
PHYSICAL REVIEW B 97, 245150 (2018)

Robustness of the biaxial charge density wave reconstructed electron pocket
against short-range spatial antiferromagnetic fluctuations
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Recent experiments on underdoped high-temperature superconductors have shown that a biaxial charge density
wave coexisting with antiferromagnetism is able to account for the hole-doping dependences of the Hall coefficient
and the charge density wave ordering vector. Owing to the loss of long-range order over the range of hole dopings
where charge density waves are observed, however, antiferromagnetism poses a serious challenge to the viability
of Landau quantization and quantum oscillations. Here we make the surprising finding that the states along the
antiferromagnetic Brillouin zone boundary, which are usually the most heavily broadened by antiferromagnetic
fluctuations, become gapped once the biaxial charge density wave forms. This gapping along with the location of
the electron pocket produced by Fermi surface reconstruction at a momentum-space point of high symmetry causes
the single nodal electron pocket to be largely protected against antiferromagnetic fluctuations in strong magnetic
fields, enabling resolved Landau levels and quantum oscillations to remain robust against antiferromagnetic
correlation lengths as short as ∼10 Å.
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I. INTRODUCTION

A preponderance of experiments in the underdoped high-
temperature superconducting cuprates, including x-ray scat-
tering [1–3], magnetic quantum oscillations [4–6], ultrasound
[7], angle-dependent magnetoresistance [8], and thermopower
[9], suggest that the Fermi surface is reconstructed by a biaxial
charge density wave at low temperatures and high magnetic
fields. Reconstruction of the large Fermi surface predicted by
the band structure [see Fig. 1(a)] is proposed to lead to the
creation of a small diamond-shaped electron pocket in high
magnetic fields [shown in magenta in Fig. 1(b)] [10–13], which
can account for both the low frequency observed in quantum
oscillation experiments [14–16] and the sign and magnitude
of the Hall coefficient [17]. Despite the recent success of
the biaxial charge density wave scheme in accounting for the
reconstruction of the states in the nodal region of the Brillouin
zone, it is becoming increasingly clear from combined angle-
resolved photoemission and x-ray scattering studies [18–21]
that a biaxial charge density wave is unlikely to be responsible
for producing the pseudogap in the antinodal region of the
Brillouin zone [22]. Instead of producing a pseudogap, a
biaxial charge density wave has been shown to reconstruct
the antinodal states into open sheets and small hole pockets
[indicated in light gray in Fig. 1(b)] [11,12].

One widely held view is that the pseudogap is of similar
origin to the Mott-insulating state at zero hole doping, with
the dominant interaction within the pseudogap regime being
the antiferromagnet exchange between adjacent Cu sites [23].
In such a scenario, the starting Fermi surface is envisaged
to consist of small hole pockets [similar to those depicted in
magenta in Fig. 1(c)], which are then subject to a charge density
wave instability [24–27]. Biaxial charge density wave Fermi
surface reconstruction continues to produce a diamond-shaped
electron pocket [shown in magenta in Fig. 1(d)], but without

open sheets and small hole pockets being present [24–27].
Advantages of such a scheme are that it can be easily reconciled
both with the hole-doping dependence of the Hall coefficient
[28–30] (prior to formation of the charge density wave phase)
and the doping dependence of the charge density wave ordering
vector [24–27]. A serious disadvantage, however, is that the
absence of long-range antiferromagnetic order causes quasi-
particle states in the vicinity of the antiferromagnetic Brillouin
zone boundary (indicated by a blue dotted line in Fig. 1) to be
heavily broadened, which appears to be in contradiction with
the observation of sharp Landau levels in strong magnetic fields
[31,32].

As a first step towards understanding the effect of antiferro-
magnetic fluctuations on the reconstructed Fermi surface pro-
duced by a biaxial charge density wave, we consider the simple
case in which coexisting antiferromagnetic order is subject to
spatial fluctuations of the ordering vector [31–33]. By opening
a gap, a biaxial charge density wave quenches what would
otherwise be heavily broadened states at the antiferromagnetic
Brillouin zone boundary [i.e., the dotted blue line in Fig. 1(d)].
The reconstructed diamond-shaped electron pocket is therefore
largely protected against antiferromagnetic fluctuations. We
show this to be a crucial ingredient for the realization of sharp
Landau and quantum oscillations in strong magnetic fields.

