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We investigate theoretically nonequilibrium effects on photoluminescence and gain/absorption spectra
of a driven-dissipative exciton-polariton condensate, by employing the combined Hartree-Fock-Bogoliubov
theory with the generalized random phase approximation extended to the Keldysh formalism. Our calculated
photoluminescence spectra is in semiquantitative agreement with experiments, where features such as a blue shift
of the emission from the condensate, the appearance of the dispersionless feature of a diffusive Goldstone mode,
and the suppression of the dispersive profile of the mode are obtained. We show that the nonequilibrium nature of
the exciton-polariton condensate strongly suppresses the visibility of the Bogoliubov dispersion in the negative
energy branch (ghost branch) in photoluminescence spectra. We also show that the trace of this branch can be
captured as a hole burning effect in gain/absorption spectra. Our results indicate that the nonequilibrium nature
of the exciton-polariton condensate strongly reduces quantum depletion, while a scattering channel to the ghost
branch is still present.
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I. INTRODUCTION

The achievement of the Bose-Einstein condensation (BEC)
in an exciton-polariton system [1] has opened new possibilities
to investigate many-body physics in optical devices [2–5].
Various phenomena analogous to conventional BECs such as
a Bogoliubov excitation with a linear dispersion [6], quantum
vortices [7], and a nondiffusive transport [8], have been ob-
served. Berezinskii-Kosterlitz-Thouless scaling has also been
confirmed recently [9–11]. Moreover, at high carrier density,
it is expected that one can study an exotic quantum state
of matter [12–15] analogous to an ultracold Fermi gas in
the Bardeen-Cooper-Schrieffer (BCS)-BEC crossover region
[16–18].

A crucial novelty of the present system is the lossy nature
of the optical devices (where the photons in the cavity leak
out typically in a timescale of picoseconds) compensated by
continuous pumping of the carriers, making the BEC state
intrinsically nonequilibrium. Due to this driven-dissipative
nature, a number of novel features are proposed to arise in
this system. For example, the elementary excitation of the
condensate is predicted to be the so-called diffusive Goldstone
mode [19–21] (c and � are real numbers),

h̄ωq = −i
�

2
±

√
cq2 − �2

4
, (1)

with a pure imaginary dispersion ωq ∝ −iq2 at small momenta
(see Fig. 1). This is in an essential contrast to the equilibrium
case ωq ∝ |q|. It has also recently been pointed out that this
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diffusive character of the mode makes the nonlinear phase
gradient term in the equation of motion to be relevant in
a renormalization group sense [22–24]. This modifies the
Berezinskii-Kosterlitz-Thouless scaling in equilibrium to the
Kardar-Parisi-Zhang scaling, which was originally discussed
in the context of randomly grown interfaces [25]. In addition,
the nonequilibrium feature of the polariton system has brought
considerable interest as to how a BEC state of polaritons may
evolve into a standard semiconductor laser [19,20,26–41].

Detailed information on these intrinsic nonequilibrium
states is experimentally accessible through the observation
of optical properties. One of the most commonly measured
optical quantities is the photoluminescence spectrum (PL).
By detecting the energy as well as its (in-plane) momenta of
the leaked-out photons, the distribution of the polaritons can
be measured in terms of momentum and energy. Using this
technique, the dispersionless feature of the diffusive Goldstone
mode has been observed [35,36,42–45].

On the theory side, however, PL has not been understood in
a comprehensive way. Some theoretical studies argue that, in
addition to the normal branch (NB) of the diffusive Goldstone
mode (solid line in Fig. 1), the ghost branch (GB), which
has negative energy with respect to the condensate energy
(dotted line in Fig. 1), would be populated and appear in
PL [12,19,20,46,47]. Especially when a thermal distribution
is assumed, the GB was predicted to have the dominant
spectral weight at low temperature and high density [47]. The
appearance of the GB can theoretically be attributed to the
so-called quantum depletion [48], where particles are kicked
out of the condensate due to the repulsive interaction between
polaritons. Since this effect occurs even in the ground state,
the realization of this branch in PL can be regarded as a direct
observation of quantum fluctuations of a many-body system.
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FIG. 1. Real part of the diffusive Goldstone mode [Eq. (1)]. At
higher momenta, the mode exhibits both the normal (solid line) and
the ghost (dotted line) branches, which have positive and negative
energy with respect to the energy of the condensate, respectively.

However, the GB is absent in most of the PL experiments
[1,6,30,32–36,41–45]. There are only a few exceptions that
reported observation of GB, which are the experiments done in
extremely high-density regime [40] or in a strongly disordered
system [49] where polaritons were forced to scatter into the
GB. So far, the suppression of the GB in PL has not been well
understood.

On the other hand, a fingerprint of GB has been observed in
four-wave mixing experiments [50–52]. In such experiments, a
pump pulse was resonantly injected to form a polariton conden-
sate, together with a trigger pulse that excites polaritons in the
NB at finite momentum. By the parametric scattering process
induced by the third-order nonlinear harmonics of a polariton
condensate, the authors have observed a probe four-wave
mixing signal in GB [50,51]. This result implies that GB itself is
still present as a scattering channel even in the nonequilibrium
situation, while the absence of it in PL implies that the GB is
almost unoccupied in the nonequilibrium steady state.

In this paper, by taking into account nonequilibrium effects
of the model driven-dissipative electron-hole-photon system,
we study the optical properties of the exciton-polariton con-
densate. In contrast to prior researches that analyze the Dicke

model (which treats an exciton as a localized excitation)
[12,19,20,46] or a Bose gas [21,47], we explicitly treat elec-
trons and holes coupled to cavity photons. This allows us
to safely analyze nonequilibrium effects at density region
beyond Mott density and take into account dissociation effects
of excitons that play a crucial role in nonequilibrium states
[26–28,53,54].

Our main result is shown in Fig. 2. (See also Figs. 6 and 7 for
tomographic view.) As seen in Figs. 2(a1)–2(c1), we show that
the visibility of the GB in PL L(q,ω) is strongly suppressed
by nonequilibrium effects, where a peak structure of the GB
is either absent or possess a very small spectral weight. Our
calculated PL is in a qualitative agreement with experiments
[35,42–45] where it exhibits a blueshift of the emission from
the condensate, the appearance of the flat spectrum of the diffu-
sive Goldstone mode, and suppression of spectral weight in the
dispersive region at high-momentum region, as the pumping
power increases. The amount of the blue shift and the range of
the momentum window that exhibits the dispersionless feature
have the same order of magnitude as that observed in GaAs ex-
periments [35,42]. Similarly to PL, we show that the GB is also
suppressed by nonequilibrium effects in the gain/absorption
spectrum S(q,ω) [Figs. 2(a2)–2(c2)], where absorption
[S(q,ω) > 0] or gain [S(q,ω) < 0] from NB is much stronger
than that from GB. However, an optical gain channel from
the GB is still present, which appears as either a small but
finite gain [Fig. 2(b2)] or suppression of absorption band (hole
burning) [Fig. 2(c2)]. The presence of this optical gain channel
implies that the GB is still present as a scattering channel.

We also present a systematic analysis on the visibility
of the GB, in terms of detuning, pumping power, and the
cavity photon decay rate. We show that, for both in PL
and gain/absorption spectra, a clearer visibility of the GB is
obtained by setting a bluer detuning or a smaller cavity photon
decay rate, that drives the system closer to the equilibrium state.

Our results indicate that the quantum depletion in a
driven-dissipative condensate is strongly suppressed by the
nonequilibrium nature. We discuss that this suppression is due
to (1) the appearance of the diffusive Goldstone mode, (2)

FIG. 2. Calculated pumping dependence of (a1)–(c1) photoluminescence L(q,ω) and (a2)–(c2) gain/absorption spectra S(q,ω) on resonance
δ = 0. The decay rate of cavity photon is set to κ = 0.5 meV, corresponding to the cavity photon lifetime of τ ∼ 8 ps. [(a1) and (a2)]
μb = −4.9 meV(�μc

b). (b1), (b2) μb = −3.5 meV. [(c1) and (c2)] μb = −2 meV. Parameters are chosen to be as realistic as possible for a
GaAs quantum well structure embedded to a microcavity. The units of the color contour are meV−1 in all the figures. For concrete definition
of L(q,ω),S(q,ω),μb,δ,γ , and κ , as well as the explicit value of the parameters, see Secs. II and III.
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FIG. 3. (a) Model driven-dissipative electron-hole-photon system. Electrons and holes are supplied to the system from an electron-hole
bath with a thermalization rate γ . In the system, electrons and holes interact attractively with each other with a coupling constant −U , and also
pair-annihilate (pair-create) into (from) photons with the coupling constant g. The created photons in the system leak out to a vacuum with a
decay rate κ . [(b) and (c)] Dispersion of the conduction band (“C.B.”), the valence band (“V.B.”), and the cavity photon, shown in the picture
before (b) and after (c) employing the gauge transformation, described in the paragraph below Eq. (11). In the left panel of (b), the valence
band is described in the “electron picture,” while in the center panel of (b) and (c), it is described in a “hole picture.” Here, the bath drives the
electron-hole carriers to the Fermi distribution [Eq. (8)], characterized by the bath-chemical-potential μb and the temperature Tb. In the right
panel, photon dispersion, as well as an exciton state “X,” which lies at h̄ωX = Eg − Ebind

X , are schematically shown. The detuning δ is defined
as the energy difference between the photon energy at q = 0 and the exciton energy, i.e., δ = h̄ωcav − h̄ωX.

nonequilibrium redistribution of photons, and (3)
nonequilibrium-induced pair-breaking effects [26,27,53,54]
where the dissociated carriers behave as an absorption medium
that screens the gain from the GB.

The rest of our paper is organized as follows. In Sec. II,
we explain our model. In Sec. III, we formulate our combined
theory of Hartree-Fock-Bogoliubov approximation with the
generalized random phase approximation, extended to the
Keldysh formalism. In Sec. IV, we analyze the PL and
gain/absorption spectra of a driven-dissipative electron-hole-
photon condensate. In Sec. V, we perform a systematic study
on the visibility of the GB, in terms of the pumping power,
decay rate of photons, and the detuning. In Sec. VI, we give a
summary of this paper.

II. MODEL DRIVEN-DISSIPATIVE
ELECTRON-HOLE-PHOTON SYSTEM

The model driven-dissipative electron-hole-photon system
we consider in this paper is shown schematically in Fig. 3(a)
[19,20,26–28], which consists of the system, an electron-hole

bath, and a vacuum. In this model, the photon pumping of car-
riers, as well as its thermalization is modeled as an attachment
of an electron-hole bath to the system. The bath continuously
injects electron-hole carriers to the system and thermalizes
them with a thermalization rate γ . Then, the injected carriers
in the system pair annihilate (or pair-create) to photons. The
created photons leak out to the vacuum with a decay rate κ ,
driving the system into a nonequilibrium steady state.

