĥ0 = − h̄2∇2

2m∗ , (2)

while the term Ĥ (so) stands for the random Rashba spin-orbit
coupling,

Ĥ (so) = − i

2
σx{∇y, λ(r)} + i

2
σy{∇x, λ(r)}. (3)

Here, σx and σy are the Pauli matrices acting in the spin space,
whereas λ(r) is the Rashba parameter that varies randomly
in the 2D space. We assume that the average value of this
parameter vanishes, 〈λ(r)〉 = 0, so that the random field is
characterized by the correlator 〈λ(r) λ(r′)〉 [15,24]. The matrix
elements of the Rashba spin-orbit interaction (3) in the basis
of the eigenfunctions of Hamiltonian Ĥ0 are

Ĥ
(so)
kk′ = λkk′

2
[σx(ky + k′

y) − σy(kx + k′
x)]. (4)

Now we assume that the system is in an external electro-
magnetic field described by a vector potential A(t) = A0 e−iωt .
To find the Hamiltonian which describes interaction of the
system under consideration with the electromagnetic field,
we make the replacement: k → k − eA/h̄c. Accordingly, the
corresponding spin-orbit dependent part of the interaction with
electromagnetic field can be written as

Ĥ
(so)−A

kk′ = −eλkk′

c
(σxAy − σyAx). (5)

When taking into account also the interaction of free electrons
with the electromagnetic field, the total Hamiltonian describing
coupling of the system to the electromagnetic field can be
written in the following form:

Ĥ
(A)
kk′ = −eh̄k · A

m∗c
δkk′ + e2A2

2m∗c2
δkk′

−eλkk′

h̄c
(σxAy − σyAx). (6)

Here, the first and second terms are the usual kinetic and
diamagnetic contributions. The third term, in turn, takes into
account the coupling mediated by the spin-orbit interaction and
corresponds to the anomalous spin-dependent velocity in the
form of the commutator i[Ĥ (so),r]/h̄.

Without loss of generality, we assume that the vector
potential A is along the x axis, and calculate the current flowing
along this axis. The corresponding matrix elements of the

charge current operator can be then written in the form

ĵx,kk′ = −c
∂ĤA

kk′

∂Ax

= eh̄

m∗

(
kx − eAx

h̄c

)
δkk′ − eλkk′σy. (7)

To calculate the electric current flowing in the system we will
use the standard Kubo formalism and Green function technique
in the loop approximation, with a renormalized vertex function
[34,35]. To avoid issues related to electron localization, all the
calculations will be performed assuming that scattering from
the random Rashba field is weak. This scattering gives rise
to a slow relaxation of electron states described by certain
momentum and spin. The other effect due to fluctuating Rashba
field is related to its correction to the current vertex, similar
to the impurity-induced correction [34]. This leads to the
substitution of the bare current vertex ĵx,kk′ by its renormalized
counterpart Jx,kk′ . Note that the vertex correction does not
vanish in the limit of very weak scattering by the fluctuating
field since the relative correction to the bare vertex is of the
order of unity [34].

Assuming the weak scattering regime, we restrict ourselves
to the first term on the right-hand side of Eq. (7). Correspond-
ingly, we do not take into account the last (anomalous velocity-
related) term in Eq. (6) related to the spin-orbit induced
interaction with electromagnetic field. The above-mentioned
terms lead to a negligibly small correction to the calculated
conductivity. Indeed, the main contribution to the conductivity
is of the order of (e2/h̄) (εF τtr/h̄), where εF is the Fermi energy
and τtr is the transport relaxation time, whereas the correction
related to the anomalous velocity is ∼e2/h̄. Below we use the
units with h̄ ≡ 1, kB ≡ 1 and restore h̄ and kB in the numerical
calculations.

Before calculating the electrical current and the correspond-
ing conductivity, we need to find the relaxation time and the
vertex function. These will be derived in the following two
sections.

