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We measure quasiparticle tunneling across a constriction in the first Landau level. In the limit of weak
backscattering, the dependence of the tunneling conductance on temperature and dc-bias is in qualitative
disagreement with existing theories. For stronger backscattering, data obtained in the ν = 1/3 state can be fitted
to weak backscattering theory with the predicted effective fractional charge of e∗ = e/3. The scaling parameter
g is however not universal and depends strongly on the gate voltage applied to the constriction. At ν = 4/3, a
more complex picture emerges. We propose an interpretation in terms of selective tunneling between the multiple
modes present at the edge.
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I. INTRODUCTION

The edges of fractional quantum Hall (FQH) fluids are
predicted to form strongly interacting chiral one-dimensional
systems [1]. From an experimental point of view, the hallmark
of non-Fermi-liquid behavior at the FQH edge is observed in
transport through a constriction in a two-dimensional electron
gas: The tunneling conductance between two edge states
brought into proximity shows a power-law dependence on tem-
perature and dc bias [2]. Within a hydrodynamic formulation
of the chiral Luttinger liquid, Wen derived a model of this
tunneling conductance in which the relevant scaling parameters
are the effective charge e∗ of the current-carrying quasiparticles
(QPs) and an interaction parameter g [3–5]. Both parame-
ters can be extracted from experimental data by a nonlinear
regression analysis, and both can be theoretically predicted
for a given wave function, making tunneling conductance a
potentially powerful probe of the nature of FQH states. This
technique has indeed been used as a probe of fractional charge
of complex states in the second Landau level, in particular
at ν = 5/2 with limited success [6–9]. However, to date it
has not been verified that the expected scaling parameters
are obtained for states of which the wave function and the
effective charge is known with a high degree of confidence,
such as the Laughlin state at ν = 1/3 [10–13]. Experimental
studies of QP tunneling between edge modes of Laughlin states
have yielded unexpected results [14–19], and a quantitative
analysis based on a fit to Wen’s model has not been reported
to date. Interpretations of the scaling parameters measured
in the second Landau level, be it in terms of dependence on
constriction geometry or competition between possible ground
states, thus lack a solid experimental basis. In this paper we
set out to verify quantitatively whether QP tunneling the-
ory appropriately describes tunneling between edge channels
at ν = 1/3 and ν = 1 + 1/3. We find that data in the weak
backscattering regime is in qualitative contrast to theoretical

*hennels@phys.ethz.ch

predictions. On the other hand, the theory developed for weak
backscattering describes well experimental data acquired in
the strong backscattering regime, and the analysis leads to
an effective charge of e/3. In this paper we focus on the
presentation of experimental data, investigate the validity of the
existing theory in different backscattering regimes, and discuss
where a fitting analysis based on the existing theory might
be useful to extract pertinent information. Understanding the
quantum Hall edge and backscattering between fractional
states is crucial to proceed with the study of interferometers and
of other geometries designed to probe the proposed topological
properties [20].

II. EXPERIMENTAL SETUP

We report data acquired in two different samples processed
out of the same wafer, a single-side doped GaAs/AlGaAs
heterostructure which hosts a 2DEG residing 310 nm beneath
the wafer’s surface, with density ns ≈ 1.0 × 1011 cm−2 and
mobility μ ≈ 4 × 106 cm2 V−1 s−1 at 4.2 K. Both samples
consist of a photolithographically defined 400 μm wide Hall
bar (schematically depicted in Fig. 1) on which several quan-
tum point contacts (QPCs) were fabricated by electron-beam
lithography and subsequent Ti/Au evaporation. The first sam-
ple features a row of independent QPCs. For the measurements
we present here, only a single QPC with wide leads was defined
by application of a negative voltage to the corresponding gates.
The gap between the split gates was 2800 nm. This QPC will
be referred to in the following as “QPC 1” and can be seen on
the left side of Fig. 1(b). On the second sample, a single QPC
with a gap of 2000 nm and narrow gates [same design as on
the right side of Fig. 1(b)] was defined and will be referred to
as “QPC 2.” Both QPCs were designed to be wide enough for
the electronic density in their middle to be close to the density
in the bulk 2DEG in the limit of low gate voltages.