The above model is described by the Hamiltonian H =
Hs + Ht + Henv. Hs describes the relevant system consisting
of electrons in the conduction band, holes in the valence band,
and cavity photons, given by

Hs =
∑
p,σ

εeh
p c†pσ c pσ +

∑
q

εph
q a†

qaq

−U
∑

p, p′,q

c
†
p+q/2,ec

†
− p+q/2,hc− p′+q/2,hc p′+q/2,e

+ g
∑
p,q

[a†
qc− p+q/2,hc p+q/2,e + H.c.]. (2)
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Here, cp,σ=e(h) and aq are an annihilation operator of an
electron (hole) and a cavity photon, respectively. The first
term in Eq. (2) is the kinetic term of the electrons and holes,
which is assumed to have the same mass meh and the kinetic
energy εeh

p = h̄2 p2/(2meh) + Eg/2 (Eg is an energy gap of
the semiconductor quantum well). Here, we have transformed
the empty states of the valence band in the “electron picture”
shown in the left panel of Fig. 3(b) (where the kinetic energy of
electrons in the valence band is given by −εeh

p ) to the valence
band holes shown in the center panel of Fig. 3(b) (where the
kinetic energy of holes in the valence band is given by εeh

p ).
We also briefly note that σ = e,h represents the electron and
hole component in our notation (not the spins of the band), and
have neglected the spin degrees of freedom.

The second term describes the kinetic term of cavity
photons with the kinetic energy ε

ph
q = h̄ωcav + h̄2q2/(2mph)

[schematically shown in the right panel of Fig. 3(b)]. Here,
mph = n2

c h̄/c(2π/λ) is a cavity photon mass, and h̄ωcav =
(c/nc)h̄(2π/λ) is assumed to be controllable by varying the
microcavity length λ (nc is the reflactive index of the cavity).

The third term describes an attractive interaction between
electrons and holes, and the fourth term describes the dipole
coupling between electron-hole carriers and photons within the
rotation wave approximation. Here, the interaction between
electrons and holes is assumed to be an attractive contact-type
interaction −U < 0, instead of a realistic long-range Coulomb
interaction. We expect that this simplification will not affect the
low-energy excitation properties, at least in a qualitative way,
since for both the cases, the gapless mode is present, attributed
to the neutrality of the electron-hole-photon condensate where
the Anderson-Higgs mechanism is absent [55]. g describes
the dipole-coupling strength between the electron-hole carriers
and photons.

For latter use, it is useful to point out that, in the absence of
cavity photons, an electron and a hole forms an exciton in the
dilute limit. The energy level of this state lies at h̄ωX = Eg −
Ebind

X [“X” in the right panel of Fig. 3(b)], where Ebind
X is the

exciton binding energy. This allows us to define the detuning
parameter between the cavity photon and the exciton state [see
the right panel of Fig. 3(b)]

δ = h̄ωcav − h̄ωX. (3)

Although the formalism we develop in this paper can be
applied to any Wannier-type polariton systems, in this paper,
we set the parameters to be as realistic as possible for a
GaAs quantum well structure embedded in a microcavity.
We set meh = 0.068m0, mph = 3 × 10−5m0 (where m0 is the
electron mass), Eg = 1.624 eV, and the cutoff wave number
kc = 2π/a = 1360 μm−1 (where a = 4.6 nm is the lattice
constant).

The magnitudes of U and g are determined to reproduce
the measured exciton and polariton energy level in the GaAs
quantum well structure. As explained in Appendix A, we
have chosen U = 5.2 meV/μm2 in order to reproduce the
exciton spectrum to lie at h̄ωX = 1.614 eV in the dilute limit,
where Ebind

X = 10 meV. Similarly, we have chosen the dipole
coupling constant as g = 1.7 meV/μm2 to reproduce the Rabi
splitting of 2gR = 14 meV in the dilute limit on resonance
δ = 0. With these choices of parameters, we have checked that

the lower polariton energy level lie approximately at h̄ωLP =
[h̄ωcav + h̄ωX −

√
δ2 + 4g2

R]/2 (see Fig. 18 in Appendix A.),
consistent with the conventional polariton picture [2].

Electrons and holes are incoherently supplied to the system
via a tunneling �b from an electon-hole bath, while cavity
photons decay to vacuum via a tunneling �v. These processes
are described by the tunneling Hamiltonian

Ht =
∑

p,P,σ,i

[�bc
†
p,σ bP,σ ei p·r i e−i P ·Ri + H.c.]

+
∑
q, Q,i

[�va
†
qψQeiq·r i e−i Q·Ri + H.c.], (4)

where the bath and the vacuum are described by the
Hamiltonian,

Henv =
∑
P,σ

ε
eh,b
P b

†
P,σ bP,σ +

∑
Q

ε
ph,v
Q ψ

†
QψQ . (5)

Here, bP,e(h) is an annihilation operator of a bath electron
(hole), and ψQ is an annihilation operator of a vaccum photon.
ε

eh,b
P,e(h) and ε

ph,v
Q are the kinetic energy of bath electrons

(holes) and vacuum photons, respectively. We have assumed
in Eq. (4) that the particles tunnel from random positions r i

in the system to Ri in the bath or vacuum (i = 1,2, . . . ,Nt)
[56]. As derived in Appendix B within the second-order Born
approximation, these couplings to the bath and the vacuum
induce the thermalization rate of electron-hole carriers,

γ = πNtρb|�b|2, (6)

as well as the decay rate to the vacuum,

κ = πNtρv|�v|2, (7)

where ρb(v) is the bath (vacuum) density of states assumed to
be constant. In this paper, we set the thermalization rate to
γ = 4 meV.

The bath and the vacuum are assumed to be large compared
to the system, and they stay in an equilibrium state. The bath
distribution is given by

fb(ω) = 1

exp[(h̄ω − (μb + Eg/2))/(kBTb)] + 1
, (8)

characterized by its chemical potential μb and temperature
Tb [see Fig. 3(b)]. The electron-hole density monotonically
increases as μb increases; thus μb corresponds to the pumping
power in our model. The vacuum distribution is assumed to
vanish, i.e., bv(ω) = 0.

In this paper, we analyze steady-state properties of the Bose-
condensed phase of the above model, characterized by the order
parameter [18,57,58],

�(t) = U
∑

p

〈c− p,hc p,e〉 − g〈a0〉. (9)

We employ an steady-state ansatz [19,20,26–28,53,54]

�(t) = �0e
−i(2μ+Eg)t/h̄, (10)

where we have introduced a parameter μ, which works as the
“chemical potential” of the system. With our choice of the
order parameter [Eq. (9)], a single-particle excitation energy
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is given by a conventional form,

E p =
√

(ε p − μ)2 + �2
0, (11)

as derived in Appendix B.
In explicit calculations, we perform below, it is convenient

to employ the gauge transformation c p,σ→ei(μ+Eg/2)t/h̄c p,σ ,

bP,σ → ei(μ+Eg/2)t/h̄bP,σ , aq → ei(2μ+Eg)t/h̄aq , and ψQ →
ei(2μ+Eg)t/h̄ψQ in order to formally eliminate the time
dependence of the order parameter in Eq. (9) [19,20,26–
28,53,54]. In practice, this transformation is performed
by replacing εeh

p , εeh,b
q , ε

ph
q , εv

Q , and μb by ξ p = εeh
p −

μ − Eg/2, ξ b
P = ε

eh,b
P − μ − Eg/2, ξ

ph
q = ε

ph
q − 2μ − Eg,

ε
v,ph
Q − 2μ − Eg, and μb − μ, respectively. By this

transformation, the origin of the cavity photon energy
h̄ω is also shifted as h̄ω′ = h̄ω − 2μ − Eg. The resulting
energy levels are schematically described in Fig. 3(c).

III. GENERALIZED RANDOM PHASE APPROXIMATION

We now develop a generalized random phase approxi-
mation (GRPA) combined with the Hartree-Fock-Bogoliubov
(HFB) theory extended to the Keldysh formalism, to analyze
photoluminescence (PL) and gain/absorption spectra of an
exciton-polariton condensate in a nonequilibrium steady state.
In this approach, we first determine the nonequilibrium steady
state of the Bose-condensate within the HFB-Keldysh theory,
and then compute the fluctuations around that steady state
to obtain the optical properties. The HFB-Keldysh theory
of the above model [Eqs. (2)–(5)] has been shown [26–28]
to capture the essential features of the BCS-BEC crossover
[13–15] and their connection to a conventional semiconductor
laser. Since our GRPA formalism treats fluctuations in a fully
consistent manner to the HFB-Keldysh theory, we can safely
analyze optical properties in this BEC-BCS-laser crossover
context.

The steady-state solution within the HFB-Keldysh theory can be obtained by solving the steady-state gap equation, given by
[26–28,53,54] (for derivation, see Appendix B)

1

Ueff
=

∑
p

∫
h̄dω

π

F−(ω)h̄ω + F+(ω)[ξ p + iγ ]

[(h̄ω − E p)2 + γ 2][(h̄ω + E p)2 + γ 2]
. (12)

Here, F±(ω) = [F (ω) ± F (−ω)]/2 and F (ω) = γ [1 − 2fb(ω)].

Ueff = U + g2

h̄ωcav − 2μ − Eg − iκ
(13)

describes the effective interaction between the electrons and holes, where the first term is a bare electron-hole interaction, and
the second arises from a second-order process of photon emission and absorption. From the (complex) gap equation (12), we
determine the order parameter �0 and μ.

Once all the parameter sets of the steady state (�0,μ) are determined by solving Eq. (12), we can move on to the analysis of
optical properties. In exciton-polariton experiments, PL is measured by detecting the energy of the leaked-out photons from the
cavity in an angle-resolved way. Strictly speaking, the reflectance of the Bragg mirror which determines the decay rate of the
photons from the microcavity has an angle θ (= arctan(|q|/(2πλ)) dependence, which, however, are negligibly small as long as
we consider small angle θ 	 1. Similarly, the energy dependence of cavity photons on the leakage rate is also negligible in the
energy region that is measured [2]. As a result, the intensity of PL is nearly proportional to the occupied spectral weight function
of the cavity photons,

L(q,ω) = 1

2π

∫ ∞

−∞
d(t − t ′)e−iω(t−t ′)〈a†

q(t ′)aq(t)〉. (14)

We simply call L(q,ω) “PL” in this paper. This quantity can be obtained by computing the Nambu-Keldysh Green’s function of
the cavity photons in a steady state,

D̂(q,t − t ′) =
(

D̂aa(q,t − t ′) D̂ab(q,t − t ′)
D̂ba(q,t − t ′) D̂bb(q,t − t ′)

)
=

(
D̂R(q,t − t ′) D̂K(q,t − t ′)

0 D̂A(q,t − t ′)

)

= −i

(
θ (t − t ′)〈[Âq(t) �, Â

†
q(t ′)]〉 〈Âq(t) � Â

†
q(t ′) + Â

†
q(t ′) � Âq(t)〉

0 θ (t ′ − t)〈[Âq(t) �, Â
†
q(t ′)]〉

)
. (15)

Here, we have introduced a Nambu field of cavity photons,

Âq =
(

aq

a
†
−q

)
≡

(
Aq,1

Aq,2

)
(16)

and

(Âq(t) � Â†
q(t ′))s,s ′ ≡ Aq,s(t)A

†
q,s ′ (t ′) =

(
aq(t)a†

q(t ′) aq(t)a−q(t ′)

a
†
−q(t)a†

q(t ′) a
†
−q(t)a−q(t ′)

)
s,s ′

, (17)

