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We theoretically study the spin susceptibility of Dirac semimetals using linear-response theory. The spin
susceptibility is decomposed into an intraband contribution and an interband contribution. We obtain analytical
expressions for the intraband and interband contributions of massless Dirac fermions. The spin susceptibility
is independent of the Fermi energy, whereas it depends on the cutoff energy, which is introduced to regularize
the integration. We find that the cutoff energy is appropriately determined by comparing the results for the
Wilson-Dirac lattice model, which approximates the massless Dirac Hamiltonian around the Dirac point. We also
calculate the spin susceptibility of massive Dirac fermions for the model of topological insulators. We discuss
the effect of the band inversion and the strength of spin-orbit coupling.
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I. INTRODUCTION

Topological semimetals, such as Dirac semimetals [1,2],
Weyl semimetals [3–6], and nodal line semimetals [7–10],
possess exotic electronic band structures, which are signif-
icantly different from conventional metals and insulators.
They exhibit fascinating physical properties originating from
their topologically nontrivial band structures. There are many
theoretical proposals to realize topological semimetals, some
of which were experimentally confirmed [11–16]. A Dirac
semimetal has band touching points, and the energy bands are
doubly degenerate. By breaking either inversion symmetry or
time-reversal symmetry, the degeneracy is lifted, and a Dirac
semimetal becomes a Weyl semimetal. The inversion broken
Weyl semimetals are experimentally confirmed [14–16], and
there are several materials including type-II Weyl semimetals
[17]. On the other hand, there are few experimental indications
for the Weyl semimetals with broken time-reversal symmetry,
i.e., the magnetic Weyl semimetals [18–20], although there are
many theoretical predictions [5,7,21–27].

One of the theoretical predictions to realize the magnetic
Weyl semimetals is magnetically doped topological insulators
[21,27–29]. Ferromagnetic ordering in topological insulators
is experimentally observed [30–36]. In these systems, the
ferromagnetic Weyl phase can emerge if the exchange coupling
is sufficiently strong to overcome the energy gap. The magnetic
properties and the topological phase transition induced by
magnetic doping are characterized by the spin susceptibility
of band electrons. Within the mean-field theory, a condition
to exhibit the ferromagnetic ordering is given by J 2χmχs > 1
[28], where J is the exchange coupling constant, χm is the
spin susceptibility of local magnetic moments, and χs is the
spin susceptibility of band electrons. χm obeys the Curie law
and is proportional to an inverse of temperature (χm ∝ 1/T ).
Therefore, the ferromagnetic ordering can be observed at
sufficiently low temperatures as long as χs is finite. If the spin-
orbit coupling is negligible, χs is proportional to the density
of states, i.e., χs is determined by a Fermi-surface property.

In the presence of the strong spin-orbit coupling, however,
occupied states also give considerable contribution, and χs

becomes finite even when the Fermi level resides in the energy
gap. This is the interband effect and known as the Van Vleck
paramagnetism. In the topological insulators and semimetals,
the nontrivial energy band structure originates from the strong
spin-orbit coupling. Therefore, the investigation of χs in these
systems is an important issue to discuss the magnetic phase
transition and the effect of the strong spin-orbit coupling.

In this paper, we study the spin susceptibility of three-
dimensional Dirac semimetals within linear-response theory.
The spin susceptibility is composed of the intraband contribu-
tion χintra and the interband contribution χinter. In the presence
of strong spin-orbit coupling, χinter gives large contributions.
The interband effect is important in the orbital diamagnetism of
the Dirac fermions [37–41]. We obtain analytical expressions
for the spin susceptibility of the massless Dirac fermions. The
spin susceptibility is independent of Fermi energy, whereas it
depends on the cutoff energy, which is introduced by hand to
regularize the integration. We calculate the spin susceptibility
of the Wilson-Dirac lattice model, which reduces to the
massless Dirac Hamiltonian around the � point. We find that
the cutoff energy can be related to some parameters of the
lattice model and that the Fermi-energy dependence of the
spin susceptibility exhibits quantitatively the same behavior
in the two models. We also calculate the spin susceptibil-
ity of massive Dirac fermions, which are models of band
electrons in topological insulators. The spin susceptibility is
finite even in the energy gap because of strong spin-orbit
coupling.