III. RELAXATION TIMES

Now we calculate the relaxation time due to scattering on
the fluctuating spin-orbit Rashba field. Since the fluctuations
are assumed to be small, they can be considered in terms of
the perturbation theory. The Green function for electrons in
2D electron gas with disorder can be written in the following
general form:

G
R,A
ε,k = 1

ε − εk ± i/2τ
, (8)

where εk = k2/2m∗, the energy ε is measured from the bottom
of the electron energy band, and 1/2τ is the relaxation rate due
to scattering from the fluctuations of the spin-orbit field. We
assume that there are no other scattering centers in the system
(like impurities or defects) which would lead to decay of the
electron state with the momentum k.

In the Born approximation, the self energy due to scattering
from fluctuating spin-orbit field can be calculated from the
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formula,


R(ε,k) = − iπ

4

∑
k′

|λkk′ |2 (k2 + k′2 + 2k · k′) δ(ε − εk′).

(9)

In the following we assume the disorder correlator in the form
[15,24],

〈|λkk′ |2〉 = 2π〈λ2〉R2e−|k−k′ |R, (10)

where R is the correlation radius of the spatial fluctuations,
while the parameter 〈λ2〉 characterizes amplitude of these
fluctuations. Then, upon averaging over static disorder we
obtain from Eq. (9) the following expression for the relaxation
rate, 1/τ = 2Im 
R(εk,k):

1

τ
= 1

τ0
R2k2

∫ π

0
dϕ e−2Rk|sin (ϕ/2)|(1 + cos ϕ), (11)

where we introduced a constant τ0 for the time scale,

1

τ0
≡ 〈λ2〉m∗. (12)

The parameter τ0 has the physical meaning of a characteristic
spin rotation time of a particle with momentum m∗〈λ2〉1/2 in a
constant spin-orbit field 〈λ2〉1/2.

Dependence of the relaxation time τ on the electron energy,
as determined by Eq. (11), is presented in Fig. 1(a). This figure
shows that τ is divergent for ε → 0 and decreases with increas-
ing ε. The divergence is a consequence of the k dependence in
Eq. (11), where electrons with large wavelengths, 2π/k 
 R,
do not see the short-range spin-orbit fluctuations. The prefactor
in Eq. (11) includes k2 and thus goes to zero for ε → 0.
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FIG. 1. The relaxation time τ/τ0 [panels (a),(b)] and transport
relaxation time τtr/τ0 [panels (c),(d)] (both normalized to τ0), shown
as a function of energy for different values of the disorder correlation
length R [panels (a) and (c)] and as a function of R for different values
of ε [panels (b) and (d)]. Other parameters: electron effective mass
m∗ = 0.03m0.

However, in real systems there are always some additional
scattering processes, like for example scattering on neutral
point defects, which remove the divergence at small energy. In
turn, behavior of the relaxation time for ε > 0 is a consequence
of the interplay of increase in the prefactor and decrease in the
exponential term under the integral. As a result, the relaxation
time τ as a function of kR behaves as ∼1/(kR)2 at kR � 1 and
as ∼1/kR at kR 
 1. This behavior corresponds to Fig. 1(a)
and to Fig. 1(b), where the R dependence of τ is presented.
In addition, it should be noted that the time τ in our model
becomes simultaneously also the spin relaxation time because
neither spin nor momentum are conserved in scattering from
the Rashba field.