(Â†
q(t ′) � Âq(t))s,s ′ ≡ A

†
q,s ′ (t ′)Aq,s(t) =

(
a
†
q(t ′)aq(t) a−q(t ′)aq(t)

a
†
q(t ′)a†

−q(t) a−q(t ′)a†
−q(t)

)
s,s ′

. (18)
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PL can be obtained by taking the (1,1)-component in Nambu space of the lesser component D̂< = [−D̂R + D̂A + D̂K]/2,

L(q,ω) = i

2π

∫ ∞

−∞
d(t − t ′)eiω(t−t ′)D<

11(q,t − t ′) = i

2π
D<

11(q,ω). (19)

One can also compute the gain/absorption spectrum S(q,ω) from Eq. (15) as

S(q,ω) = − 1

π
Im

∫ ∞

0
d(t − t ′)eiω(t−t ′)〈[aq(t),a†

q(t ′)]〉 = − 1

π

∫ ∞

−∞
d(t − t ′)eiω(t−t ′)ImDR

11(q,t − t ′) = − 1

π
ImDR

11(q,ω), (20)

which describes absorption (S(q,ω) > 0) or gain (S(q,ω) < 0) of photons in the cavity.
From below, for convenience, we employ the gauge transformation described in the paragraph below Eq. (11). To distinguish

the gauge-transformed quantities from the quantities written in the original picture, we denote them by putting “¯”. For example,
we denote the PL in the gauge transformed picture as L̄(q,ω), which is related to the PL in the original picture L(q,ω) as [see
Fig. 3(c)]

L̄(q,ω + 2μ + Eg) = L(q,ω). (21)

PL and gain/absorption spectra are determined by fluctuations of the condensate around the steady state. To compute them, they
must be treated in a consistent manner with the approximation employed in the computation of the steady state, otherwise they
violate the gauge invariance of the system (Ward’s identity [59]). This becomes especially important when discussing collective
excitations of the steady state, since the gauge invariance is directly related to the appearance of a gapless mode [19,20,53]
(the Goldstone’s theorem [60]). In our HFB-Keldysh case, Fig. 4 summarizes the diagrams that satisfies the above demand. (An
anologous case is studied for equilibrium case in Ref. [58], in the context of an ultracold Fermi gas.) Here, Fig. 4(a) describes
the Dyson’s equation for the (gauge-transformed) cavity photon Green’s function ˆ̄D,

ˆ̄Dα,β(q,ω) = ˆ̄D0
α,β(q,ω) + ˆ̄D0

α,α′ (q,ω) ˆ̄�ph
α′,β ′ (q,ω) ˆ̄Dβ ′,β(q,ω), (22)

FIG. 4. Diagrammatic expression of the dressed Green’s function D̂. (a) Dyson’s equation for the dressed photon Green’s function D̂. (b)
Photon self-energy �̂ph. (c) Pairing fluctuations �̂U induced by coupling −U . Here, the double and the single wavy line denote the dressed photon
Green’s function D̂ and D̂0, respectively. The solid line describes the electron-hole single-particle Green’s function in the nonequilibrium steady
state Ĝ. The dotted line and the open circle represent the electron-hole coupling −U and photon-electron-hole dipole coupling g, respectively.
The dashed-wavy line represents B̂v, and the solid rectangle describes the tunneling �v. Greek indices α,β,etc.(= +,−) denotes the indices of
the Keldysh space.
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where a free Green’s function of the cavity photons is given by

ˆ̄D0(q,ω) =
(

ˆ̄D0
aa(q,ω) ˆ̄D0

ab(q,ω)
ˆ̄D0

ba(q,ω) ˆ̄D0
bb(q,ω)

)
=

(
ˆ̄D0R(q,ω) ˆ̄D0K(q,ω)

0 ˆ̄D0A(q,ω)

)

=
([

(h̄ω + iδ)τ3 − ξ
ph
q

]−1 −πi(1 + 2bph(ω))δ
(
h̄ωτ3 − ξ

ph
q

)
0

[
(h̄ω − iδ)τ3 − ξ

ph
q

]−1

)
. (23)

Here, τi(i = 1,2,3) are the Pauli matrices acting on the Nambu space. Equation (22) can be formally solved as

ˆ̄DR(q,ω) = [
[ ˆ̄D0R(q,ω)]−1 − ˆ̄�R

ph(q,ω)
]−1

, (24)

ˆ̄DA(q,ω) = [
[ ˆ̄D0A(q,ω)]−1 − ˆ̄�A

ph(q,ω)
]−1

(= [ ˆ̄DR(q,ω)]†), (25)

ˆ̄DK(q,ω) = ˆ̄DR(q,ω) ˆ̄�K
ph(q,ω) ˆ̄DA(q,ω) + [

1 + ˆ̄DR(q,ω) ˆ̄�R
ph(q,ω)

] ˆ̄D0K(q,ω)
[
1 + ˆ̄�A

ph(q,ω) ˆ̄DA(q,ω)
]
. (26)

Here, bph(ω) in the Keldysh component of ˆ̄D0 is the initial distribution of photons, which however, does not affect the final result,
since the second term in Eq. (26) can be shown to vanish as long as Im�R

ph(ω) 
= 0 for arbitrary ω. The self-energy for cavity
photons

ˆ̄�ph(q,ω) =
(

ˆ̄�ph
aa(q,ω) ˆ̄�ph

ab(q,ω)
ˆ̄�ph

ba(q,ω) ˆ̄�ph
bb(q,ω)

)
=

( ˆ̄�R
ph(q,ω) ˆ̄�K

ph(q,ω)

0 ˆ̄�A
ph(q,ω)

)
(27)

is given diagramatically in Fig. 4(b), where its explicit form is given by

ˆ̄�ph
α,β (q,ω) = ig2γ̃ α

α′,α′′ [ ˆ̄�U (q,ω)]α
′β ′

α′′,β ′′γ
β

β ′,β ′′ + Nt|�v|2
∑

Q

ˆ̄Bv
α,β ( Q,ω). (28)

The first term of Eq. (28) describes the dipole coupling of photons to the electron-hole pairing fluctuations ˆ̄�U , induced by
electron-hole coupling −U [Fig. 4(c)], given by

[ ˆ̄�U (q,ω)]α,β

α′,β ′ = [ ˆ̄�(q,ω)]α,β

α′,β ′ + i(−U )[ ˆ̄�(q,ω)]α,α′′
α′,α′′′η

α′′,β ′′
α′′′,β ′′′ [ ˆ̄�U (q,ω)]β

′′,β
β ′′′,β ′ . (29)

Here, η
α,α′
β,β ′ ,γ

β ′
α,β , and γ̃

β ′
α,β are vertices at an electron-hole coupling, emission and absorption of photons, respectively, with the

form [61]

η
α,α′
β,β ′ = 1

2
(δα,βδα′,−β ′ + δα,−βδα′,β ′ ), (30)

γ +
α,β = γ̃ −

α,β = 1√
2
δα,β, (31)

γ −
α,β = γ̃ +

α,β = 1√
2
δα,−β. (32)

ˆ̄� in Eq. (29) is the lowest-order pair correlation function, given by

[ ˆ̄�(q,ω)]α,β

α′,β ′ =
(

[�̄−+(q,ω)]α,β

α′,β ′ [�̄−−(q,ω)]α,β

α′,β ′

[�̄++(q,ω)]α,β

α′,β ′ [�̄+−(q,ω)]α,β

α′,β ′

)
, (33)

where

[�̄s,s ′ (q,ω)]α,β

α′,β ′ = −
∑

k

∫ ∞

−∞

h̄dω1

2π
Tr

[
τs

ˆ̄Gα,β

(
k + q

2
,ω1 + ω

2

)
τs ′ ˆ̄Gβ ′,α′

(
k − q

2
,ω1 − ω

2

)]
. (34)

Here, �̂ is calculated using the electron-hole Nambu-Keldysh single-particle Green’s function in the steady state ˆ̄G obtained
within the HFB-Keldysh theory. Their explicit form, as well as their derivation is given in Appendix B.

The second term in Eq. (28) describes the effects of tunneling to the vacuum within the second-order Born approximation,
where

ˆ̄Bv(Q,ω) =
(

ˆ̄Bv
aa(Q,ω) ˆ̄Bv

ab(Q,ω)
ˆ̄Bv
ba(Q,ω) ˆ̄Bv

bb(Q,ω)

)
=

(
ˆ̄BR

v (Q,ω) ˆ̄BK
v (Q,ω)

0 ˆ̄BA
v (Q,ω)

)

=
([

(h̄ω + iδ)τ3 − ξ
ph,v
Q

]−1 −πi(1 + 2bv(ω))δ
(
h̄ωτ3 − ξ

ph,v
Q

)
0

[
(h̄ω − iδ)τ3 − ξ

ph,v
Q

]−1

)
, (35)

245302-7



RYO HANAI, PETER B. LITTLEWOOD, AND YOJI OHASHI PHYSICAL REVIEW B 97, 245302 (2018)

FIG. 5. Calculated steady-state solution on resonance δ = 0, as
a function of the pumping power μb. (a) Order parameter �0. (b)
System “chemical potential” μ.

is a photon Green’s function in the vacuum. The Q summation
in the second term of Eq. (28) can be performed as

Nt|�v|2
∑

Q

ˆ̄Bv(Q,ω) =
(−iκτ3 −2iκ

0 iκτ3

)
. (36)

From the above equations, by numerically computing
ˆ̄�ph(q,ω), we obtain the PL spectrum L(q,ω) [Eq. (14)], as
well as the gain/absorption spectrum S(q,ω) [Eq. (20)].

As a result of our appropriate choice of diagrams, the
obtained dressed Green’s function ˆ̄D(q,ω) correctly satisfies
the Goldstone’s theorem [60] (Thouless criterion [62])

det[ ˆ̄DR(q = 0,ω = 0)]−1 = 0, (37)

where we have used the HFB-Keldysh steady-state gap equa-
tion (12) in the derivation provided in Appendix C. Since the
pole of D̂R(q,ω),

det[ ˆ̄DR(q,ωq)]−1 = 0, (38)

determines the mode dispersion ωq [19,20,53,59], Eq. (37)
assures the appearance of a gapless excitation (with respect to
the condensate energy).

Before ending this section, let us show the steady-state
properties of this system. Figure 5 shows the self-consistent
solution of the steady-state gap equation (12) with various
photon decay rate κ . When the pumping power μb exceeds
a critical value μc

b, a transition to a Bose-condensate phase
occurs (�0 > 0), and the order parameter �0 increases by
further increasing the pumping power. In the equilibrium case
(κ = 0), a diverging behavior of �0 is seen at μb = −5 meV.
Noting that the chemical equilibrium between the system and

FIG. 6. Tomographic view of (a1)–(c1) photoluminescence and
(a2)–(c2) gain/absorption spectra in Fig. 2. [(a1) and (a2)] μb =
−4.9 meV (� μc

b). [(b1) and (b2)] μb = −3.5 meV. [(c1) and (c2)]
μb = −2 meV. The arrows points at GB peak.

the bath is achieved in this limit, μb = μ [Fig. 5(b)], the
divergence of �0 is attributed to the resonant photon mediated
electron-hole coupling, where the second term of Eq. (13)
diverges at μb = μ = (h̄ωcav − Eg)/2 = −5 meV.