The paper is organized as follows. In Sec. II, we formulate
the spin susceptibility and briefly review the qualitative be-
havior of the spin susceptibility in the presence of spin-orbit
coupling. In Secs. III and IV, we introduce a continuum model
and a lattice model which describe electronic states in a Dirac
semimetal. The spin susceptibility of them is calculated. In
Sec. V, we calculate the spin susceptibility of massive Dirac
fermions. The conclusion is given in Sec. VI.

2469-9950/2018/97(24)/245207(9) 245207-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.245207&domain=pdf&date_stamp=2018-06-20
https://doi.org/10.1103/PhysRevB.97.245207


YUYA OMINATO AND KENTARO NOMURA PHYSICAL REVIEW B 97, 245207 (2018)

II. SPIN SUSCEPTIBILITY

To calculate the spin susceptibility, we introduce the Zee-
man coupling between the electrons and an external magnetic
field. The Hamiltonian is given by

H = H0 + HZeeman, (1)

where H0 is an unperturbed Hamiltonian and the Zeeman term
is given by

HZeeman = gμB

2
σ · B, (2)

where g is the g factor, μB is the Bohr magneton, and σ is
the triplets of Pauli matrices acting on the real spin degree of
freedom. When we discuss the ferromagnetic ordering based
on χs , the g factor should be set to g = 2. In the following,
however, we formulate and calculate the spin susceptibility
with an arbitrary value of the g factor. This is for applicability
our results to magnetic response where the g factor is modu-
lated by the orbital effect [42].

We apply an external magnetic field with infinitely slow
spatial variation,

B = [0,0,B cos(q · r)]. (3)

The slow spatial variation of the field is controlled by the wave-
vector q, which will tend to zero at the end of the calculation.
Within the linear response, the induced magnetization is given
by

M(r) = χs(q)B cos(q · r), (4)

where the spin susceptibility χs(q) is obtained as

χs(q,μ,T ) = 1

V

∑
nmk

−fnk(μ,T ) + fmk−q(μ,T )

εnk − εmk−q

×
∣∣∣〈n,k|gμB

2
σz|m,k − q〉

∣∣∣2
, (5)

where μ is the chemical potential, T is the temperature, V is
the volume of the system, fnk(μ,T ) is the Fermi distribution
function, |n,k〉 is a Bloch state of the unperturbed Hamiltonian,
and εnk is its energy eigenvalue. Taking the long-wavelength
limit |q| → 0, we obtain

lim
|q|→0

χs(q,μ,T ) =
∫ ∞

−∞
dε

(
−∂f (μ,T )

∂ε

)
χs(εF), (6)

where χs(εF) is the spin susceptibility at T = 0 and decom-
posed into

χs(εF) = χintra(εF) + χinter(εF), (7)

where χintra(εF) is the intraband contribution,

χintra(εF) = 1

V

∑
nk

δ(εnk − εF)
∣∣∣〈n,k|gμB

2
σz|n,k〉

∣∣∣2
, (8)

and χinter(εF) is the interband contribution,

χinter(εF) = 1

V

∑
n�=mk

−θ (εF − εnk) + θ (εF − εmk)

εnk − εmk

×
∣∣∣〈n,k|gμB

2
σz|m,k〉

∣∣∣2
. (9)

where θ (ε) is the Heaviside step function. At T = 0, only
electronic states on the Fermi surface contribute to χintra. On
the other hand, all electronic states below the Fermi energy
can contribute to χinter. In order to get a finite χinter, the
commutation relation between the Hamiltonian and the spin
operator has to be nonzero,

[H0,σz] �= 0. (10)

If the commutation relation is zero, the matrix elements in
Eq. (9) vanish, and χinter becomes zero. In the presence of the
strong spin-orbit coupling, χinter gives a large contribution.