Both samples have been measured in dilution refrigerators,
using standard lock-in techniques at a frequency of 28 Hz to
perform four-terminal measurements of differential resistance.
ac and dc currents were supplied through 1 G� resistors in
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FIG. 1. (a) Schematic of the sample. Crosses represent Ohmic
contacts to the Hall bar, voltage probes are indicated by dotted lines.
(b) SEM image showing typical QPC geometries. The QPC on the
left side has been used to acquire the data shown in Figs. 2, 3, and 4.
The QPC on the right side has a similar design as the one used to
acquire the data shown in Figs. 5 and 6. The tunneling conductance
gtun between two counterpropagating edge modes in the QPC is
represented schematically.

series with source and sample. We have verified that the 2DEG
is fully depleted under the gates for all values of gate voltages
that we report in this work.

A precise knowledge of the electronic temperature is crucial
for the interpretation of our results. The sample hosting QPC
1 was in direct contact with the 3He/4He mixture in the
mixing chamber of a refrigerator with a base temperature
of 71 mK. The electronic temperature is therefore assumed
to be equal to the mixing chamber temperature which was
measured with a RuOx thermometer. The sample hosting QPC
2 was placed on a silver cold finger thermally anchored to
a mixing chamber with a base temperature of 4.6 mK. The
mixing chamber temperature was measured using an MFFT-1
noise thermometer [21]. The electronic temperature achieved
for a given mixing chamber temperature is inferred from a
calibration curve which we obtained from a previous study
of activated behavior in fragile fractional quantum Hall states
performed in the same dilution refrigerator.

III. RESULTS AND DISCUSSION

A. Theoretical basis for our work

We define gtun as the backwards tunneling conductance
between the hot and the cold edge within the QPC, as shown
in Fig. 1(b). Following previous works [6–9], we compute gtun

according to

gtun = RDiag − Rxy

R2
xy

, (1)

where RDiag and Rxy are the four-terminal resistances defined
in Fig. 1. For the analysis of our data, we use the result obtained
perturbatively within chiral Luttinger liquid theory for the
differential tunneling conductance [22]

gtun(T ,Idc,g,e∗) = A T 2g−2F

(
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)
, (2)

where T is the electronic temperature, the constant A absorbs
physical parameters not accessible experimentally,
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FIG. 2. (a) Diagonal resistance measured across QPC 1 (solid
colored lines) for three different values of gate voltage. The black
dotted line shows Rxy in the bulk of the sample, which is in the ν = 1/3

state at B = 12.35 T (value marked by the vertical dashed orange
line). Labels indicate gate voltages VG and the transmission t of the
ν = 1/3 edge channel at B = 12.35 inferred from RDiag. No dc bias was
applied in this measurement. (b) dc-bias dependence of the tunneling
conductance gtun across QPC 1 at B = 12.35 for the same three values
of gate voltage as in (a). All data shown in this figure have been
acquired at an electronic temperature of 71 mK.

B(a,b) = �(a)�(b)

�(a + b)
and

�(z) =
d
dz

�(z)

�(z)
(� is the gamma function).

This perturbative result is expected to be valid for any FQH
state in the limit of weak backscattering, i.e., a QPC transmis-
sion close to 1. At filling factor ν = 1/3, the predicted scaling
parameters [3] are g = 1/3 and e∗ = e/3.

For Laughlin states at ν = 1/m, a nonperturbative solution
for the tunneling conductance valid for any backscattering
strength has been obtained by Fendley et al. [23,24]. The
main result (Eq. (5.2) in Ref. [23]) is not expressed in closed
form, making its application in a curve-fitting analysis of
experimental data more challenging than for Eq. (2).

B. Tunneling conductance at ν = 1/3

The gate voltage dependence of the transmission of the
ν = 1/3 edge state through QPC 1 is summarized in Fig. 2(a).
For low values of gate voltage (VG = −0.7 V), a clear νQPC =
1/3 plateau appears in RDiag and overlaps partially with the
ν = 1/3 plateau in the Hall voltage Rxy. The charge carrier
density within the QPC nQPC = 9.2 × 1010 cm−2 is indeed
close to the bulk density nbulk = 9.9 × 1010 cm−2 (both those
values have been obtained from the position of integer quantum
Hall plateaus at low magnetic fields, data not shown). At
B = 12.35 T, near the middle of the plateau in Rxy, the
transmission of the ν = 1/3 mode is t = (3h/e2)/RDiag ≈ 0.98.
In this regime, backscattering is expected to be weak, i.e.,
mediated by tunneling of QPs across the ν = 1/3 FQH fluid
within the QPC, and the perturbative result in Eq. (2) is
expected to hold. As gate voltage is made more negative, thus
narrowing the QPC, the density within the QPC is reduced
to nQPC = 8.7 × 1010 cm−2. Correspondingly, the νQPC = 1/3