When the decay rate κ is turned on, the order parameter �0

is naturally suppressed by nonequilibrium effects. In addition
to the increase of the minimal pumping power μc

b required
to form a Bose-condensate, the divergent behavior seen in the
equibrium caseκ = 0 is also suppressed, due to the suppression
of the resonant photon-mediated interaction. We also see in
Fig. 5(b) that the “chemical potential” of the system μ is always
smaller than the bath chemical potential μb (i.e., μb > μ) in
the nonequilibrium case κ > 0. This occurs so as to induce a
net electron-hole current from the bath to the system [54], to
compensate the photon loss.

IV. PHOTOLUMINESCENCE AND GAIN/ABSORPTION
SPECTRA OF A DRIVEN-DISSIPATIVE

ELECTRON-HOLE-PHOTON CONDENSATE

Our main result has already been shown in Fig. 2, where
the bath chemical potential μb (corresponding to the pump-
ing power) dependence of both the PL L(q,ω) and the
gain/absorption spectrum S(q,ω) are presented. The photon
decay rate is set to κ = 0.5 meV, corresponding to the photon
lifetime of τ ∼ 8 ps. To exhibit them in a quantitative manner,
we have plotted sections through the data as a function of
h̄ω in Fig. 6. We have also plotted a close-up view of the
gain/absorption spectrum in Fig. 7. As already pointed out
in the introduction, the overall structure of the computed PL,
including its pumping power dependence, is in agreement
with experiments. The magnitude of the condensate blue shift
(∼meV), as well as the width of the momentum window of
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FIG. 7. The same data of gain/absorption spectra in Figs. 6(a2)–
6(c2), but plotted in a smaller range. (a) μb = −4.9 meV (�μc

b). (b)
μb = −3.5 meV. (c) μb = −2 meV. The arrows point at the hole
burning from GB.

the flat spectrum (∼μm−1), are in semiquantitative agreement
with the observed PL [35,42]. The visibility of the GB is
strongly suppressed in both the PL and gain/absorption spectra,
although a trace of it is seen as a very weak PL emission and

a small but finite optical gain or a suppression of absorption
band (hole burning) from the GB, as pointed by the arrows in
Figs. 6 and 7, also in agreement with experiments [35,42–45].

The suppression of the GB lies in contrast to what is ob-
tained in the equilibrium case, for both PL and gain/absorption
spectra. In the equilibrium dilute limit (or the so-called BEC
limit in the context of the BCS-BEC crossover, where the
binding energy of the lower polariton is large compared to all
other energy scales, i.e., Ebind

LP � �0,γ ), the gain/absorption
spectrum reduces to that of a repulsively interacting Bose gas
within the Bogoliubov approximation [58,63],

S̄eq,dil(q,ω) ∝ u2
qδ

(
h̄ω − EBog

q

) − v2
qδ

(
h̄ω + EBog

q

)
, (39)

where

EBog
q =

√
εLP

q

(
εLP

q + 2ULPn0
)
, (40)

is the Bogoliubov dispersion, and

u2
q = 1

2

[
εLP

q + 2ULPn0

E
Bog
q

+ 1

]
, (41)

v2
q = 1

2

[
εLP

q + 2ULPn0

E
Bog
q

− 1

]
. (42)

Here, εLP
q = h̄2q2/(2mLP) is the kinetic energy of the lower

polariton (mLP � 6 × 10−5m0 is the lower polariton mass), n0

is the condensate fraction, and ULP is the interaction between
the lower polaritons. The positive contribution from the first
term of Eq. (39) shows that absorption occurs at the NB, while
the negative contribution from the second shows that gain
occurs from the GB. Since the ratio between u2

q and v2
q is order

of unity in the regime |q| <∼
√

mLPULPn0/h̄, the intensity of the
latter is comparable to the former in that regime. Estimating
from the amount of the observed blue shift of the emission
from the condensate in typical experiments [6,35,36,41,42],
the magnitude of ULPn0 should be order of a few milli-electron-
volts (which is in agreement with our calculations), which gives
the GB-visible region of q <∼ O(μm−1). This is numerically
demonstrated by taking the equilibrium limit of our theory
in Fig. 8(a2) [See also the tomographic view in Fig. 9(a2)],

FIG. 8. Calculated (a1)–(c1) photoluminescence and (a2)–(c2) gain/absorption spectra on resonance δ = 0. (a) Equilibrium limit κ = 0,
(b) 0.1, and (c) 0.5 meV. Electron-hole density is fixed at neh = 1.1 × 103 μm−2. (See Appendix B for derivation of neh.) The units of the color
contour are meV−1.
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FIG. 9. Calculated photoluminescence spectra on resonance δ =
0. (a) Equilibrium limit κ = 0, (b) 0.1, and (c) 0.5 meV. Electron-
hole density is fixed at neh = 1.1 × 103 μm−2. (See Appendix B for
derivation of neh.)

where we obtain a strong optical gain from GB comparable
to the intensity of absorption from NB, in contrast to the
nonequilibrium cases seen in Figs. 2(a2)–2(c2).

The GB is clearly seen in the PL in the equilibrium limit,
also opposed to the nonequilibrium case. The PL spectrum
Leq,dil(q,ω) in this limit can be readily calculated from the
gain/absorption spectrum Seq,dil(q,ω) by using the fluctuation-
dissipation theorem [61],

L̄eq,dil(q,ω) = b(ω)S̄eq,dil(q,ω) (43)

∝ u2
qb(ω)δ

(
h̄ω − EBog

q

) + v2
q |b(ω)|δ(h̄ω + EBog

q

)
, (44)

where b(ω) = [exp (h̄ω/(kBTb)) − 1]−1 is the Bose distribu-
tion function. In particular, when Tb = 0, since b(ω; Tb = 0) =
−�(−ω) [where �(x) is a step function],

L̄eq,dil(q,ω; Tb = 0) ∝ v2
qδ

(
h̄ω + EBog

q

)
. (45)

Thus, when an equilibrium distribution is assumed, only the
GB is occupied in the ground state, as shown numerically in
Figs. 8(a1) and 9(a1). This is again in stark contrast to the
nonequilibrium cases [Figs. 2(a1)–2(c1)].

We briefly note that the NB will also be occupied by thermal
effects in the case of finite bath temperature. However, even
in this case, the visibility of the GB is comparable to that of
the NB in the small momentum regime |q| <∼

√
mLPULPn0/h̄.

This is demonstrated in Fig. 10, where we have used the
fluctuation-dissipation theorem (43) to calculate PL at a re-
alistic (bath) temperature Tb = 10 K. The strong visibility
of the GB is attributed to the property that the absolute
value of the Bose distribution |b(ω−)| in the negative energy
region ω− < 0 is always larger than that at positive energy
with the same absolute value ω+ = |ω−|, since |b(ω−)| =
b(ω+) + 1 > b(ω+). Together with the fact that u2

q/v
2
q = O(1)

for |q| <∼
√

mLPULPn0/h̄(=O(μm−1)), from Eq. (43), the
PL intensity of NB and GB are comparable. We conclude
from these considerations that the GB should have comparable
visibility to the NB in the equilibrium case at small momenta.

Figures 8(b1), 8(c1), 8(b2), and 8(c2) show how the PL
and gain/absorption spectra evolve as a function of the decay
rate κ [tomographic view is also shown in Figs. 9(b1), 9(c1),
9(b2), and 9(c2).]. As the decay rate κ increases [Figs. 8(b1)
and 8(c1)], the dispersion gradually evolves from a linear
dispersion to a flat dispersion. At the same time, the NB starts
to get occupied and the emission from the GB gradually gets
smaller. In gain/absorbtion spectra also [Figs. 8(a2)–8(c2)], the
sharp and strong optical gain from GB in the equilibrium limit
gets weaker. These features clearly show that nonequilibrium
effects strongly suppress quantum depletion.

In order to understand the origin of the suppression of GB,
it is useful to express the PL and gain/absorption spectra as

L̄(q,ω) = i

2π
[ ˆ̄DR(q,ω) ˆ̄�<

ph(q,ω) ˆ̄DA(q,ω)]11

= 1

|det[D̄R(q,ω)]−1|2
[(

−(h̄ω + iδ) − ξ
ph
q − [

�̄R
ph(q,ω)

]
22

[
�̄R

ph(q,ω)
]

12[
�̄R

ph(q,ω)
]

21 h̄ω + iδ − ξ
ph
q − [

�̄R
ph(q,ω)

]
11

)

× i

2π
ˆ̄�<

ph(q,ω)

(
−(h̄ω − iδ) − ξ

ph
q − [

�̄A
ph(q,ω)

]
22

[
�̄A

ph(q,ω)
]

12[
�̄A

ph(q,ω)
]

21 h̄ω − iδ − ξ
ph
q − [

�̄A
ph(q,ω)

]
11

)]
11

, (46)

S̄(q,ω) = − 1

2π
Im

{
1

det[D̄R(q,ω)]−1

[ − (h̄ω + iδ) − ξ ph
q − [

�̄R
ph(q,ω)

]
22

]}
. (47)

From these expressions, one can see that the pole h̄ωq of
Eqs. (46) and (47) determined by Eq. (38), which characterizes
the collective motion of the condensate, directly affects PL
and gain/absorption spectra. As discussed in Refs. [19,20]
within the driven-dissipative Dicke model, low-energy prop-
erties of the collective mode can be studied by expanding

det[ ˆ̄DR(q,ω)]−1 in terms of q and ω [53]. By using the
symmetry

det[ ˆ̄DR(q,ω)]−1 = [det[ ˆ̄DR(−q,ω)]−1], (48)

det[ ˆ̄DR(q,ω)]−1 = [det[ ˆ̄DR(q, − ω)]−1]∗, (49)
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FIG. 10. Calculated photoluminescence spectra on resonance δ = 0 at finite (bath) temperature Tb = 10 K in the equilibrium limit κ = 0,
where we used the fluctuation-dissipation theorem (43). (a) μb = −8.4, (b) −8.0, and (c) −7.5 meV. The units of the color contour are meV−1.

together with the Thouless criterion [Eq. (37)], we can restrict
the form of this expansion to [up to O(q2,ω2)],

det[ ˆ̄DR(q,ω)]−1 � −a[(h̄ω)2 + i�h̄ω − cq2], (50)

where a, c, and � are real numbers that are determined from
numerical calculations. The collective mode is then determined
from Eq. (38) as

h̄ωq � −i
�

2
±

√
cq2 − �2

4
, (51)

which is just the diffusive Goldstone mode [19–21,53]
[Eq. (1)]. Note that putting � = 0+ recovers the conventional
acoustic mode realized in the equilibrium limit.

The physical picture of the diffusive Goldstone mode can
be described as follows. In the equilibrium case, the phase of
a macroscopic wave function θ (r,t) approximately obeys the
equation of motion,

∂2

∂t2
θ (r,t) − c∇2θ (r,t) = 0, (52)

giving rise to an acoustic mode with a sound velocity
√

c. In the
driven-dissipative case, on the other hand, particle loss from
the condensate is compensated by the particle injection to the
condensate. Since the injected particles do not know the phase
θ (r,t) of the condensate, these pumped-in particles give rise

to a nonequilibrium-induced “friction” for the phase,

∂2

∂t2
θ (r,t) − c∇2θ (r,t) = −�

∂

∂t
θ (r,t). (53)

Here, � can effectively be regarded as a “coefficient of friction”
of the condensate. Calculating the mode dispersion of Eq. (53)
gives the diffusive Goldstone mode (51) (apart from factor h̄).