III. CONTINUUM DIRAC FERMION MODEL

We consider a model Hamiltonian for electrons in Dirac
semimetals,

Hcontinuum = h̄vτzσ · k, (11)

where v is the velocity and σ and τ are the triplets of Pauli
matrices acting on the real spin and the pseudospin (chirality)
degrees of freedom. We calculate the spin susceptibility of
the above model. In the present model, the chirality is a good
quantum number so that the chirality degrees of freedom just
double the spin susceptibility. Therefore, following calculation
is equally applicable to the Weyl Hamiltonian. The eigenstates
of the Hamiltonian with positive chirality are given by

| + ,k〉 =
(

cos(θk/2)e−iφk/2

sin(θk/2)eiφk/2

)
, (12)

| − ,k〉 =
(− sin(θk/2)e−iφk/2

cos(θk/2)eiφk/2

)
, (13)

where |s,k〉 is the eigenstate with the energy,

εsk = sh̄vk, (14)

where k =
√

k2
x + k2

y + k2
z and s = ±1. θk and φk are the

zenith and azimuth angles of the wave-vector k.
The intraband and interband matrix elements are calculated

as

∣∣∣∣〈s,k|gμB

2
σz|s,k〉

∣∣∣∣
2

=
(

gμB

2

)2

cos2 θk, (15)

∣∣∣∣〈−s,k|gμB

2
σz|s,k〉

∣∣∣∣
2

=
(

gμB

2

)2

sin2 θk. (16)

We obtain an analytical expression for χintra,

χintra(εF) = 1

3π2

(
gμB

2

)2
ε2

F

(h̄v)3
, (17)

where εF = h̄vkF is the Fermi energy. χintra is proportional to
the density of states D(εF),

D(εF) = ε2
F

π2(h̄v)3
, (18)

and corresponds to Pauli paramagnetism [43]. The interband
contribution χinter is also calculated analytically,

χinter(εF) = 1

3π2

(
gμB

2

)2
ε2

c − ε2
F

(h̄v)3
, (19)
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where εc = h̄vkc is a cutoff energy. This corresponds to the
Van Vleck paramagnetism [28,34]. In the present model, there
are infinite states below the Fermi energy so that we introduce
a spherical cutoff with the radius kc in order to regularize the
integration by k.

The spin susceptibility χs , which is the sum of χintra and
χinter, is obtained as

χs(εF) = 1

3π2

(
gμB

2

)2
ε2

c

(h̄v)3
. (20)

There are two important features. First, the spin susceptibility
is independent of the Fermi energy [41] because the Fermi-
energy-dependent terms of χintra and χinter exactly cancel each
other. Therefore, the spin susceptibility is independent of
the temperature as we can see in Eq. (6). Second, the spin
susceptibility is proportional to ε2

c [44]. The spin susceptibility
of surface states in three-dimensional topological insulators,
i.e., two-dimensional massless Dirac fermions, depends on the
cutoff energy linearly [45–47]. We can show the linear cutoff
dependence of the spin susceptibility in two-dimensional
massless Dirac fermions for the in-plane direction, i.e., the x-y
direction. On the other hand, the orbital magnetic susceptibility
logarithmically diverges at the Dirac point [37,39–41] and
decreases off the Dirac point. Therefore, the spin susceptibility
can dominate over the orbital contribution off the Dirac point.

We mention two remarks on the spin susceptibility Eq. (20).
First, the cutoff energy εc is introduced by hand and cannot be
determined within the continuum model scheme. Second, we
consider the continuum model and introduce the cutoff energy
εc, which means the omission of the interband contribution
from the electronic states below the cutoff energy. This con-
tribution can give a constant offset for the spin susceptibility
[41]. Equation (20) does not include the offset. In the following
section, we address these two remarks.