IV. CURRENT VERTEX

To calculate the electrical conductivity in the Kubo formal-
ism we need the current vertex renormalized by the fluctuating
spin-orbit Rashba field. As already mentioned above, we take
the bare (unrenormalized) current vertex in the form

ĵx(k) = ekx

m∗ . (13)

Then, the ladder equation for the renormalized current vertex
Jx(ε,ε′,k) takes the form

Jx(ε,ε′,k) = ĵx(k) + 1

4

∑
k′

Jx(ε,ε′,k′)|λkk′ |2

×[σx(ky + k′
y) − σy(kx + k′

x)] GA
ε,k′

×[σx(ky + k′
y) − σy(kx + k′

x)] GR
ε′,k′ . (14)

For brevity of notation, we will omit below ε and ε′ in
Jx(ε,ε′,k). Then, using Eq. (8) for the Green’s function, we
obtain from Eq. (14) the following equation for Jx(k):

Jx(k) = ekx

m∗ + iπ

4(ω + i/τ )

∑
k′

Jx(k′)|λkk′ |2

×(k2 + k′2 + 2k · k′) [δ(ε − εk′) + δ(ε′ − εk′)], (15)

where ω = ε′ − ε.
The detailed calculations, which include disorder averaging

and the limit of ω → 0 (see the Appendix A) lead to the vertex
function in the form

Jx(ε,ε; k) = ekx

m∗
τtr

τ
, (16)

where ε = k2/2m∗ and the transport relaxation time τtr is given
by the formula

1

τtr
= 1

τ0
R2k2

∫ π

0
dϕ e−2Rk|sin (ϕ/2)| sin2 ϕ, (17)

with τ0 defined by Eq. (12). Variation of the transport relaxation
time τtr with the energy and correlation radius R is shown in
Figs. 1(c) and 1(d). In the limit of small energy and small R,
behavior of τtr is similar to that for τ since both these quantities
show the 1/(kR)2 divergence. In the opposite limit kR 
 1,
the contribution from scattering angles ∼1/kR dominates in
the relaxation rate 1/τ . However, this small-angle scattering
only weakly contributes to the 1/τtr rate. As a result, τtr behaves
as ∼kR in the kR 
 1 limit, which leads to the increase in τtr
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upon reaching the minima, as clearly seen in Figs. 1(c) and
1(d) [note, such minima are absent in Figs. 1(a) and 1(b)].

V. ELECTRICAL CONDUCTIVITY

Having found the relevant relaxation rates and the vertex
function, one can calculate the electrical conductivity. Using
the Matsubara technique for finite-temperature Green func-
tions, with discrete frequencies iωm = 2imπT , where m is an
integer number and T is the temperature, we get the following
expression for the charge current [34,35]:

jx(iωm) = −eAxT

m∗c

∑
nk

Jx(k; iεn,iεn + iωm)

×Gk(iεn + iωm) kxσ0 Gk(iεn). (18)

Upon analytical continuation to real frequencies, iωm → ω,
one obtains

jx(ω) = − eE0

2πωm∗ Tr
∫

d2k
(2π )2

kx

∫ ∞

−∞
dε[f (ε + ω) − f (ε)]

× Jx(k,ε,ε + ω) GR
k (ε + ω) GA

k (ε), (19)

where E0 is the electric field and the Fermi-Dirac distribution
f (ε) is given by 1/[exp ((ε − μ)/T ) + 1], with the chemical
potential μ. Then, using Eq. (16) for the vertex function
Jx(k,ε,ε), one finds from Eq. (19) the following formula for
the static (ω → 0) charge current:

jx = − e2E0

4π2m∗

∫ ∞

0
dεf ′(ε) k2 τtr. (20)

From this formula follows that the corresponding electrical
conductivity σ is determined by the transport relaxation time
τtr as

σ = − e2

2π2

∫ ∞

0
dε εf ′(ε) τtr(ε) . (21)

Numerical results for the electrical conductivity, obtained
from Eq. (21) with the transport time given by Eq. (17),
are presented in Fig. 2 for indicated parameters describing
the system. The increase in conductivity with increasing
temperature and chemical potential results from increasing
contribution of electrons with higher momentum and from
the modification of the total electron concentration. All the
dependencies presented in Fig. 2 are related to the dependence
of τtr(ε) on the product kR, see Eq. (17).