A key finding of our numerical simulations is that the energy
broadening �̃e

μ of the electron pocket Landau level states is an
order of magnitude lower than that �̃h

μ ≈ h̄vF/ξ previously
estimated for nodal hole pockets [31,32] (where vF is the
Fermi velocity). �̃e

μ is further reduced by orbital averaging
in strong magnetic fields. The creation of a coherent electron
pocket Fermi surface may therefore be an important factor
in the stabilization of biaxial charge density wave order in
strong magnetic fields. Using ξ values obtained from neutron
scattering and nuclear magnetic resonances measurements, we
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FIG. 1. (a) Schematic unreconstructed Fermi surface with the
nodal (magenta) and antinodal (black) regions indicated. A blue
dotted line indicates the antiferromagnetic Brillouin zone bound-
ary. (b) Schematic Fermi surface reconstructed by bidirectional
charge density wave order showing that the nodal states become a
diamond-shaped electron pocket (magenta) while the antinodal states
become small hole pockets and open sheets (gray). (c) Schematic
antiferromagnetic reconstructed Fermi surface consisting of hole
pockets (magenta) intersected by the antiferromagnetic Brillouin
zone boundary. (d) Schematic reconstructed Fermi surface due to
coexisting antiferromagnetic and biaxial charge density wave orders,
showing that the states along the antiferromagnetic Brillouin zone are
gapped.

find our numerical estimates of �̃e
μ and charge density wave

correlation length ξCDW to be consistent with their correspond-
ing experimentally determined quantities in YBa2Cu3O6+x

and HgBa2CuO4+δ .

II. THE MODEL

We consider a recently considered scenario [24,26] in
which a biaxial charge density wave with ordering vectors
QCDW,x = [ 2πδ

a
,0] and QCDW,y = [0, 2πδ

b
] coexists with anti-

ferromagnetism whose ordering vector is QAFM = [π
a
, π

b
]. We

assume the antiferromagnetism to retain a large amplitude
despite the loss of long-range order beyond a hole doping
of p ≈ 0.05, with spatial fluctuations being described solely
in terms of a probabilistic broadening of QAFM [31,32]. We
further assume the antiferromagnetism to have a uniform
coupling and the charge density wave to be of d-wave form
[12]. The antiferromagnetic and charge density wave couplings
used in the calculations (see Appendix) are the approximate
smallest values capable of producing Fermi surfaces consisting
of a single type of pocket in Fig. 2.
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FIG. 2. (a) Schematic unreconstructed Fermi surface (magenta)
of an underdoped cuprate for p = 0.075 and its copy (blue) translated
by the antiferromagnetic ordering vector QAFM. The antiferromag-
netic Brillouin zone boundary is indicated by a dotted line. (b) Same
as in (a) but with multiple copies (gray) translated by all possible
summations and multiples of the charge density wave ordering vectors
QCDW,x and QCDW,y , using δ = 1

3 . (c) Reconstructed Fermi surface due
to antiferromagnetic order consisting of two hole pockets (magenta)
within the first Brillouin zone. (d) Reconstructed Fermi surface due
to coexisting antiferromagnetic and charge density wave order con-
sisting of a single electron pocket (magenta) within the first Brillouin
zone (green dashed line). (e) Simulated Fermi surface spectral weight
for the antiferromagnetic order shown in (c) taking into consideration
the effects of a short correlation length ξ = 10 Å. Ak,ω,σ from Eq. (4)
is convoluted with a Gaussian of width σ = 0.015 × 2π/a to simulate
the experimental resolution. (f) Simulated Fermi surface spectral
weight for the coexisting antiferromagnetic and charge density wave
order shown in (d), again, taking into consideration the effects of
a short antiferromagnetic correlation length and finite resolution.
Details of the Fermi surface reconstruction are contained in the
Appendix.

A. Fermi surface reconstruction

The reconstructed Fermi surface resulting from coexisting
antiferromagnetic and biaxial charge density wave order is
calculated by diagonalizing a Hamiltonian consisting of nested
matrices (see Appendix). Figure 2(a) shows the unrecon-
structed Fermi surface together with its copy translated by
QAFM while Fig. 2(b) shows the same unreconstructed Fermi
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surface with its copies translated by all combinations of
QAFM, QCDW,x and QCDW,y . Figures 2(c) and 2(d) show the
reconstructed Fermi surfaces for antiferromagnetic order and
coexisting antiferromagnetic and biaxial charge density wave
order, respectively. A single electron pocket is obtained in
Fig. 2(d) provided the antiferromagnetic and charge density
wave couplings are of sufficient strength (see Appendix).