In Figs. 11(a1)–11(c1), we have plotted the analytic expres-
sion derived from Eq. (50) of |det ˆ̄DR(q,ω)|−2 [denominator of
Eq. (46)],

a−2

[(h̄ω)2 − cq2]2 + �2ω2
, (54)

and −Im[det ˆ̄DR(q,ω)]−1 [denominator of Eq. (47)] in
Figs. 11(a2)–11(c2),

a−1�ω

[(h̄ω)2 − cq2]2 + �2ω2
, (55)

for various � with a = c = 1. As one sees in the figure,
Eqs. (54) and (55) already partially capture the decay rate κ

dependence of the calculated PL and gain/absorption spectra
in Fig. 8, respectively. That is, as the nonequilibrium parameter
� naturally increases by increase of the photon decay rate κ ,
a strong emission from the flat dispersion start to appear, and
both the NB and the GB are strongly broadened.

The � dependence shown in Fig. 11 is also similar to
the pumping power dependence in Fig. 2. This is due to the
property that, as the pumping power increases, the number of

-1 -0.5  0  0.5

 1

ω

q
-1 -0.5  0  0.5  1

q
-1 -0.5  0  0.5

q

 0.5

 0
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 -1

ω

 0.5

 0

 -0.5

 -1

105

103

101
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(a1) Γ=0.01 (b1) Γ=0.1 (c1) Γ=1

(a2) Γ=0.01 (b2) Γ=0.1 (c2) Γ=1

FIG. 11. Plot of (a1)–(c1) Eq. (54) and (a2)–(c2) Eq. (55). [(a1) and (a2)] � = 0.01. [(b1) and (b2)] � = 0.1. [(c1) and (c2)] � = 1. We set
a = c = 1.
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FIG. 12. Calculated occupied spectra Leh(q,ω) on resonance δ = 0. (a) κ = 0 (equilibrium limit), (b) 0.1, and (c) 0.5 meV. Electron-hole
density is fixed at neh = 1.1 × 103 μm−2. (See Appendix B for derivation of neh.) The units of the color contour are meV−1.

particles in the condensate increases. As a result, the amount of
“friction” that the condensate suffers from gets larger to make
� increase, in agreement with phenomenological discussion
in Ref. [21] and experiments [35,36,42–45]. We emphasize
here that we have obtained these behaviors from microscopic
calculations, in contrast to the phenomenological theory in
Ref. [21].

In PL, there is also another important nonequilibrium
effect, which is the redistribution of photons to higher energy
by pumping and decay. As we have already discussed in
Eq. (45), photons are occupied only at ω < 0 (measured from
the condensate energy) in the equilibrium limit, while in
nonequilibrium cases, the positive energy region ω > 0 starts
to get occupied [see, e.g., Figs. 8(b) and 8(c)]. This can be
explained as follows. In the equilibrium case (κ = 0) where
the chemical equilibrium between the bath and the system is
achieved (μb = μ), the electron and hole distribution in the
bath, are given by

f
eq
b (ω) = �(−ω), (56)

at zero bath temperature. Here, only negative energy ω < 0
carriers are present. As a result, all the electrons and holes
injected to the system have negative energy. This is clearly
indicated in Fig. 12(a) by plotting the occupied spectral weight
function of electrons and holes,

L̄eh(q,ω) = 1

2π

∫ ∞

−∞
d(t − t ′)eiω(t−t ′)〈c†p,e(t ′)c p,e(t)〉, (57)

in the equilibrium limit, where only the lower branch h̄ωcav =
−E p (broadened by γ ) is occupied. Since a photon in the cavity
is created from the pair annihilation process of an electron (ωe)
and a hole (ωh), photons can be distributed only in the negative
energy region ω = ωe + ωh < 0 where the GB lies.

In the nonequilibrium case, on the other hand, the bath
chemical potential μb gets larger than the system “chemical
potential” μ [as shown in Fig. 5(b)], as a natural consequence
of having continuous injection of carriers from the bath to the
system. In this case, the bath electron and hole distribution is
given by

fb(ω) = �(−h̄ω + μb − μ), (58)

where carriers with positive energy 0 < h̄ω(< μb − μ) exist.
As shown in Figs. 12(b) and 12(c), this results in the occupancy
of the upper branch h̄ω = E p (also broadened by γ ), implying
that pairs are partially dissociated in the nonequilibrium case
[26–28,53,54]. This makes it possible for the injected electrons
(ωe) and holes (ωh) to create photons with positive energy
0 < h̄ω = h̄ωe + h̄ωh(<2(μb − μ)), which can give a strong
NB occupation that may readily exceed the GB occupation.

The strong suppression of gain from the GB is also attributed
to the screening effects by the dissociated pairs. In order to
show this, following Ref. [53], we split the lowest-order
correlation function �̂ = �̂inter + �̂intra [Eq. (34)] into the
inter- (�̂inter) and intraband (�̂intra) excitations, as described
schematically in Fig. 13(a). The concrete definition is given in
Appendix D. Here, intraband excitations can be regarded as
“quasiparticle density fluctuations,” since they are excited by
fluctuations in the particle-hole channel (where a particle and
a hole are virtually created within the same branch), as in the
density fluctuations in the normal state [64]. Note that while
the interband excitations can occur both in the equilibrium and
nonequilibrium cases, intraband excitations can occur only in
the latter case where the upper branch is occupied owing to the
nonequilibrium-induced pair-breaking effect [Fig. 12(b)].
These nonequilibrium-induced “quasiparticle density

q (μm-1) q (μm-1)
-1 -0.5  0-1 -0.5  0  0.5  0.5  1

 1.610

ħω
 (e

V
)

 1.607

 1.608

 1.609

-4
-2
 0
 2

 4

 ×50

(a)

(b)  ×50 (c)

Inter-band

Intra-band

ħω

pO

FIG. 13. (a) Schematic explanations of inter- and intraband excitations. (b), (c) Calculated gain/absorption spectra S(q,ω) on resonance
δ = 0 where full calculation is employed in (b), while intraband excitations are neglected in (c). We set κ = 0.5 meV and μb = −2 meV. The
units of the color contour in (b) and (c) are meV−1.
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O ω

S(q,ω)

PLωNB

PLωGB

GAωNB

GAωGB

L(q,ω)

FIG. 14. Definition of the NB (GB) peak position of PL
ωPL

NB(GB)(q) and gain/absorption spectra ωGA
NB(GB)(q).

fluctuations” can lead to the screening of interaction that
gives rise to the optical gain from the GB.

Figures 13(b) and 13(c) compare the gain/absorption spec-
trum with and without contribution from intraband excitations,
where the latter is calculated by replacing �̂ to �̂inter in the
calculation of the photon self-energy Eqs. (28)–(34). While
the fully calculated gain/absorption spectra in Fig. 13(b) only
shows hole burning from the GB, a strong optical gain in the
GB is clearly present in Fig. 13(c) when intraband excitations
are neglected. This clearly indicates that the nonequilibrium-
induced quasiparticles work as an absorption medium to screen
the optical gain from GB.

V. VISIBILITY OF GHOST BRANCH

So far, we have shown that nonequilibrium effects strongly
suppress the GB emission. We now systematically identify the
regimes where the GB becomes visible in optical quantities.
For this purpose, we introduce the quantity

ηPL(q) ≡ L̄
(
q,ω = ωPL

GB(q)
)

L̄
(
q,ω = ωPL

NB(q)
) , (59)

which takes the ratio between the PL intensity at GB L̄(q,ω =
ωPL

GB(q)) and that at NB L̄(q,ω = ωPL
NB(q)), to characterize the

visibility of the GB in PL. Here, ωPL
NB(GB)(q) is the peak position

of PL at positive (negative) energy regime ω > 0(ω < 0) for a
fixed momentum q (Fig. 14). We also define a similar quantity
for gain/absorption spectra,

ηGA(q) ≡
∣∣S̄(

q,ω = ωGA
GB (q)

)∣∣∣∣S̄(
q,ω = ωGA

NB (q)
)∣∣ , (60)

to characterize the visibility of the gain from the GB, compared
to the intensity of absorption from the NB. Here, ωGA

NB (q) is the
peak position of absorption from NB in the positive energy
region ω > 0, and ωGA

GB (q) is that of gain [or, minimum of
S(q,ω)] from GB in the negative energy region ω < 0. We
neglect the region where gain from GB is absent [i.e., S(q,ω =
ωGA

GB (q)) > 0 at a given q] in our criterion.
Figure 15(a1) showsηPL(q) at |q| = 0.4μm−1, as a function

of the pumping power and the decay rate. In this figure, we
have plotted contours of ηPL(|q| = 0.4 μm−1), as well as
the regimes where the GB peak vanishes (denoted as “GB
unresolved” region). We briefly note that, as shown in Fig. 16,
we find regimes where a secondary peak of GB appears in
PL. The appearance of the secondary peak is attributed to
the occurrence of Fano resonance [65], where a resonant GB

FIG. 15. Visibility of GB in PL and gain/absorption spectra at
|q| = 0.4 μm−1. [(a1) and (b1)] ηPL(|q| = 0.4 μm−1). [(a2) and
(b2)] ηGA(|q| = 0.4 μm−1). The (red) solid line is a phase boundary
between the normal phase (N) and the Bose-condensed phase. The
(light-blue) solid thin lines are the contour of [(a1) and (b1)] ηPL(|q| =
0.4 μm−1) or [(a2) and (b2)] ηGA(|q| = 0.4 μm−1). In the “GB
unresolved” region, GB peak in PL is absent. In the region beyond
the dashed line, denoted as “DI”, a uniform steady-state condensate is
unstable. [(a1) and (a2)] Photon decay rate κ and the pumping power
μb dependence on resonance δ = 0. [(b1) and (b2)] Detuning δ and
the pumping power μb dependence in the case of κ = 0.5 meV.

channel couples to a continuum state induced by nonequilib-
rium features, such as photon decay and pair-breaking effects.
In determining the “GB unresolved” region in Fig. 16, however,
we have neglected this secondary peak.

In the equilibrium limit, as discussed earlier, only GB
appears in PL, giving ηPL = ∞ in this limit. Note that the
equilibrium solution (κ = 0) only exist at μb = [(h̄ωLP −
Eg)]/2,(h̄ωcav − Eg)/2] = (−8.5 meV, − 5 meV), as shown
in Fig. 5. As the system gets driven away from equilibrium by
the increase of the decay rate κ , ηPL(|q| = 0.4 μm−1) naturally
decreases monotonically (except at small κ with μb >∼ 5 meV,
where no equilibrium solution is found).

10-2

10-1

 100

 101

 102

 1.607  1.608  1.609
ħω (eV)

L(
q,

ω
) (

m
eV

-1
)

FIG. 16. Photoluminescence at |q| = 0.4 μm−1, where we set
μb = −6 meV, κ = 0.3 meV, and δ = 0. The solid arrow points at
the main GB peak, while the dotted arrow points at the secondary GB
peak.
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FIG. 17. Ratio between the photon number nph and the electron-
hole density neh. The detuning is set to be on resonance δ = 0.