VI. SPIN CURRENT AND SPIN CONDUCTIVITY

To complete our considerations we now analyze the spin
current flowing in the system. Within the formalism used in
this paper, the spin current appears due to a minimal coupling
to the spin gauge field. In the first order, this coupling is defined
as [21,37–40]:

Ĥ
(As )
k = −ĵ α

i Aα
i , (22)

where As
j is the adiabatic gauge vector potential related to a

spin electric field,

Eα
j (t) ≡ Eα

j 0 e−iωt = −1

c

∂Aα
j

∂t
, (23)
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FIG. 2. Electric conductivity as a function of chemical potential
μ (a), correlation length R (b), and temperature T [(c), (d)]. Other
parameters: electron effective mass [36] m∗ = 0.03m0,

√
〈λ2〉 =

0.15 eVÅ, and the corresponding τ0 = 0.22 ns, as follows from
Eq. (12).

and ĵ α
i = h̄[v̂i ,σα]+/4 is the spin current operator. For the sys-

tem under consideration and for transport of the z component
of spin polarization along the axis x we get:

ĵ z
x = kxσz

2m∗ . (24)

Note that the above spin current operator is based on the
unperturbed part of the Hamiltonian [Eq. (2)], which does not
contain spin-orbit coupling. Since σα commutes with Ĥ0, the
definition of spin current is equivalent to a more general one
proposed by Niu et al. [41,42] (for general overview see also
Refs. [43,44]).

Using the Matsubara technique one arrives at the following
formula for the spin current:

jz
x (iωm) = − Az

xT

2m∗c

∑
nk

J z
x (k; iεn,iεn + iωm)

×Gk(iεn + iωm) kxσz Gk(iεn), (25)

where εn = (2n + 1)πT . Then, and upon analytical continua-
tion, iωm → ω, one can write

jz
x (ω) = − Ez

0x

4πωm∗ Tr
∫

d2k
(2π )2

∫ ∞

−∞
dε[f (ε + ω) − f (ε)]

×J z
x (k,ε,ε + ω) GR

k (ε + ω) kxσz GA
k (ε), (26)

where we introduced the spin electric field according to the
relation between Az

x(ω) and Ez
x(ω).

To calculate the spin current from Eq. (26), we need to know
the vertex function J z

x (k). The corresponding equation for the
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FIG. 3. The normalized spin transport relaxation time, τs,tr/τ0, as
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electron effective mass m∗ = 0.03m0.

spin current vertex reads

Jz(k) = kσz

2m∗ + iπ

4(ω + i/τ )

∑
k′

Jz(k′)|λkk′ |2

×(k2 + k′2 + 2k · k′) [δ(ε − εk′) + δ(ε′ − εk′)]. (27)

Solving this equation we find the following simple formula for
the spin current:

J z
x = kxσz

2m∗
τs,tr

τ
, (28)

where the spin transport relaxation time τs,tr is given by the
formula

1

τs,tr
= 1

τ0
R2k2

∫ π

0
dϕ e−2Rk|sin (ϕ/2)|(1 + cos ϕ)2. (29)

Dependence of the transport spin relaxation time on the
electron energy and correlation radius is presented in Fig. 3.
Note that in contrast to τtr presented in Figs. 1(c) and 1(d),
τs,tr does not increase at large kR and behaves similarly as
the relaxation time τ presented in Figs. 1(a) and 1(b). This
difference is due to the fact that small-angle scattering is
essential for relaxation of spin current while it is not essential
for the relaxation of charge current. As one can note when
comparing Fig. 3 and Fig. 1, the transport spin relaxation time
is smaller than τ because it accounts for both effects of electron
scattering and spin relaxation.

Similarly to Eq. (21), we obtain the spin conductivity

σs = − 1

8π2

∫ ∞

0
dε εf ′(ε) τs,tr(ε) . (30)

The numerical results for the spin conductivity, obtained from
Eq. (30) with the spin transport time given by Eq. (29), are
presented in Fig. 4. These results can be accounted for in a
similar way as the results for electrical conductivity in Fig. 2.