We assume the total number of carriers to be conserved upon
reconstructing the Fermi surface, which results in these carriers
being distributed across one or more reconstructed bands. In the
case of coexisting antiferromagnetic and biaxial charge density
wave order, the total number of holes p per unit area contained
within the hole pockets inside the antiferromagnetic Brillouin
zone in Fig. 2(c) is equivalent to the total number of holes per
unit area contained between the reconstructed Brillouin zone
boundary (dashed green line) and electron pocket (magenta)
in Fig. 2(d). It has recently been shown that the conservation
of carriers leads to [25]

δ = 1

2
−

√
1

2

(
p

2
+ Ae

AUBZ

)
+ d2, (1)

where AUBZ = 4π2/ab is the area of the unreconstructed
Brillouin zone and Ae is the area of the electron pocket.
Here, δ refers to the average of its value along the x and
y directions while d � δ refers to half the difference in δ

between the x and y directions. On considering a specific
commensurate case in which δ = 1

3 and d = 0 in Fig. 2(d), we
obtain a single electron pocket whose corresponding quantum
oscillation frequency F = h̄

2πe
Ae ≈ 500 T is similar to that

observed in YBa2Cu3O6+x [8] by using p = 0.075.

B. Short-range antiferromagnetism

The very short ξ in the underdoped cuprates implies that
antiferromagnetism by itself is unlikely to provide a viable
means of Fermi surface reconstruction. A very short ξ implies
the absence of a sharp discontinuity in momentum-space sepa-
rating filled and empty hole pocket states. States in the vicinity
of the antiferromagnetic Brillouin zone that are spanned by the
antiferromagnetic wave vector in Fig. 2(c) are also expected
to be subject to temporal antiferromagnetic fluctuations. When
short-range antiferromagnetism coexists with a biaxial charge
density wave, however, the charge density wave takes over
the primary role of producing a reconstructed Fermi surface
pocket and accompanying sharp discontinuity in momentum
space between filled and empty states. The remaining role
of the antiferromagnetism is then to produce an antinodal
gap, and this can remain robust against the effects of a short
ξ , provided the antiferromagnetic coupling is of sufficient
strength. Since the biaxial charge density wave gaps states
along the antiferromagnetic Brillouin zone boundary that are
spanned by the antiferromagnetic wave vector in Fig. 2(d), the
effect of temporal antiferromagnetic fluctuations on the Fermi
surface is also expected to be reduced.

To model the effect of quasistatic short-range antiferromag-
netic order, we consider the fact that a small deviation qAFM =
[qx,qy] of the antiferromagnetic ordering vector from its mean
value QAFM causes a small shift in the reconstructed Fermi
surface [see Figs. 3(a) and 3(b)]. As previously considered
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FIG. 3. (a) Reconstructed Fermi surface from antiferromagnetic
order with (blue) overlaid with that including a small deviation qAFM

of the ordering vector from QAFM (cyan), using qx = 0.03 × 2π/a

and qy = 0, which is equivalent to displacement in momentum space
of ξ−1 where ξ = 20 Å. (b) Same as (a) but for coexisting short-range
antiferromagnetic and charge density wave order. (c) Magnitude of
the broadening�k,μ for the band closest to the chemical potential in the
case of short-range antiferromagnetic order, with the location of
one of the hole pockets shown. (d) �k,μ for the band closest to
the chemical potential in the case of coexisting short-range anti-
ferromagnetic and charge density wave order, with the location of
one of the electron pockets shown. Corresponding �k,μ may be
several times lower in practice, owing to the renormalization of the
bands required to reproduce the experimental effective mass. (e)
Color-coded approximate direction θk,μ of the broadening for short-
range antiferromagnetic order. (f) Corresponding θk,μ for coexisting
short-range antiferromagnetic and charge density wave order.

elsewhere [32], we assume these deviations to be subject to a
Lorentzian probability distribution of the form

P (qx,qy) = 1

π2

ξ−1

q2
x + ξ−2

ξ−1

q2
y + ξ−2

, (2)

yielding a k-dependent momentum-space broadening of the
electronic states. Such a form considers the periodicity of
the antiferromagnetism to be subject to statistical broadening
while its overall amplitude remains constant. Since the peri-
odicity is given by the gradient of the phase, we must also
assume that the phase varies linearly in space over distances
of order the correlation length ξ . The symmetric form of the

245150-3



N. HARRISON PHYSICAL REVIEW B 97, 245150 (2018)

distribution function nevertheless implies that the phase of the
antiferromagnetism averages to zero over very large distances.

When the reconstructed electronic bands are averaged
according to Eq. (2) over all possible values of qx and qy , the
finite value of ξ causes the electronic states at fixed energy
to be broadened in momentum-space, with the line shape
having a Lorentzian form. One can equivalently consider the
eigenstates at a fixed value of the momentum-space vector k to
be subject to a broadening in energy. The energy broadening
has a Lorentzian line shape that varies as a function of k, and
this can be calculated in a computationally efficient way from
the gradient

�k,μ ≈ 1

ξ
∇εk,μ(qx,qy). (3)

The vectorial form of Eq. (3) provides a means for keeping
track of the qx and qy contributions to the broadening, which
can differ significantly for some values of k. Below, we
show that the orbitally averaged direction of �k,μ can play
an important role in protecting the electron pocket against
excessive Landau level broadening. The subscript μ refers
to our considering only the band closest to the chemical
potential μ.