IV. LATTICE DIRAC FERMION MODEL

In this section, we calculate the spin susceptibility of the
Wilson-Dirac-type cubic lattice model,

HLattice = tτz

∑
i=x,y,z

σi sin kia + mkτx,

(21)
mk = m

∑
i=x,y,z

(1 − cos kia),

where h̄vki(i = x,y,z) in Eq. (11) is simply replaced by
t sin kia with the hopping energy t and the lattice spacing
a and these parameters are related as

h̄v = ta. (22)

The second term mkτx is introduced to gap out the point nodes
other than the origin (kx,ky,kz) = (0,0,0). In the vicinity of the
origin, Eq. (22) approximates the continuum model Eq. (11)
within the first order of ki . The eigenstates of the lattice model
are given by

|R,s,k〉 = 1√
2εsk(εsk − t sin kza)

⎛
⎜⎝

t(sin kxa − i sin kya)
εsk − t sin kza

0
mk

⎞
⎟⎠,

(23)

|L,s,k〉 = 1√
2εsk(εsk − t sin kza)

⎛
⎜⎝

−mk

0
−εsk + t sin kza

t(sin kxa + i sin kya)

⎞
⎟⎠,

(24)

where εsk = s
√

t2(sin2 kxa + sin2 kya + sin2 kza) + m2
k and

s = ±1. |R,s,k〉 and |L,s,k〉 correspond to the eigenstates of
the continuum model with positive and negative chiralities.
The intraband matrix elements are calculated as

∑
αβs

δ(εsk − εF)

∣∣∣∣〈α,s,k|gμB

2
σz|β,s,k〉

∣∣∣∣
2

=
∑

s

δ(εsk − εF)

(
gμB

2

)2 2(t2 sin2 kza + m2
k)

ε2
sk

, (25)

and the interband matrix elements are

∑
αβs

−θ (εF − εsk) + θ (εF − ε−sk)

εsk − ε−sk

∣∣∣∣〈α,s,k|gμB

2
σz|β, − s,k〉

∣∣∣∣
2

= [−θ (εF − ε+k) + θ (εF − ε−k)]

×
(

gμB

2

)2 2t2(sin2 kxa + sin2 kya)

ε3
+k

. (26)

Using these matrix elements, we numerically calculate Eqs. (8)
and (9).

Figure 1 shows the spin susceptibility as a function of
the Fermi energy εF. Around the zero energy where the
dispersion relation is linear, the qualitative behavior of the spin
susceptibility of the lattice model is the same as the continuum
model. The spin susceptibility is almost independent of εF. The

εF [t]

χ 
[(

gμ
B
/2

)2 /
(3

π2
ta

3 )
]

25

20

15

10

5

0

30

0 642-2-4-6

χs

χintra

χinter

t/m=1

FIG. 1. The spin susceptibility of the lattice model as a function
of the Fermi energy. The solid black curve is the spin susceptibility
χs , the red dashed curve is the intraband contribution χintra, and the
blue dashed curve is the interband contribution χinter .
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intraband contribution vanishes at zero energy and increases off
zero energy. The interband contribution has a peak structure at
zero energy. In the rest of this section, we discuss the details of
the peak structure and address the two remarks in the previous
section, the cutoff energy and the offset.

The peak structure is related to the commutation relation
between the spin operator and each term in the Hamiltonian.
The Hamiltonian is composed of two terms, the first sin term,
which does not commute with the spin operator,

Hs = tτz

∑
i=x,y,z

σi sin kia, (27)

[Hs,σz] �= 0, (28)

and the second cos term, which commutes with the spin
operator,

Hc = mτx

∑
i=x,y,z

(1 − cos kia), (29)

[Hc,σz] = 0. (30)

Around the Dirac point, the electronic states are mainly
described by Hs, and the interband matrix element is finite. Far
from the Dirac point, on the other hand, the electronic states
are mainly described by Hc, and the interband matrix element
is negligibly small. This means that the interband contribution
Eq. (9) mainly originates from the electronic states around the
Dirac point and there is almost no contribution far from the
Dirac point. Therefore, the interband contribution has the peak
structure and finite value near zero energy. The peak decays
far from the Dirac point where the cos term Hc is the dominant
term in the Hamiltonian HLattice.