The μb dependence of visibility of the GB, on the other
hand, behaves nonmonotonically. That is, at relatively small
decay rate (κ <∼ 0.1 meV), ηPL(q) possesses a maximum
value at a certain pumping power μb. At larger decay rate
(κ >∼ 0.2 meV), GB peak vanishes at large μb (denoted as
“GB unresolved”). These nonmonotonic behaviors can be
understood as follows. At low pumping power close to the
threshold μc

b, the condensate fraction increases as the pumping
power increases, which gives stronger quantum depletion that
makes the visibility of GB clearer. However, at the same time,
the photon number increases more rapidly than the electron
and hole number, as seen in Fig. 17 [66], due to the absence
(presence) of phase filling effects of photons (electrons and
holes). This enhancement of the photon fraction has two
effects; firstly, since the photon component are the ones that
decay to the vacuum (while the electron and hole component
thermalize the system), the nonequilibrium effects that mask
the emission from GB gets more significant. Secondly, since
photons are free particles, the system gets closer to a free
gas. Since GB emission occurs due to the repulsive interaction
between polaritons, GB is suppressed as the gas becomes closer
to a free photonic gas. As a result, visibility of GB exhibits a
nonmonotonic behavior as a function of μb.

A similar behavior is seen in gain/absorption spectra.
Figure 15(a2) shows ηGA(|q| = 0.4 μm−1). Apart from the dif-
ference that ηGA(|q| = 0.4 μm−1) does not diverge in the equi-
librium limit, the overall behavior of ηGA(|q| = 0.4 μm−1) is
similar to ηPL(|q| = 0.4 μm−1), where ηGA(|q| = 0.4 μm−1)
decreases as κ increases, and the nonmonotonical behavior as a
function of the pumping power μb. We note that the “GB unre-
solved” region seen in PL is absent in gain/absorption spectra,
which offers an advantage to detect the GB from this quantity.

Figures 15(b1) and 15(b2) show ηPL(|q| = 0.4 μm−1)
and ηGA(|q| = 0.4 μm−1), respectively, as a function of the
detuning δ and the pumping power μb. As one sees in these
figures, for both PL and gain/absorption spectra, the GB is
more visible for blue detuning (δ > 0). As the system is tuned
to blue (red) detuning δ > 0(<0), the energy cost to excite
photons increases (decreases). Since less (more) electron and
hole injection is needed to compensate the photon loss, this
drives the system to equilibrium (nonequilibrium), resulting
in a stronger (weaker) emission from GB in both PL and
gain/absorption spectra.

We finally note that a dynamical instability (denoted as
“DI” in Fig. 15) occurs in this system, in the regions where
nonequilibrium effects become the most substantial (i.e., large
decay rate, large pumping power, or red detuning). Here,
we have judged the stability of the steady state from the
mode dispersion ωq , determined from the mode equation (38).
Noting that−Im[ωq] is the decay rate of fluctuations around the
steady state, the steady state can be judged to be dynamically
unstable when a mode exhibits negative decay rate Im[ωq] > 0
[19,20,53].

This dynamical instability is triggered by an attractive
interaction between polaritons, which essentially has the same
physical origin as the dynamical instability found in an
electron-hole Bose condensate, discussed in our recent work
[53]. In Ref. [53], we have shown that the nonequilibrium
induced pair-breaking effects gives rise to an anomalous
virtual pair-formation processes of the broken pairs, that
leads to an effective attractive channel to an exciton-exciton
interaction. As we have discussed in the previous section, a
similar electron-hole pair-breaking also occurs in the present
electron-hole-photon condensate. Since the electron and hole
component of polaritons is responsible for the interaction
between polaritons (while the photon component is responsible
for its mobility), the same scenario holds, resulting in an
attractive polariton-polarition interaction, which leads to a
dynamical instability.

VI. SUMMARY

To summarize, we have investigated nonequilibrium effects
on optical properties of a driven-dissipative electron-hole-
photon condensate. We have formulated a combined theory of
a generalized random phase approximation with the Hartree-
Fock-Bogoliubov theory extended to the Keldysh formalism
that can analyze nonequilibrium effects on optical properties
such as photoluminescence (PL) and gain/absorption spectra
of an interacting electron-hole-photon system. Our calculated
PL is in semiquantitative agreement with experiments, where
a blue shift of the condensate energy, the appearance of a dif-
fusive Goldstone mode, and the suppression of the dispersive
profile is reproduced.

We have shown that the appearance of the ghost branch
(GB), which is the sign of the quantum depletion of the
Bose-condensate, is strongly suppressed by nonequilibrium
effects. We have discussed that this is due to the appearance
of the diffusive Goldstone mode, redistribution of photons,
and screening effects by dissociatied electron-hole pairs. It
is pointed out that this suppression cannot be explained by
equilibrium theories, which predicts the emission from GB
to be comparable to that from the normal branch in the
small momentum region, typically at q <∼ O(μm−1). We also
have shown that the GB in PL and gain/absorption spectra is
more clearly seen in the blue detuning case. The possiblity
of realizing a dynamical instability, driven by dissociation
of electron-hole pairs, is also pointed out. We believe our
results deepen the understanding of nonequilibrium, driven-
dissipative many-body physics.

We close our paper by listing some future problems. Al-
though our analysis is giving a semiquantitative agreement to
experiments, there is room for improvement. In our mean-field-
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based analysis for the steady state, only the zero-momentum
coherent photons are concerned. Thus, in the normal phase
(below the threshold pumping power), the calculated photon
number is always zero, which is clearly not the case in
experiments. This leads us to expect that beyond-mean-field
calculations, which take into account contributions from fi-
nite momentum photons [18,58,67–69], may give even better
agreement to experiments in the dilute region, which remains
as our future work.

In the high-density region, on the other hand, the long-range
nature of the realistic Coulomb interaction may play a crucial
role. Since excitons dissociate in the region beyond the Mott
density, the dynamical screening effects [70,71], as well as
pairing fluctuations [68,69] may give large impact on optical
properties, which is again our future work.

Lastly, the details of the physics in the dynamically unstable
region (“DI” in Fig. 15) are unclear in the current stage of
research. It is an interesting question to ask what would happen
there after the dynamical instability take place.
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APPENDIX A: CHOICE OF COUPLING CONSTANTS
U AND g

In this paper, we choose the magnitude of coupling con-
stants U and g that reproduce the exciton and polariton
binding energy in a GaAs quantum well structure embedded
to a microcavity. We first determine the magnitude of U , by
considering the case g = 0 (corresponding to an electron-hole
gas without the microcavity structure) in the dilute equilibrium
limit (�0 = κ = 0). In this case, the system is well described
by a free exciton gas, where the chemical potential of electrons
or holes (which is in the chemical equilibrium with the bath
μb = μ) is known to be negative and have an absolute value of
half the binding energy, i.e., μ = −Ebind

X /2 = −5 meV. This
physically means that, when an electron and a hole is added
to the system, an exciton is formed to earn its binding energy.
We tune the coupling constant U to be consistent with this
picture by solving the gap equation (12) in this limit [note that
F+(ω) = 0 when μb = μ]:

1

U
=

∑
p

∫
h̄dω

π

F−(ω; Tb = 0)h̄ω[(
h̄ω − (

εeh
p + Ebind

X /2
))2 + γ 2

][(
h̄ω + (

εeh
p + Ebind

X /2
))2 + γ 2

] , (A1)

where we find U = 5.2 meV/μm2 for a cutoff momentum kc = 2π/a = 1360 μm−1.
Similarly, the dipole coupling g is determined by using the property that an electron-hole-photon gas in the dilute equilibrium

limit is described by a free lower polariton gas [2]. We demand the chemical potential μ(=μb) to satisfy μ = −Ebind
LP (δ)/2 =

−8.5 meV on resonance δ = 0, by solving the gap equation

1

Ueff (δ = 0,κ = 0)
=

∑
p

∫
h̄dω

π

F−(ω)h̄ω[(
h̄ω − (

εeh
p + Ebind

LP (δ = 0)/2
))2 + γ 2

][(
h̄ω + (

εeh
p + Ebind

LP (δ = 0)/2
))2 + γ 2

] , (A2)

where
Ebind

LP (δ) = 1
2

[ − δ + 2Ebind
X +

√
δ2 + 4g2

R

]
(A3)

is the binding energy of the lower polariton [2]. From this
equation, we find g = 1.7 meV/μm2. Although Eq. (A2) only

deals with the on resonance case (δ = 0), as shown in Fig. 18,
we have checked that our choice of U and g approximately
satisfy μ = −Ebind

LP (δ)/2 in the dilute equilibrium limit in a
wide range of detuning parameter δ.

APPENDIX B: HARTREE-FOCK-BOGOLIUBOV-KELDYSH THEORY OF A DRIVEN-DISSIPATIVE
ELECTRON-HOLE-PHOTON CONDENSATE

Here, we present the Hartree-Fock-Bogoliubov-Keldysh theory of a driven-dissipative electron-hole-photon condensate
[26–28]. The central quantity in this formalism is the Nambu-Keldysh single-particle Green’s function of electrons and holes,
defined by

Ĝ( p,t − t ′) =
(

Ĝaa( p,t − t ′) Ĝab( p,t − t ′)
Ĝba( p,t − t ′) Ĝbb( p,t − t ′)

)
=

(
ĜR( p,t − t ′) ĜK( p,t − t ′)

0 ĜA( p,t − t ′)

)

= −i

(
θ (t − t ′)〈{�̂ p(t) �, �̂

†
p(t ′)}〉 〈�̂ p(t) � �̂

†
q(t ′) − �̂

†
p(t ′) � �̂ p(t)〉

0 θ (t ′ − t)〈{�̂ p(t) �, �̂
†
p(t ′)}〉

)
, (B1)
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FIG. 18. The chemical potential μ in the dilute equilibrium limit
(�0 = κ = 0). The dotted line shows −Ebind

LP (δ)/2, where Ebind
LP (δ) is

given by Eq. (A3).

which obeys the Dyson’s equation [61],

Ĝα,β ( p,ω) = Ĝ0
α,β ( p,ω) + Ĝ0

α,α′ ( p,ω)

× �̂α′,β ′ ( p,ω)Ĝβ ′,β ( p,ω). (B2)

Here, we have introduced a Nambu representation of the
electron-hole operator,

�̂ p =
(

c p,e

c
†
− p,h

)
≡

(
� p,1

� p,2

)
, (B3)

as well as the operations [61]

(�̂ p(t) � �̂†
p(t ′))s,s ′ ≡ � p,s(t)�

†
p,s ′ (t ′) =

(
c p,e(t)c†p,e(t ′) c p,e(t)c− p,h(t ′)

c
†
− p,h(t)c†p,e(t ′) c

†
− p,h(t)c− p,h(t ′)

)
s,s ′

, (B4)

(�̂†
p(t ′) � �̂ p(t))s,s ′ ≡ �

†
p,s ′ (t ′)� p,s(t) =

(
c
†
p,e(t ′)c p,e(t) c− p,h(t ′)c p,e(t)

c
†
p,e(t ′)c†− p,h(t) c− p,h(t ′)c†− p,h(t)

)
s,s ′

. (B5)