1. Angle-resolved photoemission

Since the photoemission spectral weight is a map of the
intensity of electrons emitted from electronics states at differ-
ent fixed values of the momentum vector k, for its calculation
we need only be concerned with the k-dependent magnitude
�k,μ of the broadening given by Eq. (3). Figures 3(c) and 3(d)
show the magnitude of the energy broadening calculated for
antiferromagnetic order and coexisting biaxial change density
wave and antiferromagnetic orders, respectively.

Figures 2(e) and 2(f) show the photoemission spectral
weight in the presence of broadening simulated using the
convolution

Ak,ω,σ = 1

π
Im(G) � 1

π

�k,μ

(εμ − ω)2 + �2
k,μ

, (4)

where ω = 0 refers to the Fermi surface. Here G = [(ω +
i�)I − Hk]−1

11 is the Green’s function, � represents a small
uniform broadening of the quasiparticle states (whose origin
is distinct from ξ ), I is the identity matrix, Hk represents the
Hamiltonian H AFM

k or H AFM+CDW
k in the Appendix, and the

subscript 11 refers to the first element.
The calculated photoemission spectral weight in Fig. 2

produces “Fermi arcs” for both antiferromagnetic and co-
existing antiferromagnetic and charge density wave orders.
In the former case, the arc corresponds to one side of the
hole pocket while in the latter it corresponds to one side of
the diamond-shaped electron pocket. Whereas the calculated
Fermi arc for short-range antiferromagnetic order closely
resembles angle-resolved photoemission experimental results
in underdoped YBa2Cu3O6+x [31,34], it overestimates the
spectral weight along the boundary of the antiferromagnetic
Brillouin zone. This excess spectral weight vanishes in Fig. 2(f)
upon incorporating a coexisting biaxial charge density wave
into the simulation.

The charge density wave ordering vectors span the sepa-
ration between hole pockets resulting from antiferromagnetic
Fermi surface reconstruction [see Fig. 2(c)] and also determine
the periodicity of the electron pockets in the extended Bril-
louin zone scheme resulting from coexisting antiferromagnetic
and charge density wave Fermi surface reconstruction [see
Fig. 2(d)]. The charge density wave vectors also span the
separation between the Fermi arcs in Figs. 2(e) and 2(f), as
previously noted [4,18,19].

2. Landau level broadening

Momentum-space broadening caused by short-range an-
tiferromagnetism was previously shown to have an adverse
affect on nodal hole pockets [e.g., those depicted in Fig. 2(c)]
[31,32], with the Landau level broadening becoming too large
for quantum oscillations to be observed once ξ � 100 Å. The
extreme sensitivity of the hole pocket Landau level broadening
to ξ originates from the location of the pocket along the
antiferromagnetic Brillouin zone boundary, where its area is
linearly dependent on qx and qy [see Fig. 3(a)]. The statistical
broadening given by Eq. (2) leads to a distribution of areas

A0 ≈ Ah�μ,0/εF (valid for a quasi-two-dimensional closed
pocket), where Ah is the area of the hole pocket and εF is the
effective Fermi energy (the depth in energy to which states
are filled within the pocket). Since the broadening is of the
same Lorentzian form as that associated with the scattering
of quasiparticles from defects and impurities [35], one can
consider an effective timescale, τξ = h̄

2�μ,0
, characterizing the

distribution of times over which quasiparticles propagate be-
fore being affected by ξ . Here, �μ,0 = ∫ Tc

0 �k,μdt corresponds
to the magnitude �k,μ averaged over one cyclotron orbit
period Tc = 2π/ωc in Fig. 3(c), where ωc = eB/m∗ is the
cyclotron frequency and m∗ is the quasiparticle effective mass.
Lorentzian broadening causes the damping of the hole pocket
quantum oscillations to acquire the standard exponential form
[35],

Rh
ξ ≈ e

− π
ωcτξ , (5)

which is expected to be valid over a broad range of timescales.
The limit τξ > Tc corresponds to a situation in which the major-
ity of cyclotron orbits lie within individual antiferromagnetic
“domains” within which qAFM is approximately constant. The
opposite limit τξ < Tc, which is more applicable to the present
case of a very short ξ , implies that qAFM remains constant only
for a tiny fraction of cyclotron orbits.