plateau shifts to lower magnetic fields and the transmission of
the ν = 1/3 mode is reduced to t = 0.83. Finally, for highly
negative gate voltages (VG = −1.52 V), the density within the
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FIG. 3. (a) to (c) Temperature and dc-bias dependence of the
tunneling conductance across QPC 1. The gate voltage and the
electronic density extracted from low-field data are indicated on top
of each graph. The data acquired at 71 mK are the same as shown in
Fig. 2(b). Note that the seven y axes in each column are independent,
and that their scales are adapted for an optimal readability of the data.
In (c), the black crosses follow the best fit to weak QP tunneling
theory. Electronic temperatures are indicated on the right-hand side
and are color coded for the convenience of the reader.

QPC is nQPC = 8.0 × 1010 cm−2 and the transmission of the
ν = 1/3 mode falls to t = 0.64. Here, we expect backscattering
to be in the strong regime, i.e., mediated by tunneling of single
electrons across a compressible state in the QPC.

We have measured the bias dependence of the tunneling
conductance gtun across QPC 1 using an ac current excitation
of Iac = 100 pA. Decreasing the ac current excitation did
not narrow the gtun peak within noise level. The results are
summarized in Fig. 2(b). Surprisingly, in the range of gate
voltages where backscattering is weak (around −0.7 V), the
dc-bias dependence of gtun shows a minimum at zero bias, in
striking contradiction to the zero-bias maximum predicted by
QP tunneling theory [3,22]. Furthermore, a zero-bias peak is
observed for highly negative values of gate voltage (−1.52 V),
for which the transmission is below the threshold where we
expect QP tunneling to occur. For intermediate gate voltages,
we observe a gtun(Idc) curve which is the sum of a narrow zero-
bias minimum and a broader zero-bias maximum, indicating
that the mechanisms present at low gate voltage and at high
gate voltage coexist.

The amplitudes of all features in the bias dependence of
gtun decrease with increasing temperature (see Fig. 3). Above
514 mK, we observe an overall increase in gtun, which we
attribute to thermal activation of the FQH liquid within the
QPC because we also see an increase in the bulk Rxx at
those temperatures. In the weak backscattering regime at VG =
−0.7 V, the zero-bias minimum evolves into a weak maximum
at the highest temperature. In the intermediate regime at VG =
−1.11 T, the narrow minimum disappears below 212 mK
while the wide maximum is still visible at 514 mK. This is
a further confirmation that the shape of the curve gtun(Idc) at
low temperatures is the result of two coexisting mechanisms
governed by different energy scales.

VG (V)

(d
im

en
si

on
le

ss
)

B (T)

(d
im

en
si

on
le

ss
)

e*

g
g

e*

(a) (b)

−2.0 −1.8 −1.6 −1.4
0.2
1/3

0.6

0.8

1

11.75 12.00 12.25 12.50 12.75
0.2
1/3

0.6

0.8

1
t: 0.37 0.50 0.61 0.71

FIG. 4. Best-fit parameters e∗ and g obtained in a least-square fit
of Eq. (2) to the temperature and dc-bias dependence of the tunneling
conductance across QPC 1. (a) Gate voltage dependence of the best-fit
parameters for a fixed value of magnetic field B = 12.35 T [vertical
dashed line in (b)]. The top axis shows the transmission t of the ν = 1/3

mode at zero dc bias. The underlying data have been acquired in the
same measurement as those displayed in Figs. 2 and 3. Data acquired
for values of gate voltage less negative than −1.35 V cannot be fit
to QP tunneling theory. (b) Magnetic field dependence of the best fit
parameters for a fixed value of gate voltage VG = 1.52 V [vertical
dashed line in (a)]. The underlying data have been acquired under
the same experimental conditions as for the results shown in (a), in a
temperature range of 96 mK to 411 mK.

Even though we do not expect QP tunneling to be the
dominant contribution to backscattering at VG = −1.52 V,
we are able to fit the model in Eq. (2) to the measured gtun,
with the two independent variables T and Idc. The parameters
of the best fit [indicated by black crosses in Fig. 3(c)] are
e∗ = (0.32 ± 0.01)e and g = (0.81 ± 0.01).