Here, we relate the peak width of χinter and the cutoff
energy εc, which is introduced in the previous section. In
the continuum model, the interband contribution vanishes at
the cutoff energy, whereas in the lattice model, the interband
contribution decays far from the Dirac point. Therefore, we
assume that the cutoff energy corresponds to the peak width
and is determined by

t sin(kca/f ) = m[1 − cos(kca/f )], (31)

where kc = εc/(h̄v) is the cutoff wave number. This equation
means the sin term and the cos term are comparable. In the
above equation, we introduce a numerical factor f to fit the spin
susceptibility of the continuum and lattice model as discussed
following. Solving the above equation, we obtain:

kca = 2f arctan

(
t

m

)
. (32)

In Fig. 2, we compare the spin susceptibility of the continuum
model and the lattice model. Using Eqs. (22) and (32), the
two spin susceptibilities are compared in the same unit. The
numerical factor f is determined as

f 	 1.305, (33)

to get quantitative agreement between the two spin suscepti-
bilities at εF = 0. In the vicinity of zero energy, they are in
good agreement with each other. On the other hand, we see
the deviation apart from zero energy because of the deviation
from the linear dispersion relation.

2.0

1.5

0.0
0.0 1.00.5-0.5-1.0

1.0

0.5

εF [εc]

χs

χintra

χinter

Continuum

Lattice

t/m=1

χ 
[(

gμ
B
/2

)2 ε
c2 /

(3
π2

h3
v3

)]

FIG. 2. The spin susceptibility of the continuum model (solid
curves) and the lattice model (dashed curves) as a function of the
Fermi energy.

Figure 3 compares the spin susceptibility of the continuum
model and that of the lattice model at εF = 0 as a function
of t/m. Again we see the quantitative agreement between
the two spin susceptibilities. In a condition that t/m 
 1,
we can derive an approximate analytical expression for the
spin susceptibility of the lattice model. In this condition, the
interband matrix elements Eq. (26) are approximated as

2t2(sin2 kxa + sin2 kya)

ε3
+k

	 2(tka sin θk)2

[(tka)2 + (mk2a2)2/4]3/2
, (34)

4

3

2

0
0.0 1.0

χ 
[(

gμ
B
/2

)2 /
(3

π2
ta

3 )
]

Continuum

Lattice

1

0.80.60.4
t/m ( = tan(kca/2f) )

0.2

FIG. 3. The spin susceptibility at εF = 0 as a function of t/m.
The solid curve represents the continuum model, and the dotted curve
represents the lattice model.
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and the spin susceptibility of the lattice model is calculated as

χs(εF = 0) 	 1

(2π )3

∫ ∞

0
k2dk

∫ π

0
sin θkdθk

∫ 2π

0
dφk

×
(gμB

2

)2 2(tka sin θk)2

[(tka)2 + (mk2a2)2/4]3/2

= 8

3π2

(gμB

2

)2 t

m2a3
. (35)

In the present approximation, Eq. (32) becomes kca 	
2f (t/m). Consequently, we obtain χs(εF = 0) ∝ ε2

c/(h̄v)3,
which is consistent with Eq. (20).

The discussions presented in this section are summarized as
follows. The cutoff energy corresponds to the end of the linear
dispersion relation, and we can estimate the spin susceptibility
calculated for the continuum model by Eqs. (22) and (32). The
constant offset is negligible when the following condition is
satisfied:

[HLattice,σz] 	 0 (|k| � kc). (36)

These criteria are the main results in this paper.
Finally, we mention the effect of the lattice structure. If we

consider a more complicated lattice structure than the cubic
lattice, the Fermi-energy dependence of the spin susceptibility
is qualitatively different from Fig. 1 when the Fermi energy
is away from the Dirac point. However, we expect that the
discussion given in this section is applicable to the complicated
lattice model as long as the low-energy electronic structure
is well approximated by the continuum model Eq. (11) and
Eq. (36) is satisfied.