In contrast to the hole pocket, the electron pocket in
Figs. 3(b) and 3(d) is located at a point of high symmetry
where its area depends only quadratically on qx and qy . Under
circumstances where hole doping is conserved in response to
perturbations in QAFM by qAFM, its area becomes independent
of qx and qy , leading to a situation in which the orbital average
of the magnitude �k,μ is no longer adequate for estimating
the Landau level broadening. The degree of Landau level
broadening must instead be estimated from �k,μ orbitally
averaged over the distribution of times t − t0 for which the
quasiparticles remain unaffected by ξ . The Lorentzian line
shape of the broadened Landau levels implies that the prob-
ability of a quasiparticle propagating before being affected by
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ξ to time t − t0 has an exponential form P (t) = 1
2τξ

e
− t

2τξ [35],
as is found to be the case for the scattering of quasiparticles
from defects and impurities. The Landau level broadening is
then given by the magnitude of the average of �k,μ over this
probability distribution, requiring the integration

�̃μ =
∫ 2π

ωc

0

ωc

2π

∣∣∣∣
∫ ∞

0

1

2τξ

e
− t

2τξ �k,μ(t − t0)dt

∣∣∣∣dt0 (6)

over all possible time intervals t − t0 and starting times t0.
For the electron pocket in Fig. 3(d), we proceed to sim-
plify the integration by considering an approximation �k,μ ≈
�μ,0[cos ωc(t − t0), sin ωc(t − t0)] in which the magnitude
�k,μ is assumed to be constant while ∂θk,μ/∂t = ωc. On
substituting this approximate form into Eq. (6), we obtain

�̃e
μ ≈ 1√

4ω2
cτ

2
ξ + 1

�μ,0 (7)

for the electron pocket Landau level width. Orbital averaging
therefore causes the width of the electron pocket Landau levels
to undergo considerable narrowing in strong magnetic fields
[see Fig. 4(a)]. The corresponding electron pocket quantum
oscillation damping factor therefore has the form

Re
ξ ≈ e

− π
ωcτξ

1√
4ω2

c τ2
ξ

+1
, (8)

which is notably different from that obtained for the hole
pockets.

The differences in behavior of hole and electron pockets
can be understood by taking into consideration changes in the
direction of �k,μ given by Eq. (3) that occur on completing
a cyclotron orbit. We represent this direction graphically in
Figs. 3(e) and 3(f) by mapping the polar angle θk,μ, where
�k,μ = �k,μ[cos θk,μ, sin θk,μ]. For the hole pocket, �k,μ al-
ways points away from the antiferromagnetic Brillouin zone
center, causing θk,μ to change by only ≈45◦ on completing
a cyclotron orbit. The small change in angle gives rise to a
magnitude of orbital average of �k,μ that is very similar in
value to the orbital average of the magnitude �k,μ, justifying
the use of the magnitude in deriving Eq. (5) for the hole pocket.
For the electron pocket, by contrast, θk,μ sweeps out a full 360◦
on competing a cyclotron orbit. The large change in angle
gives rise to a magnitude of the orbital average of �k,μ that
is significantly reduced relative to the orbital average of the
magnitude �k,μ.

III. NUMERICAL ESTIMATES OF THE BROADENING

The calculated broadening in Fig. 3 provides a basis from
which we can numerically estimate the the extent of the Landau
level broadening in the underdoped cuprates YBa2Cu3O6+x

and HgBa2CuO4+δ , and the degree to which it is suppressed
by a magnetic field. The magnetic-field-dependent broadening
can then be used to estimate the quantum oscillation damping,
and this can in turn be compared directly against quantum
oscillation measurements. The antiferromagnetic correlation
length ξ has previously been estimated in neutron scattering
and nuclear magnetic resonance measurements.
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FIG. 4. (a) Calculated generic form for the magnetic-field-
dependent Landau level broadening �̃μ (solid line) according to
Eq. (7). Shaded regions represent the range in magnetic field
accessed in YBa2Cu3O6+x (blue) and HgBa2CuO4+δ (magenta).
(b) Quantum oscillation damping calculated for YBa2Cu3O6+x (blue)
and HgBa2CuO4+δ (magenta and red) according to Eq. (8), using
the parameters listed in Table I. The calculations are compared with
experimental data from Refs. [6,41] plotted in the same colors. For
the HgBa2CuO4+δ sample with a higher Tc ≈ 74 K, a shorter anti-
ferromagnetic correlation length of ξ ≈ 6 Å is required to reproduce
the steepness of the experimental “Dingle plot.” For comparison, the
dotted lines show the predicted quantum oscillation damping for
the case of hole pockets (using the experimentally measured effective
mass), where ζμ,0 ≈ 0.91 and �μ,0 = 28 meV (blue), 56 meV (red),
and 94 meV (magenta), respectively.