The data shown in Fig. 3 is part of a measurement series
spanning the gate voltages −0.4 V to −2.1 V in steps of
82.5 mV. We observe zero-bias peaks in gtun for gate voltages
more negative than−1.275 V. Equation (2) could be accurately
fit to all gtun(T ,Idc) datasets featuring a zero-bias maximum.
The full gate voltage dependence of the best fit parameters e∗
and g is shown in Fig. 4(a). The measured e∗ is close to the
expected value of e/3 in a wide range of gate voltage, but the
interaction parameter g is higher than the expected g = 1/3
and its value is not universal but decreases as the constriction
is made narrower by a more negative gate voltage. We have
further measured gtun at fixed VG = −1.52 V for different
values of magnetic field. As shown in Fig. 4(b), the best fit
parameters do not depend on magnetic field within the range
of magnetic field corresponding to the ν = 1/3 plateau in the
bulk of the sample.

Finally, we note that the best fit value of e∗ slightly increases
for gate voltages more negative than VG = −1.8 V (at this gate
voltage the transmission of the ν = 1/3 channel is t = 0.50)
and is significantly higher than e/3 for VG < −2.0 V (where
t < 0.37). This behavior is qualitatively consistent with the
results reported in experiments based on the analysis of shot
noise in quantum point contacts [25,26]. The effective charge
extracted from shot noise follows a universal dependence
on channel transmission, with e∗ = e/3 in the limit of high
channel transmission (t > 0.8), and a continuous increase
towards e∗ = e in the limit of low transmission [25,26]. The
increase of the measured effective charge with decreasing
channel transmission is steeper in shot noise experiments than
in our results: For t = 0.5, the effective charge extracted from
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(a) (b)

FIG. 5. (a) Diagonal resistance measured across QPC 2 (solid
colored lines) for three different values of gate voltage. The black
dotted line shows Rxy in the bulk of the sample, which is in the ν = 4/3

state at B = 3.4 T (value marked by the dashed orange line). Labels
indicate gate voltages VG and the transmission t of the ν = 4/3 edge
channels at B = 3.4 T inferred from RDiag. (b) dc-bias dependence
of the tunneling conductance gtun across QPC 2 for the same three
values of gate voltage as in (a). All data shown in this figure have
been acquired at an electronic temperature of 9.6 mK.

shot noise is e∗ ≈ 0.4, while in our data e∗ = 0.4 is observed
at a lower transmission of t = 0.3.

C. Tunneling conductance at ν = 4/3

In order to test how other fractional states behave with
respect to theory we have repeated our measurements at ν = 2/3

and ν = 4/3. At ν = 2/3, the situation is enriched by effects of
dynamic nuclear spin polarization [27], prohibiting a similar
analysis as we have shown for ν = 1/3. We therefore focus on
the situation at filling factor ν = 4/3. The behavior of the tunnel-
ing conductance in the low backscattering limit is similar to the
ν = 1/3 case, but a different picture emerges as the strength of
backscattering is increased. All measurements of the tunneling
conductance at ν = 4/3 were performed with an ac excitation
of Iac = 20 pA. With VG = −0.9 V applied to QPC 2 [see
Fig. 5(a)] the electronic density in the QPC is approximately
equal to bulk density and a high transmission of t = 0.98 is
observed at B = 3.4 T, the field corresponding to the center of
the ν = 4/3 plateau in the bulk Rxy. In this regime, we expect
to observe weak backscattering but find that the tunneling
conductance shows a minimum at zero bias [see Fig. 5(b)].
In the case of strong backscattering (VG = −1.7 V) a plateau
emerges at RDiag = h/e. This observation can be explained
assuming that the ν = 4/3 edge state supports an inner ν = 1
mode and an outer ν = 1/3 mode. When RDiag is quantized to
the value h/e, the ν = 1/3 mode is fully backscattered while
the ν = 1 mode is still perfectly transmitted. The tunneling
conductance calculated according to Eq. (1) is then exactly
gtun = 4/9 × e2/h ≈ 0.44 e2/h.