We consider the Fu-Kane-Mele model [48,49] as an exam-
ple of the other lattice models which host the Dirac semimetal.
The Hamiltonian is given in the Appendix. Here, we investigate
the commutation relation between the spin operator and the
Hamiltonian expanded around the Dirac point in the second
order of the wave number. Around X = 2π/a(0,0,1), the
expanded Hamiltonian is written as

HX = taτykz + 2λSOaτz(σxkx − σyky)

+ ta2

4
τx[k2

z + (kx + ky)kz − kxky]. (37)

The k linear terms correspond to the sin term, and the k2 terms
correspond to the cos term in the Wilson-Dirac lattice model.
The commutation relation between the k linear terms and the
spin operator σ is nonzero. On the other hand, the k2 terms and
the spin operator σ commute with each other. Therefore, the
situation is the same as the Wilson-Dirac lattice model, and the
applicability of the conclusion in this section is approximately
confirmed.

V. MASSIVE DIRAC FERMION MODEL

In this section, we calculate the spin susceptibility of the
massive Dirac Hamiltonian, which can describe an electronic
state of topological insulators. In the following calculation,
we explicitly set the model parameters based on the first-
principles calculation [50] for quantitative estimation of the
spin susceptibility.

The electronic state is described by the effective Hamilto-
nian [50,51]:

H0 = εk + Mkτz + B0τykz + A0(τxσxky − τxσykx), (38)

where εk = C0 + C1k
2
z + C2k

2
‖, Mk = M0 + M1k

2
z + M2k

2
‖ ,

and k‖ = √
k2
x+k2

y . The parameters are taken as C0 =
−0.0083 (eV), C1 = 5.74, C2 =30.4, M1 =6.86, M2 =44.5,

A0 = 3.33, and B0 = 2.26 (eV Å), which are the parameters
for the topological insulator Bi2Se3 [50]. The above
Hamiltonian describes ordinary insulators, Dirac semimetals,
and topological insulators by tuning the parameter M0, which
is related to the strength of the spin-orbit coupling. In the
presence of a magnetic field, the Zeeman coupling is given by

HZeeman = −Mspin · B, (39)

where the spin operators Mspin are written as

Mspin
x = μB

2
(gxy+σx + gxy−τzσx), (40)

Mspin
y = μB

2
(gxy+σy + gxy−τzσy), (41)

Mspin
z = μB

2
(gz+σz + gz−τzσz). (42)

We set the effective g factors as gz+ = 10.65, gz− =
14.75, gxy+ = −0.34, and gxy− = 4.46, which are also the
parameters for the topological insulator Bi2Se3 [50]. In
this model, there are two kinds of Zeeman terms, “orbital-
independent” term (σα) and “orbital-dependent” term (τzσα)
[52]. This originates from the nonequality of the effective
g factors in the two orbitals. In the magnetically doped
topological insulators, the exchange coupling also has the
similar terms, i.e., orbital-independent and orbital-dependent
terms [53]. Therefore, we note that the consideration of these
terms is important also in the magnetic phase transition. The
eigenstates of the above Hamiltonian are given by

|1, + ,k〉 = 1√
2ε

(0)
+k

(
ε

(0)
+k + Mk

)
⎛
⎜⎜⎝

ε
(0)
+k + Mk

0
iB0kz

−iA0k+

⎞
⎟⎟⎠, (43)

|2, + ,k〉 = 1√
2ε

(0)
+k(ε(0)

+k + Mk)

⎛
⎜⎜⎝

0
ε

(0)
+k + Mk

iA0k−
iB0kz

⎞
⎟⎟⎠, (44)

|1, − ,k〉 = 1√
2ε

(0)
−k

(
ε

(0)
−k − Mk

)
⎛
⎜⎜⎝

−iB0kz

−iA0k+
ε

(0)
−k − Mk

0

⎞
⎟⎟⎠, (45)

|2, − ,k〉 = 1√
2ε

(0)
−k

(
ε

(0)
−k − Mk

)
⎛
⎜⎜⎝

iA0k−
−iB0kz

0
ε

(0)
−k − Mk

⎞
⎟⎟⎠, (46)
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FIG. 4. The density of states and the spin susceptibility of (a) an ordinary insulator, (b) a Dirac semimetal, and (c) a topological insulator
as a function of the Fermi energy. The top panels show the energy bands where we set ky = kz = 0.