A. Experimental estimates of ξ

In YBa2Cu3O6+x , despite the loss of long-range antiferro-
magnetic order for hole dopings p � 0.05 [23], the imaginary
susceptibility χ ′′ detected in neutron scattering experiments
continues to exhibit a strong excitation (or resonance) at QAFM

with a correlation length of ξ ≈ 20 Å [23,36,37]. The form
of the imaginary susceptibility χ ′′(ω) evolves from being
completely gapped at excitation energies ω � 10 meV at
temperatures below Tc to having a form χ ′′ ∝ ω at temper-
atures above Tc. The linear form is considered to be charac-
teristic of a metallic state exhibiting diffusive spin dynamics
[23,38]. Nuclear magnetic resonance studies further suggest a
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low characteristic spin fluctuation frequency ωsf that lies
between 2 and 3 meV for hole dopings near p ≈ 0.11 [23,37],
which coincides with the doping at which the quantum oscilla-
tion amplitude is observed to be largest [4,39]. At this doping,
the cyclotron frequency ωc reaches a value of ≈7 meV in a
magnetic field of 100 T. Since ωc > ωsf in very strong magnetic
fields, the low-energy spin fluctuations may be regarded as
being essentially “quasistatic” from the perspective of orbiting
quasiparticles.

In HgBa2CuO4+δ , χ ′′ also exhibits a strong peak at QAFM,
but at a higher excitation energy than in YBa2Cu3O6+x and
with a shorter correlation length of ξ ≈ 10 Å [40]. One signif-
icant departure of χ ′′ in HgBa2CuO4+δ from that observed in
other cuprates (such as YBa2Cu3O6+x and La2−xSrxCuO4−δ

[23,37,38]) is the reported persistence of the spin fluctuation
gap at temperatures above Tc [40]. On the other hand, the
low-energy properties of χ ′′ in HgBa2CuO4+δ have yet to be
investigated by means of nuclear magnetic resonance.

B. Landau level width

To compare numerical estimates of the quantum oscillation
damping factor with those seen experimentally, we use the
measured effective masses for converting between momentum-
space and energy broadenings. In YBa2Cu3O6+x , the electron
pocket quasiparticle effective mass has been found to be
m∗ ≈ 1.6me (where me is the free electron mass) for hole
dopings near p ≈ 0.11 [4], which is somewhat heavier than the
band mass of mb = 0.57me obtained for our calculated Fermi
surface depicted in Figs. 2 and 3. We assume this difference to
be attributed to a renormalization of the quasiparticle bands.

We estimate the magnitude

�μ,0 ≈ ζμ,0
h̄2kFξ

−1

m∗ (9)

of the zero magnetic field energy broadening by assuming
the proportionality �μ,0/εF ≈ 
A0/Ae (valid for a quasi-
two-dimensional closed pocket), where εF = h̄2k2

F/2m∗ =
h̄eF/m∗ is the effective Fermi energy, 
A0 = 2πkF
k0 is
the momentum-space area broadening, and 
k0 is the cor-
responding average magnitude of the width of the broadening
perpendicular to the Fermi surface. We estimate
k ≈ 0.035 ×
kF numerically for ξ = 20 Å by averaging the numerically
calculated change in the radius of the electron pocket in
Fig. 3(b) parallel to [qx,qy] for different values of qx and

qy (subject to the constraint
√

q2
x + q2

y = ±ξ−1). The di-

mensionless quantity ζμ,0 = ξ
k0 ≈ 0.088 is our calculated
estimate of the sensitivity of broadening of the electron pocket
to ξ . Values for �μ,0 are tabulated in Table I, along with
experimental estimates for ξ , F , and m∗.

Having obtained numerical estimates for �μ,0, we proceed
to calculate the Landau level broadening in a magnetic field
using Eq. (7). Figure 4(a) shows �μ,0 plotted as a function
of the dimensionless quantity ωcτξ , which is independent of
m∗. The shaded regions indicate the range in ωcτξ over which
quantum oscillations have been observed experimentally. In
YBa2Cu3O6+x , the magnetic field range over which quantum
oscillations are seen extends from ≈25 to 100 T [4], suggesting
that �̃μ falls to as low as ≈1.3 meV in experiments. In

TABLE I. Tabulated values of the hole doping p, antiferromag-
netic correlation length ξ , quantum oscillation frequency F , and
quasiparticle effective mass m∗ used in the �μ,0 estimates.

Material YBa2Cu3O6+x HgBa2CuO4+δ

p 0.11 0.09
ξ 20 Å 10 Å
F 530 T 840 T
m∗ 1.6me 2.7me

�μ,0 2.7 meV 4.0 meV

HgBa2CuO4+δ , the magnetic field range over which quantum
oscillations are seen extends from ≈45 to 90 T [6], suggesting
a larger minimum Landau level width of ≈3 meV.