VII. CONCLUSIONS

In this paper we presented theoretical results on transport
relaxation times τtr and τs,tr , responsible for the charge and
spin conductivity in a two-dimensional system, where the main
mechanism of electron scattering is related to fluctuations of
the Rashba spin-orbit interaction. Since our objective was
to describe and explain the role of randomness of Rashba
field, we considered an extreme situation, where the mean
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FIG. 4. Spin conductivity as a function of the chemical potential μ
(a), correlation length R (b), and temperature T [(c), (d)] for indicated
parameters R, T , and μ. Other parameters: electron effective mass
m∗ = 0.03m0,

√
〈λ2〉 = 0.15 eV Å.

value of the Rashba coupling is zero. Thus, we have not
considered the role of any uniform or periodically modulated
in space spin-orbital fields [44–46]. The mechanism of electron
scattering which is discussed here can be important in a general
case of 〈λ(r)〉 = 0, provided that the spin-orbit coupling in
the system is sufficiently strong. It can be also related to
defects in strongly spin-orbit coupled compounds such as
transition-metal chalcogenides or impurities at the surfaces or
interfaces with a strong spin-orbit coupling.

The obtained transport relaxation times for the charge
and spin current can be essentially different from the times
describing the electron momentum and spin relaxation. The
observed energy dependence of the transport time leads to
nontrivial temperature dependence of the conductivity which
may increase with increasing temperature at a constant electron
density.

We also note that the spin transport relaxation time con-
sidered in this paper characterizes the decay rate of spin
current flowing in the system. It takes into account both spin
relaxation and momentum relaxation during the motion of
electrons in the system with randomly fluctuating in space
Rashba spin-orbit coupling. We should also note that the spin
relaxation mechanism proposed in this paper is different from
the relaxation mechanism proposed by Dyakonov and Perel
[47].
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APPENDIX: CALCULATION OF THE VERTEX FUNCTION

Here we present some details concerning calculation of
the vertex function in the static limit ω → 0 (which is of our
interest), see Eqs. (14) and (15). Since Jx ∼ kx , Eq. (15) can
be presented as an equation for the vector vertex J(k)

J(k) = ek
m∗ + iπ

4(ω + i/τ )

∑
k′

J(k′)|λkk′ |2

×(k2 + k′2 + 2k · k′) [δ(ε − εk′) + δ(ε′ − εk′)], (A1)

and we can write J(k) as

J(k) = ek
m∗ g(k), (A2)

where the scalar function g(k) depends on the module of the
vector k only. Then, from (A1) and (A2) we obtain in the limit
k → k′ the following equation for g(k):

k g(k) = k + iπg(k)

2(ω + i/τ )

∑
k′

|λkk′ |2 (k2 + k′2 + 2k · k′)

×k′ δ(ε − εk′). (A3)

The right-hand side of Eq. (A3) should be proportional to
vector k. As a result, we find g(k) from the following

equation:

g(k) = 1 + 1

τ0
R2k2τ g(k)

×
∫ π

0
dϕ e−2Rk|sin(ϕ/2)| cos2 (ϕ/2) cos ϕ. (A4)

Finally, (A4) yields

g(k) =
(

1 − τ

τ0
R2k2p(k)

)−1

, (A5)

where we introduced the notation,

p(k) =
∫ π

0
dϕ e−2Rk|sin (ϕ/2)| (1 + cos ϕ) cos ϕ. (A6)

Using the expression (11) for 1/τ we can write g(k) in the
following simple form

g(k) = τtr/τ, (A7)

where the transport relaxation time τtr is determined as:

1

τtr
= 1

τ0
R2k2

∫ π

0
dϕ e−2Rk|sin (ϕ/2)| sin2 ϕ. (A8)

Finally, the vertex function at ε = k2/2m∗ has the form:

Jx(k; ε,ε) = ekx

m∗
τtr

τ
. (A9)
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