where k± = kx ± iky and the energy for |n,s,k〉 is given by

εsk = εk + ε
(0)
sk , (47)

ε
(0)
sk = s

√
A2

0k
2
‖ + B2

0k2
z + M2

k . (48)

Based on the symmetry, the spin susceptibility along the x axis and the y axis exhibit the same behavior. Therefore, we
calculate the spin susceptibility along the x axis and the z axis. The intraband matrix elements are calculated as

∑
nm

δ(εsk − εF)
∣∣〈n,s,k|Mspin

x |m,s,k〉∣∣2 = δ(εsk − εF)

(
μB

2

)2 2
[
g2

xy+
(
ε

(0)
sk

2 − A2
0k

2
x

) + 2gxy+gxy−ε
(0)
sk Mk + g2

xy−
(
A2

0k
2
x + M2

k

)]
ε

(0)
sk

2 ,

(49)
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and

∑
nm

δ(εsk − εF)
∣∣〈n,s,k|Mspin

z |m,s,k〉∣∣2 = δ(εsk − εF)

(
μB

2

)2 2
[
g2

z+
(
B2

0k2
z + M2

k

) + 2gz+gz−ε
(0)
sk Mk + g2

z−
(
ε

(0)
sk

2 − B2
0k2

z

)]
ε

(0)
sk

2 .

(50)

The interband matrix elements are
∑
nms

−θ (εF − εsk) + θ (εF − ε−sk)

εsk − ε−sk

∣∣〈n,s,k|Mspin
x |m, − s,k〉∣∣2

= [−θ (εF − ε+k) + θ (εF − ε−k)]

(
μB

2

)2 2
[
g2

xy+A2
0k

2
x + g2

xy−
(
A2

0k
2
y + B2

0k2
z

)]
ε

(0)
+k

3 , (51)

and
∑
nms

−θ (εF − εsk) + θ (εF − ε−sk)

εsk − ε−sk

∣∣〈n,s,k|Mspin
z |m, − s,k〉∣∣2

= [−θ (εF − ε+k) + θ (εF − ε−k)]

(
μB

2

)2 2
[
g2

z+A2
0

(
k2
x + k2

y

) + g2
z−B2

0k2
z

]
ε

(0)
+k

3 . (52)

The spin susceptibility is numerically calculated in a similar
manner to the previous sections. Figure 4 shows the density of
states and the spin susceptibility as a function of the Fermi
energy εF. The top panels in Fig. 4 show the energy bands.
We calculate them for three parameters (a) M0 = 0.28 (eV)
(ordinary insulator), (b) M0 = 0.0 (eV) (Dirac semimetal),
and (c) M0 = −0.28 (eV) (topological insulator). Even in the
current effective model, which includes the anisotropy and
the two types of the Zeeman term, the qualitative behavior
of the interband contribution is similar to that of the previous
models. The interband contribution takes the maximum value
in the energy gap or at the band touching point where the
density of states vanishes. Away from the zero energy, the

0.04

0.03

0.02

0.01

0.00
0.0 0.40.2-0.2-0.4

M0 [eV]
Bi2Se3

χ 
[μ

B
2 /

(e
V

A
3 )]

χzz

χxx

FIG. 5. The spin susceptibility of the x and z directions in the
energy gap as a function of M0. The vertical dashed line corresponds
to the value of M0 for Bi2Se3.

interband contribution monotonically decreases in a similar
manner to the previous model. On the other hand, the intraband
contribution behaves in a slightly different manner from the
previous model. In the previous models, the intraband con-
tribution is proportional to the density of states. In the current
model, the density of states of the valence band is larger than the
conduction band, but the intraband contributions for χzz in the
valence and conduction bands are comparable. This originates
from the cross term of gz+ and gz− in Eq. (50). The cross
term gives a positive contribution in the conduction band and
a negative contribution in the valence band. Consequently, the
intraband contributions in the valence and conduction bands
are comparable. On the other hand, the intraband contributions
for χxx in the valence and conduction bands are not compara-
ble. This is because the effective g factors gxy+ and gxy− have
opposite signs so that the cross term does not work as in the case
of χzz, where gz+ and gz− have the same signs. In Fig. 4(c), the
topological insulator case, there is another important feature.
The intraband contribution for χzz exhibits a peak structure
in the valence band. The peak width corresponds to the band
inverted region. On the other hand, there is no peak structure
in χxx .