For intermediate values of gate voltage (−1.35 V), the bias
dependence of gtun features a narrow maximum superposed
with a wide minimum. The resulting curve shape is reminiscent
of the maximum with undershoots characteristic of Eq. (2)
for g < 0.5. However, as the tunneling conductance doesn’t
exceed the value gtun = 4/9 e2/h [dashed line in Fig. 6(a)], its
temperature dependence is incompatible with the power-law
behavior of Eq. (2). Noting that the ν = 1 mode is always
fully transmitted and thus doesn’t contribute to the tunneling

(a) (b)

FIG. 6. Temperature and dc-bias dependence of the tunneling
conductance across QPC 2 with a gate voltage of −1.35 mV.
(a) Tunneling conductance calculated from raw data following Eq. (1).
The data obtained at 9.6 mK (uppermost) are the same as shown
in Fig. 5(b). Dashed lines in the two uppermost graphs mark the
value gtun = 4/9 ≈ 0.44. (b) Tunneling conductance of the outermost
ν = 1/3 mode calculated according to Eq. (3) on the basis of the same
data as in (a). The edge structure model corresponding to the method
chosen for calculating gtun is symbolically represented on top of the
figure. Note that the eight y axes in each column are independent,
and that their scales are adapted for an optimal readability of the
data. In (a) and (b), the black crosses follow QP tunneling theory
with g = 1/3, e∗ = e/3, and manually adjusted amplitude and offset.
Electronic temperatures are indicated on the left-hand side and are
color coded for the convenience of the reader.

conductance, we define a quantity gouter
tun describing tunneling

of the outer ν = 1/3 mode only:

gouter
tun = Router

Diag − Router
xy(

Router
xy

)2 , (3)

where Router
xy = 3h/e2 and Router

Diag = (1/RDiag − e2/h)−1, thus
subtracting the conductance of the ν = 1 edge channel.
Figure 6(b) shows gouter

tun calculated from the same data as gtun

in Fig. 6(a). At the lowest temperatures, the value of gouter
tun

at zero bias is strongly affected by measurement noise (as
gouter

tun diverges for RDiag → 1) and thus cannot be analyzed,
but for temperatures higher or equal to 17.8 mK, we obtain
a temperature dependence compatible with a power law. The
width and temperature dependence of the zero-bias maximum
in gouter

tun are roughly similar to the curve described by Eq. (2)
assuming g = 1/3 and e∗ = e/3 [black crosses in Fig. 6(b)].
In contrast, for the tunneling conductance gtun calculated from
raw data, the decrease of the peak’s height with increasing
temperature is slower than predicted by Eq. (2) [black crosses
in Fig. 6(a)].

The overall shape of the gouter
tun curve obtained by evaluating

Eq. (3) is not compatible with the weak backscattering model,
in particular at high values of dc bias, preventing a systematic
least-square fitting analysis. We can thus not make a statement
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about the best fit parameters e∗ and g. We do however find that
with respect to Wen’s model with the values of e∗/e and g set
to 1/3, the temperature dependence of the zero-bias peak in
gouter

tun shows better qualitative agreement than the temperature
dependence of the zero-bias peak in gtun. We thus propose that
subtracting the conductance of the perfectly transmitted ν = 1
mode is a step in the right direction in the theoretical treatment
of QP tunneling in the ν = 3/4 state.

IV. DISCUSSION AND CONCLUSION

We have measured the tunneling conductance between
edge states of the fractional quantum Hall effect at ν = 1/3

and ν = 4/3 and have compared our data quantitatively to the
model derived by Wen within a perturbative treatment of the
chiral Luttinger liquid [3]. For both states, in the case of low
backscattering we observe a bias dependence of the tunneling
conductance which cannot be explained by currently available
theories.

At filling ν = 1/3, our data is qualitatively compatible with
the model only in the limit of high backscattering. This result
is puzzling, because the model is valid only for low tunneling
amplitudes. Furthermore, in the case of high backscattering
charge carrier density is significantly reduced in the QPC
and backscattering might be mediated by tunneling of single
electrons instead of quasiparticles. Nevertheless, the best fit

is obtained with an effective charge in quantitative agreement
with the predicted value e∗ = e/3. We observe that the ex-
tracted interaction parameter g depends on gate voltage, in
agreement with the prediction that g is affected by geometric
effects in typical split Hall bar geometries [28].

Our results at filling ν = 4/3 indicate that the edge supports
an ν = 1/3 mode and a ν = 1 mode, and that only the ν = 1/3

mode contributes to the tunneling conductance across the
QPC. For higher backscattering strengths, if we account for
the perfect transmission of the ν = 1 mode and consider the
tunneling conductance of the outer ν = 1/3 mode, we obtain a
temperature dependence of the zero-bias maximum in rough
agreement with Wen’s model assuming the scaling parameters
e∗ = e/3 and g = 1/3 predicted for a ν = 1/3 edge mode.
The overall shape of the bias dependence cannot however be
accounted for. Here, a more involved theoretical treatment
of our experiment relying on the exact solution [23] for the
tunneling conductance might bring more clarity.
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