We have assumed that the system is in a uniform steady state. Below, we employ the gauge transformation described in the
paragraph below Eq. (11), in order to formally eliminate the time dependence of the order parameter in Eq. (9). A free single-particle
Green’s function is given by

ˆ̄G0( p,ω) =
( ˆ̄G0

aa( p,ω) ˆ̄G0
ab( p,ω)

ˆ̄G0
ba( p,ω) ˆ̄G0

bb( p,ω)

)
=

(
ˆ̄G0R( p,ω) ˆ̄G0K( p,ω)

0 ˆ̄G0A( p,ω)

)

=
(

[h̄ω + iδ − ξ pτ3]−1 −2πiτ3(1 − 2f (h̄ωτ3))δ(h̄ω − ξ pτ3)

0 [h̄ω − iδ − ξ pτ3]−1

)
, (B6)

and

ˆ̄�( p,ω) =
(

ˆ̄�aa( p,ω) ˆ̄�ab( p,ω)
ˆ̄�ba( p,ω) ˆ̄�bb( p,ω)

)
=

(
ˆ̄�R( p,ω) ˆ̄�K( p,ω)

0 ˆ̄�A( p,ω)

)
, (B7)

is the self-energy that incorporates interaction effects in a nonequilibrium situation.
The self-energy in this HFB-Keldysh framework is given by �̂ = �̂HFB + �̂env. The HFB self-energy �̂HFB, represented

diagramatically in Fig. 19(a), is given by [26–28,58,59]

ˆ̄�HFB
α,β ( p,ω) = iU

∑
p′

∫ ∞

−∞

h̄dω

2π

∑
α′,β ′=±

∑
s,s ′=±

η
α,α′
β,β ′δs,−s ′Tr[τs

ˆ̄Gβ ′,α′ ( p′,ω)]τs ′

− ig2
∑

p′

∫ ∞

−∞

h̄dω

2π

∑
α′,β ′=±

∑
γ,γ ′=±

γ α′
α,β

[
D̄0

neq

]
α′,β ′ (0,0)γ̃ β ′

γ ′,γ Tr[τ− ˆ̄Gγ,γ ′ ( p′,ω)]τ+

− ig2
∑

p′

∫ ∞

−∞

h̄dω

2π

∑
α′,β ′=±

∑
γ,γ ′=±

γ̃ α′
α,β

[
D̄0

neq

]
β ′,α′ (0,0)γ β ′

γ ′,γ Tr[τ+ ˆ̄Gγ,γ ′ ( p′,ω)]τ−

= iU
∑

p′

∫ ∞

−∞

h̄dω

2π

∑
s,s ′=±

1

2
δs,−s ′

(
Tr[τs

ˆ̄GK( p′,ω)] 0

0 Tr[τs
ˆ̄GK( p′,ω)]

)
α,β

τs ′
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− ig2
∑

p′

∫ ∞

−∞

h̄dω

2π

1

2
D̄0R

neq(0,0)

(
Tr[τ− ˆ̄GK( p′,ω)] 0

0 Tr[τ− ˆ̄GK( p′,ω)]

)
α,β

τ+

− ig2
∑

p′

∫ ∞

−∞

h̄dω

2π

1

2
D̄0A

neq(0,0)

(
Tr[τ+ ˆ̄GK( p′,ω)] 0

0 Tr[τ+ ˆ̄GK( p′,ω)]

)
α,β

τ−. (B8)

The first term in Eq. (B8) describes the direct electron-
hole interaction effects −U , while the second and the third
describe effects by an effective interaction that arises from the
second-order processes of emission and absorption of photons.
In the latter, the decay process of photons is incorporated
in D

0R/A
neq (q,ω), diagrammatically represented in Fig. 19(b),

given by

D̄0R
neq(q,ω) = D̄0R(q,ω) + D̄0R(q,ω)�̄R

phv(ω)D̄0R
neq(q,ω),

(B9)

D̄0A
neq(q,ω) = [

D̄0R
neq(q,ω)

]†
. (B10)

Here,

�̄R
phv(ω) = Nt|�v|2

∑
Q

B̄R
v (Q,ω) = −iκ, (B11)

�̄A
phv(ω) = [

�̄R
phv(ω)

]† = iκ (B12)

describes the decay of cavity photons by tunneling to the
vacuum within the second-order Born approximation [72],
where

B̄R
v (Q,ω) = [ ˆ̄Bv

11(Q,ω)
]R = 1

h̄ω − ξ
ph,v
Q + iδ

, (B13)

B̄A
v (Q,ω) = [

B̄R
v (Q,ω)

]†
(B14)

is the vacuum photon propagator. We have taken the random
average over the tunneling points r i and Ri in obtaining the
first equality of Eq. (B11). In the second equality, we have
assumed a white vacuum with a constant density of states [see
Eq. (7) for the definition of κ]. As is clear from Eq. (B11), the
coupling to the vacuum induces the photon lifetime of

τ = 2πh̄

κ
. (B15)

Thus κ can be interpreted as the decay rate of photons from
the cavity. D̄0 is a free Green’s function of cavity photons,

D̄0(q,ω) = ˆ̄D0
11(q,ω) =

(
D̄0

aa(q,ω) D̄0
ab(q,ω)

D̄0
ba(q,ω) D̄0

bb(q,ω)

)
=

(
D̄0R(q,ω) D̄0K(q,ω)

0 D̄0A(q,ω)

)

=
([

h̄ω + iδ − ξ
ph
q

]−1 −πi(1 + 2bph(ω))δ
(
h̄ω − ξ

ph
q

)
0

[
h̄ω − iδ − ξ

ph
q

]−1

)
. (B16)

From Eqs. (B9)–(B16), we obtain

D̄0R
neq(q,ω) = 1

h̄ω − ξ
ph
q + iκ

, (B17)

D̄0A
neq(q,ω) = [

D̄0R
neq(q,ω)

]†
. (B18)

The HFB self-energy [Eq. (B8)] is thus obtained as

ˆ̄�HFB
α,β ( p,ω) = i

∑
p′

∫ ∞

−∞

h̄dω

2π

1

2

(
Tr[τ−Ueff

ˆ̄GK( p′,ω)] 0

0 Tr[τ−U ∗
eff

ˆ̄GK( p′,ω)]

)
α,β

τ+

− i
∑

p′

∫ ∞

−∞

h̄dω

2π

1

2

(
Tr[τ+U∗

eff
ˆ̄GK( p′,ω)] 0

0 Tr[τ+Ueff
ˆ̄GK( p′,ω)]

)
α,β

τ−, (B19)

where an effective interaction Ueff is given by Eq. (13). The
retarded component of HFB self-energy [Eq. (B19)] can also
be written as

[ ˆ̄�HFB( p,ω)]R = −Ueff

∑
p′

〈c̄− p′,hc̄ p′,e〉τ+

−U ∗
eff

∑
p′

〈c̄†p′,ec̄
†
− p′,h〉τ−, (B20)

where we have used the relation

〈c̄− p,hc̄ p,e〉 = −i

2
i[〈c̄− p,hc̄ p,e〉 − 〈c̄ p,ec̄− p,h〉]

= − i

2

∫ ∞

−∞

dω

2π
ḠK

12( p,ω). (B21)

245302-17



RYO HANAI, PETER B. LITTLEWOOD, AND YOJI OHASHI PHYSICAL REVIEW B 97, 245302 (2018)

FIG. 19. Diagramatic representation of (a) HFB self-energy �̂HFB

and (b) photon Green’s function coupled to a vacuum D0
neq. Here,

the solid line describes the single-particle Green’s function Ĝ, and
the wavy line denoted with (without) “neq” describes D0

neq(D0). The
dotted line and the open circle represent the electron-hole coupling
−U and photon-electron-hole dipole coupling g, respectively. The
dashed-wavy line represent the vacuum photon Green’s function Bv.
The solid rectangle describes the tunneling �v.

As diagramatically shown in Fig. 20, we can relate 〈ā0〉 and∑
p′ 〈c̄− p′,hc̄ p′,e〉 as

〈ā0〉 = −igD̄0R
neq(0,0)

∑
p′

∫ ∞

−∞

dω

2π
ḠK

12( p′,ω)

= − g

h̄ωcav − 2μ − Eg − iκ

∑
p′

〈c̄− p′,hc̄ p′,e〉, (B22)

by applying the Wick’s theorem. This simplifies Eq. (B20) to

[ ˆ̄�HFB( p,ω)]R = −
⎡
⎣U

∑
p′

〈c̄− p′,hc̄ p′,e〉 − g〈ā0〉
⎤
⎦τ+

−
⎡
⎣U

∑
p′

〈c̄†p′,ec̄
†
− p′,h〉 − g〈ā0〉∗

⎤
⎦τ−

= −�0τ1. (B23)

The pumping of electrons and holes from the bath com-
pensates the photon decay. Figure 21 gives the diagram of the
self-energy that describes these processes,

ˆ̄�env
α,β ( p,ω) = Nt|�b|2

∑
P

ˆ̄Bb
α,β (P,ω)

=
(−iγ −2iτ3γ [1 − 2fb(ωτ3)]

0 iγ

)
α,β

, (B24)

within the second-order Born approximation [72]. Again, we
have taken the random average over the tunneling points r i

and Ri , and assumed a white bath with a constant density of

=<a0>= a0 τ-

gneq

FIG. 20. Diagramatic representation of photon amplitude 〈a0〉.
Here, the solid line describes Ĝ, and the wavy line denoted with “neq”
describes D0

neq. The open circle represent the photon-electron-hole
dipole coupling g.

α,βΣenv =
βα Bb

Γb Γb
*

^

^

FIG. 21. Diagramatic representation of the self-energy of the
bath-system coupling �̂env. The dashed line represent the bath Green’s
function B̂b, and the cross describes the tunneling �b.

states ρb. As γ gives the decay rate of a quasiparticle induced
by coupling to the bath, this quantity can be interpreted as the
thermalization rate.

The retarded component of the Green’s function is obtained
from the Dyson’s equation (B2) and the retarded component
of the self-energies (B23) and (B24) as

ˆ̄GR( p,ω) = [(h̄ω + iγ )1 − ξ pτ3 + �0τ1]−1

= (h̄ω + iγ )1 + ξ pτ3 − �0τ1

(h̄ω + iγ )2 − E2
p

, (B25)

ˆ̄GA( p,ω) = [ ˆ̄GR( p,ω)]†. (B26)

The Dyson’s equation (B2) also gives the Keldysh component
of the Green’s function as

ˆ̄GK( p,ω) = ˆ̄GR( p,ω) ˆ̄�K(ω) ˆ̄GA( p,ω)

+ [1 + ˆ̄GR( p,ω) ˆ̄�R( p,ω)]G0K( p,ω)

× [1 + ˆ̄�A( p,ω) ˆ̄GA( p,ω)], (B27)

where the second term of Eq. (B27) can be shown to vanish. Us-
ing Eq. (B27), a self-consistent condition between Eqs. (B19)
and (B23) can be obtained as [19,20,26–28,53,54]

�0 =
[
U + g

h̄ωcav − 2μ − Eg − iκ

]∑
p

〈c̄− p,hc̄ p,e〉

= −iUeff

∑
p

∫ ∞

−∞

dω

2π

1

2
GK

12( p,ω), (B28)

which gives the nonequilibrium steady-state gap equation (12).
The occupied spectral weight function of electrons and

holes L̄eh(q,ω), defined in Eq. (57), can be calculated by

L̄eh( p,ω) = −i

2π
Ḡ<

11( p,ω), (B29)

where the lesser component of the single-particle Green’s
function Ĝ is defined as

ˆ̄G<( p,ω) = 1
2 [− ˆ̄GR( p,ω) + ˆ̄GA( p,ω) + ˆ̄GK( p,ω)]. (B30)

The number of electrons or holes neh can be calculated as

neh =
∑

p

∫ ∞

−∞
dωL̄eh( p,ω). (B31)

In addition, the number of (condensed) photons nph = |〈ā0〉|2
can also be obtained from Eq. (B22) as

nph =
∣∣∣∣ − g

h̄ωcav − 2μ − Eg − iκ

∑
p

〈c̄− p,hc̄ p,e〉
∣∣∣∣
2

=
∣∣∣∣i g

h̄ωcav − 2μ − Eg − iκ

∑
p

∫ ∞

−∞

dω

2π
Ḡ<

12( p,ω)

∣∣∣∣
2

.