In Fig. 5, we plot the spin susceptibility in the energy gap
as a function of M0. The spin susceptibility increases with
the decrease in M0, which means the increase in the spin-orbit
coupling [28,34]. The strong spin-orbit coupling gives the large
interband contribution. χzz is much larger than χxx because the
effective g factors for the z direction are much larger than the
x direction.

VI. CONCLUSION

We have studied the spin susceptibility of the Dirac
semimetals. The spin susceptibility is calculated for the mass-
less Dirac continuum model and the Wilson-Dirac lattice
model. In the massless Dirac continuum model, we have
to introduce the cutoff energy εc in order to regularize the
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integration. The spin susceptibility is independent of the Fermi-
energy εF and proportional to ε2

c . We find that the cutoff energy
is appropriately determined and related to the same parameters
of the lattice model. The cutoff energy corresponds to the
energy where the band dispersion deviates from the linear
dispersion relation. The spin susceptibility of the lattice model
is in quantitatively good agreement with the massless Dirac
continuum model. We also calculate the spin susceptibility of
massive Dirac fermions with the Zeeman coupling including
the orbital-dependent term and the orbital-independent term.
The spin susceptibility along the z axis is enhanced in the
conduction band because of the existence of two types of the
Zeeman term and has the peak structure in the band inverted
region, which are not observed in the spin susceptibility along
the x axis. In this paper, we consider noninteracting Dirac
fermions. Most of the Dirac-Weyl semimetals are realized in
s- and p-electron systems. Therefore, the electron-electron in-
teraction is negligible, and this paper is applicable to them. On
the other hand, the electron-electron interaction is important
in strongly correlated d-electron systems [54,55], such as the
pyrochlore iridates [5,6]. The effect of the electron-electron
interaction for the spin susceptibility is left for the future.

ACKNOWLEDGMENTS

The authors thank Y. Araki and M. Oshikawa for helpful
discussions. This work was supported by Kakenhi Grants-in-
Aid (Grants No. JP15H05854 and No. JP17K05485) from the
Japan Society for the Promotion of Science (JSPS).

APPENDIX: THE FU-KANE-MELE MODEL

In this Appendix, we introduce the Fu-Kane-Mele model,
which is the tight-binding model on the diamond lattice with

the spin-orbit coupling. The Hamiltonian is given as

H = t
∑
〈ij〉

c
†
i cj + i(4λSO/a2)

∑
〈〈ij〉〉

c
†
i σ · (

d1
ij × d2

ij

)
cj . (A1)

c
†
i and ci are creation and annihilation operators for the electron

on the i site. The first term is a nearest-neighbor hopping term
with a hopping parameter t . The second term connects second
neighbors with a spin-dependent amplitude. λSO represents the
strength of the spin-orbit coupling. d1,2

ij are the two nearest-
neighbor bond vectors traversed between sites i and j. a is the
lattice constant. The Hamiltonian in k space is written as

H (k) =
5∑

a=1

da(k)�a, (A2)

where

�(1–5) = (τx,τy,τzσx,τzσy,τzσz), (A3)

and

d1 = t + t(cos x1 + cos x2 + cos x3),

d2 = t(sin x1 + sin x2 + sin x3),

d3 = λSO[sin x2 − sin x3 − sin(x2 − x1) + sin(x3 − x1)],

d4 = λSO[sin x3 − sin x1 − sin(x3 − x2) + sin(x1 − x2)],

d5 = λSO[sin x1 − sin x2 − sin(x1 − x3) + sin(x2 − x3)],

(A4)

where xi = k · ai , a1 = a(0,1,1)/2, a2 = a(1,0,1)/2, and
a3 = a(1,1,0)/2. In this model, there are three Dirac points
at the three inequivalent X points on the 100, 010, and 001
faces of the Brillouin zone.
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