C. Quantum oscillation damping

On calculating the quantum oscillation damping using
Eq. (8) [see Fig. 4(b)], we find that the short antiferromag-
netic correlation lengths reported in neutron scattering and
nuclear magnetic resonance experiments in YBa2Cu3O6+x and
HgBa2CuO4+δ produce a magnetic-field-dependent damping
that is consistent with the slopes of the “Dingle plots” obtained
from quantum oscillation experiments [6,41]. Only the abso-
lute amplitude “prefactor” of the experimental data needs to
be adjusted in order to bring the model into alignment with the
experimental data points. The exception is the HgBa2CuO4+δ

sample with a higher Tc of 74 K, which requires a significantly
smaller antiferromagnetic correlation length of ξ ≈ 6 Å [6].
For comparison, we indicate using dotted lines in Fig. 4(b) the
much stronger damping from Eq. (5) expected for the case of
hole pockets.

D. Charge density wave correlation length

In the case where the reconstructed Fermi surface consists
of a single pocket, the reduction in the Landau level width
with increasing magnetic field gives rise to a proportionate
reduction in the the momentum-space area broadening 
̃A =
Ae�̃μ/εF, which is therefore likely to be an important factor in
stabilizing the biaxial charge density wave ground state in high
magnetic fields. To test for the existence of a direct relationship
between ξ and the magnetic-field-dependent charge density
wave correlation length ξCDW, we equate the electron pocket
area broadening with that 
̃A ≈ kdiagξ

−1
CDW associated with the

finite charge density wave correlation length ξCDW (see inset
to Fig. 5). Here, kdiag = √

2πkF is the length of the electron
pocket diagonal in the inset to Fig. 5 (defining kF ≈ √

Ae/π ).
On equating the broadening areas, we obtain

ξCDW ≈ ξζ−1
μ,0

√
2

π

(
4ω2

cτ
2
ξ + 1

)
. (10)

The calculated curve in Fig. 5 is found to be consistent with
the experimentally measured values of ξCDW in YBa2Cu3O6+x

(blue) and HgBa2CuO4+δ (magenta) in Fig. 5 [3,21,42], sug-
gesting that a scenario in which the finite charge density wave
correlation length is limited by short-range antiferromagnetic
correlations appears to be plausible. In YBa2Cu3O6+x , exper-
iments have revealed two coexisting forms of charge density
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FIG. 5. Calculated charge density wave correlation length accord-
ing to Eq. (10) for the different sample compositions and correlation
lengths considered in Fig. 4. The curves are compared with exper-
imental values of the l = 1

2 charge density wave correlation length
for YBa2Cu3O6+x from Ref. [42] (solid blue squares) and Ref. [3]
(blue diamonds), with the l = 1 charge density wave correlation
length for YBa2Cu3O6+x from Ref. [42] (open blue squares), and
with the charge density wave correlation length for HgBa2CuO4+δ

samples with Tc = 72 K (red) and 74 K (magenta) from Ref. [21].
The inset shows a schematic of a reconstructed electron pocket with
gray shading representing the region of area broadening associated
with ξCDW.

wave in strong magnetic fields. One of these is present at zero
magnetic field, is biaxial, is staggered between consecutive
bilayers (i.e., l = 1

2 ), and has a shorter correlation length while
dominating the total spectral weight (i.e., momentum-space
integrated intensity) [42,43]. The other onsets only at high
magnetic fields, is strictly uniaxial, is not staggered between
consecutive layers (i.e., l = 1), has a longer correlation length,
but has lower total spectral weight (i.e., momentum-space
integrated intensity). Equation (10) is found to be in reason-
able agreement only with the l = 1

2 biaxial charge density,
which is consistent with its having a CuO2-planar origin.
The experimental ξCDW error bars are, however, very large,
suggesting the need to extend x-ray scattering measurements to
higher magnetic fields so as to achieve overlap with the regime
over which magnetic quantum oscillations are observed. Other
factors, such as oxygen chain ordering, could be at play in
determining the longer correlation length of the substantially
weaker l = 1 uniaxial charge density wave [42,43].

IV. DISCUSSION AND CONCLUSION

Having considered a scenario in which antiferromagnetism
coexists with a biaxial charge density density wave, we find that
the single Fermi surface pocket is robust against short-range

fluctuations in the ordering vector of the antiferromagnetic
order. The biaxial charge density wave gaps states along the
antiferromagnetic Brillouin zone boundary that would other-
wise be heavily broadened by antiferromagnetic fluctuations.
The relative insensitivity of the reconstructed electron pocket
area to changes in the antiferromagnetic ordering vector causes
this pocket to be protected against spatial antiferromagnetic
fluctuations.