(B32)
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APPENDIX C: DERIVATION OF THE THOULESS CRITERION (37)

Here, we derive the Thouless criterion (37). It is convenient to introduce

ˆ̄�R(q,ω) = − i

2
[[ ˆ̄�(q,ω)]++

−+ + ˆ̄�(q,ω)]+−
−−], (C1)

ˆ̄�A(q,ω) = − i

2
[[ ˆ̄�(q,ω)]+−

++ + ˆ̄�(q,ω)]−−
−+], (C2)

ˆ̄�K(q,ω) = − i

2
[[ ˆ̄�(q,ω)]++

−− + ˆ̄�(q,ω)]−−
++ + ˆ̄�(q,ω)]+−

−+], (C3)

and

ˆ̄�R
U (q,ω) = − i

2
[[ ˆ̄�U (q,ω)]++

−+ + ˆ̄�U (q,ω)]+−
−−], (C4)

ˆ̄�A
U (q,ω) = − i

2
[[ ˆ̄�U (q,ω)]+−

++ + ˆ̄�U (q,ω)]−−
−+], (C5)

ˆ̄�K
U (q,ω) = − i

2
[[ ˆ̄�U (q,ω)]++

−− + ˆ̄�U (q,ω)]−−
++ + ˆ̄�U (q,ω)]+−

−+], (C6)

which enables us to rewrite Eq. (28) as

ˆ̄�ph
α,β(q,ω) = −g2

(
ˆ̄�R

U (q,ω) ˆ̄�K
U (q,ω)

0 ˆ̄�A
U (q,ω)

)
α,β

+
(−iκ −2iκτ3

0 iκ

)
α,β

, (C7)

and Eq. (29) as(
ˆ̄�R

U (q,ω) ˆ̄�K
U (q,ω)

0 ˆ̄�A
U (q,ω)

)
=

(
ˆ̄�R(q,ω) ˆ̄�K(q,ω)

0 ˆ̄�A(q,ω)

)
+ U

(
ˆ̄�R(q,ω) ˆ̄�K(q,ω)

0 ˆ̄�A(q,ω)

)(
ˆ̄�R

U (q,ω) ˆ̄�K
U (q,ω)

0 ˆ̄�A
U (q,ω)

)
. (C8)

From Eq. (C8), we obtain the retarded component of ˆ̄�U ,

ˆ̄�R
U (q,ω) = [1 − U ˆ̄�R(q,ω)]−1 ˆ̄�R(q,ω), (C9)

as well as the photon Green’s function,

[ ˆ̄DR(q,ω)]−1 = [ ˆ̄D0R(q,ω)]−1 − ˆ̄�R
ph(q,ω) = [ ˆ̄D0R

neq(q,ω)
]−1 + g2�R

U (q,ω)

= [1 − U ˆ̄�R(q,ω)]−1
[[

U + g2 ˆ̄D0R
neq(q,ω)

]−1 − ˆ̄�R(q,ω)
][

U + g2 ˆ̄D0R
neq(q,ω)

][ ˆ̄D0R
neq(q,ω)

]−1
, (C10)

where we have introduced [ ˆ̄D0R
neq(q,ω)

]−1 = [ ˆ̄D0R(q,ω)]−1 + iκ. (C11)

Taking the determinant of ˆ̄DR at q = ω = 0, we obtain

det[ ˆ̄DR(0,0)]−1 = det[1 − U ˆ̄�R(0,0)]−1det
[[

U + g2 ˆ̄D0R
neq(0,0)

]−1 − ˆ̄�R(0,0)
]
det

[
U + g2 ˆ̄D0R

neq(0,0)
]
det

[ ˆ̄D0R
neq(0,0)

]−1

= det[1 − U ˆ̄�R(0,0)]−1det

(
1

Ueff
− �̄R

+−(0,0) −�̄R
++(0,0)

−�̄R
−−(0,0) 1

U∗
eff

− �̄R
−+(0,0)

)
det

[
U + g2 ˆ̄D0R

neq(0,0)
]
det

[ ˆ̄D0R
neq(0,0)

]−1

= det[1 − U ˆ̄�R(0,0)]−1 1

4
det

(
Re

[
2

Ueff

] − �̄R
11(0,0) Im

[
2

Ueff

] − �̄R
12(0,0)

Im
[

2
Ueff

] − �̄R
21(0,0) Re

[
2

Ueff

] − �̄R
22(0,0)

)
det

[
U + g2 ˆ̄D0R

neq(0,0)
]

× det
[ ˆ̄D0R

neq(0,0)
]−1

,

(C12)

where ˆ̄�R = 2�̂ ˆ̄�R�−1 with

�̂ = 1√
2

(
1 1

i −i

)
, (C13)

is the lowest-order pair-correlation transformed to the amplitude-phase representation [58]. Recalling

ˆ̄�R(0,0) =
(

�̄R
−+(0,0) �̄R

−−0,0)

�̄R
++(0,0) �̄R

+−(0,0)

)
, (C14)
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and (s,s ′ = +,−)

�̄R
s,s ′ (0,0) = i

2

∑
p

∫ ∞

−∞

dω

2π
Tr[τsḠ

R( p,ω)τs ′ḠK( p,ω) + τsḠ
K( p,ω)τs ′ḠA( p,ω)], (C15)

we can derive the following relations [53]:

�̄R
22(0,0) = i

2

∑
p

∫ ∞

−∞

dω

2π
Tr[τ2

ˆ̄GR( p,ω)τ2
ˆ̄GK( p,ω) + τ2

ˆ̄GK( p,ω)τ2
ˆ̄GA( p,ω)]

=
∑

p

∫ ∞

−∞

dω

2π
Re

[
− i

ḠK
12( p,ω)

�0

]
, (C16)

�̄R
12(0,0) = i

2

∑
p

∫ ∞

−∞

dω

2π
Tr[τ1

ˆ̄GR( p,ω)τ2
ˆ̄GK( p,ω) + τ1

ˆ̄GK( p,ω)τ2
ˆ̄GA( p,ω)]

=
∑

p

∫ ∞

−∞

dω

2π
Im

[
− i

ḠK
12( p,ω)

�0

]
. (C17)

By using the above relations and the nonequilibrium steady-state gap equation (B28), we get

Re

[
2

Ueff

]
− �̄R

22(0,0) = 0, (C18)

Im

[
2

Ueff

]
− �̄R

12(0,0) = 0. (C19)

Substituting these into Eq. (C12) yields the desired Thouless criterion (37).

APPENDIX D: INTER- AND INTRABAND CONTRIBUTIONS TO �̂

Here, we split the lowest-order pair-correlation function �̂ into the inter- (�̂inter) and intraband (�̂intra) contribution. We first
split the single-particle Green’s function Ĝ = Ĝl + Ĝu into the lower (Ĝl) and upper (Ĝu) branch contribution. The retarded
component ĜR = ĜR

l + ĜR
u is split as

ˆ̄GR
l ( p,ω) = 1

2

[
1 − ξ p

E p
τ3 − �0

E p
τ1

]
1

h̄ω + iγ + E p
, (D1)

ˆ̄GR
u ( p,ω) = 1

2

[
1 + ξ p

E p
τ3 + �0

E p
τ1

]
1

h̄ω + iγ − E p
, (D2)

where ĜR
l(u) has a pole at the lower (upper) branch, h̄ω = −E p − iγ (h̄ω = E p − iγ ). The advanced component of the lower

(upper) contribution is given by ĜA
l(u) = [ĜR

l(u)]
†. We also split the Keldysh component ĜK = ĜK

l + ĜK
u to the lower (ĜK

l ) and
upper (ĜK

u ) contributions, by rewritting ĜK in the form

ˆ̄GK( p,ω) = ˆ̄GR( p,ω)F̂ ( p,ω) − F̂ ( p,ω) ˆ̄GA( p,ω)

= ĜK
l + ĜK

u , (D3)

where

ˆ̄GK
l ( p,ω) = ˆ̄GR

l ( p,ω)F̂ ( p,ω) − F̂ ( p,ω) ˆ̄GA
l ( p,ω), (D4)

ˆ̄GK
u ( p,ω) = ˆ̄GR

u ( p,ω)F̂ ( p,ω) − F̂ ( p,ω) ˆ̄GA
u ( p,ω). (D5)

In obtaining the first equality of Eq. (D3), we have introduced the Hermitian matrix F̂ given by

F̂ ( p,ω) = F−(ω)1 + ξ 2
p + γ 2

E2
p + γ 2

F+(ω)τ3 + �0ξ p

E2
p + γ 2

F+(ω)τ1 + �0γ

E2
p + γ 2

F+(ω)τ2, (D6)

where we have used the fact that ĜK is anti-Hermitian (ĜK = −[ĜK]†) and ĜA = [ĜR]†.
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Using these definitions of the lower (Ĝl) and upper (Ĝu) contribution of the single-particle Green’s function, we define the
inter- (�̂inter) and intraband (�̂intra) contribution of �̂ = �̂inter + �̂intra as

[
�̄inter

s,s ′ (q,ω)
]α,β

α′,β ′ = −
∑

k

∫ ∞

−∞

h̄dω1

2π
Tr

[
τs

ˆ̄Gl
α,β

(
k + q

2
,ω1 + ω

2

)
τs ′ ˆ̄Gu

β ′,α′

(
k − q

2
,ω1 − ω

2

)

+ τs
ˆ̄Gu

α,β

(
k + q

2
,ω1 + ω

2

)
τs ′ ˆ̄Gl

β ′,α′

(
k − q

2
,ω1 − ω

2

)]
, (D7)

[
�̄intra

s,s ′ (q,ω)
]α,β

α′,β ′ = −
∑

k

∫ ∞

−∞

h̄dω1

2π
Tr

[
τs

ˆ̄Gl
α,β

(
k + q

2
,ω1 + ω

2

)
τs ′ ˆ̄Gl

β ′,α′

(
k − q

2
,ω1 − ω

2

)

+ τs
ˆ̄Gu

α,β

(
k + q

2
,ω1 + ω

2

)
τs ′ ˆ̄Gu

β ′,α′

(
k − q

2
,ω1 − ω

2

)]
. (D8)
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