Using published values for the antiferromagnetic correla-
tion lengths (i.e., ξ ∼ 10 and 20 Å) [23,36–38,40], we find
the small degree of residual broadening of the reconstructed
electron pocket Landau level states is consistent with the mag-
netic field dependence of the quantum oscillation amplitudes
in two different families of underdoped cuprates—namely
YBa2Cu3O6+x and HgBa2CuO4+δ [6,41]. Our simulations
suggest that the overall Landau level broadening is attributed
mostly to spatial antiferromagnetic fluctuations, whose shorter
ξ in HgBa2CuO4+δ compared to YBa2Cu3O6+x leads to
a considerably greater damping of the quantum oscillation
amplitude. The magnetic field dependence of the Landau level
broadening implies that the degree of damping of the quantum
oscillations was likely to have been overestimated in prior
experimental studies.

The ability of a biaxial charge density wave to produce
coherent Landau levels in the presence of short-range antifer-
romagnetic fluctuations, especially under a strong magnetic
field, suggests that the resilience of the electron pocket to
antiferromagnetic fluctuations is likely to be an important
factor in determining the high magnetic field ground state of
the underdoped cuprates YBa2Cu3O6+x and HgBa2CuO4+δ .
Since charge density waves are driven by interactions at the
Fermi surface, the residual broadening of the electron pocket
quasiparticle states also places limitations of the ability of the
charge density wave to acquire long-range order. We show that
the published values of the charge density wave correlation
length [3,21,42] are consistent with such a scenario, although
subject to considerable experimental uncertainty.

Thus far we have considered a quasistatic approximation for
the antiferromagnetic fluctuations, based on their reported low
frequency in nuclear magnetic resonance measurements [23].
Of interest for future studies will be the question of whether the
quantum oscillation amplitude is affected by temporal aspects
of the antiferromagnetic fluctuations.

ACKNOWLEDGMENTS

This work was supported by the US Department of Energy
“Science of 100 tesla” BES program LANLF101.

APPENDIX

After Andersen et al. [44], we use the parametrization
ε = ε0 + 2t10[cos akx + cos bky] + 2t11[cos(akx + bky) +
cos(akx − bky)] + 2t20[cos 2akx + cos 2bky], with a total
bandwidth 8t10 = 3 eV and next nearest neighbor hoppings
t11/t10 = −0.32 and t20/t10 = 0.16. All throughout the
calculations, the chemical potential μ is adjusted to yield band
fillings compatible with a total of 1 + p holes, where p is the
hole doping defined relative to the antiferromagnetic Mott
insulator. Since we do not include the effect of the magnetic
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field on the band structure, we neglect the spin degrees of
freedom.

We calculate the reconstructed energy bands of a δ = 1
3 biaxial

charge density wave, using the Hamiltonian

H 3×3CDW
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εk V d
k+Qx/2 0 V d

k+Qy/2 0 0 . . .

V d
k+Qx/2 εk+Qx

V d
k+3Qx/2 0 V d

k+Qy/2+Qx
0 . . .

0 V d
k+3Qx/2 εk+2Qx

0 0 V d
k+Qy/2+2Qx

. . .

V d
k+Qy/2 0 0 εk+Qy

V d
k+Qy+Qx/2 0 . . .

0 V d
k+Qy/2+Qx

0 V d
k+Qy+Qx/2 εk+Qy+Qx

V d
k+Qy+3Qx/2 . . .

0 0 V d
k+Qy/2+2Qx

0 V d
k+Qy+3Qx/2 εk+Qy+2Qx

. . .

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

which is a 9th rank tensor for δ = 1
3 . After Allais et al. [12], we

consider the charge density wave potential to be of the dx2−y2

form using the notation V d
k+nQx+mQy

= VCDW,0dk+nQx+mQy
.

Here, dk is the d-wave form factor, VCDW,0 = 0.2t10 is its
magnitude, while nQx + mQy represents the its relative k-
space position vector of the d-wave form factor for each matrix
element.

To calculate the reconstructed Fermi surface resulting solely
from antiferromagnetic order, we use

H AFM
k =

(
εk V AFM

V AFM εk+QAFM

)
, (A2)

in which case there are only two reconstructed bands. Here,
we use a uniform antiferromagnetic potential V AFM = 0.5t10.

To combine antiferromagnetic and charge density wave
order, we nest H 3×3CDW

k within the antiferromagnetic Hamil-
tonian so as to obtain

H AFM+CDW
k =

(
H 3×3CDW

k I 9V AFM

I 9V AFM H 3×3CDW
k+QAFM

)
, (A3)

where I 9 is the 9th rank identity matrix. Full diagonalization
yields 18 bands, which roughly consist of two sets of 9 bands
separated in energy.
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