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Ab initio calculation of the shift photocurrent by Wannier interpolation
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We describe and implement a first-principles algorithm based on maximally localized Wannier functions
for calculating the shift-current response of piezoelectric crystals in the independent-particle approximation.
The proposed algorithm presents several advantages over existing ones, including full gauge invariance, low
computational cost, and a correct treatment of the optical matrix elements with nonlocal pseudopotentials.
Band-truncation errors are avoided by a careful formulation of k · p perturbation theory within the subspace
of wannierized bands. The needed ingredients are the matrix elements of the Hamiltonian and of the position
operator in the Wannier basis, which are readily available at the end of the wannierization step. If the off-diagonal
matrix elements of the position operator are discarded, our expressions reduce to the ones that have been used
in recent tight-binding calculations of the shift current. We find that this “diagonal” approximation can introduce
sizable errors, highlighting the importance of carefully embedding the tight-binding model in real space for an
accurate description of the charge transfer that gives rise to the shift current.
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I. INTRODUCTION

Under homogeneous illumination, noncentrosymmetric
crystals exhibit the bulk photovoltaic effect (BPVE), a non-
linear optical response that consists of the generation of a
photovoltage (open circuit) or photocurrent (closed circuit)
when light is absorbed via intrinsic or extrinsic processes
[1–3]. Contrary to the conventional photovoltaic effect in p-n
junctions, the BPVE occurs in homogeneous systems, and the
attained photovoltage is not limited by the band gap of the
material. The BPVE comprises a “circular” part that changes
sign with the helicity of light, and a “linear” part that also
occurs with linearly polarized or unpolarized light. The former
is symmetry-allowed in the gyrotropic crystal classes, and the
latter in the piezoelectric ones [1–3].

The present work deals with the intrinsic contribution to
the linear BPVE due to interband absorption, known as “shift
current.” This phenomenon was intensively studied in the
1960s and 1970s, particularly in ferroelectric oxides such as
BaTiO3 [4]. In recent years it has attracted renewed interest in
view of potential applications in novel solar-cell designs [5–7],
and in connection with topological insulators [8–10] and Weyl
semimetals [11–13].

In a simplified picture, the shift current arises from a
coordinate shift accompanying the photoexcitation of electrons
from one band to another. Like the intrinsic anomalous Hall
effect [14], the shift current originates from interband velocity
matrix elements, depending not only on their magnitudes but
also on their phases [15–18].

Over the years, the understanding of the shift current has
greatly benefited from model calculations [6,7,19,20]. Tight-
binding models have been used to analyze various aspects of
the problem, including the possible correlation with electric
polarization, the role of virtual transitions, and the sensitivity
to the wave functions. Recently, density-functional theory
methods started being employed to calculate the shift-current

responsivity in specific materials [6,21–23]. The results are
generally in good agreement with experimental measurements,
proving the predictive power of the ab initio approach.

The first-principles evaluation of the shift current (and of
other nonlinear optical responses) is technically challenging,
due to the intricate form of the matrix elements involved
[15–18]. Two basic approaches have been devised. One is
to express those matrix elements as an infinite sum over
intermediate virtual states [15,16,18]. In practice this requires
calculating a large number of unoccupied bands, to minimize
truncation errors [21,23]. Alternatively, the matrix elements
can be recast in terms of derivatives with respect to the crystal
momentum k of the initial and final band states [15–18]. This
strategy circumvents the summation over intermediate states,
but its practical implementation requires a careful treatment
of the derivatives on a finite k-point grid in order to retain
gauge invariance and handle degeneracies [22]. Finally, it has
been found that the shift current tends to converge slowly with
respect to the number of k points used for the Brillouin zone
(BZ) integration [23]. All these factors render the shift current
more challenging and expensive to calculate than the ordinary
linear optical conductivity.

In this work, we develop an accurate and efficient
ab initio scheme for calculating the shift current and related
nonlinear optical responses in the independent-particle ap-
proximation. The proposed methodology, based on localized
Wannier functions [24], is closely related to the Wannier
interpolation method of calculating to the Berry curvature and
the intrinsic anomalous Hall conductivity [25]. In essence, it
consists of evaluating the matrix elements by k · p perturbation
theory within the subspace of wannierized bands. This strategy
inherits the practical advantages of the sum-over-states ap-
proach in the complete space of Bloch eigenstates, but without
introducing truncations errors. In addition, it has a very low
computational cost thanks to the compact basis set. We will
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comment on the relation between our methodology and a recent
proposal with similar characteristics [26].

Our Wannier-interpolation scheme distinguishes itself in
two aspects. First, it provides a physically transparent con-
nection to tight-binding approaches [7]. This is achieved by
adopting a phase convention for the Bloch sums that includes
the Wannier centers in the phase factors, such that the resulting
expressions cleanly separate into two parts: an “internal”
part that only depends on the Hamiltonian matrix elements
and Wannier centers (the only ingredients in a typical tight-
binding calculation), and an “external” part containing the
off-diagonal position matrix elements. We find that the latter
can give a sizable contribution to the shift current; moreover,
its inclusion removes an artificial symmetry of the shift-current
matrix elements in two-band tight-binding models [7]. These
findings highlight the importance of carefully embedding the
tight-binding model in real space—via the position matrix
elements—when calculating the shift current. The other salient
feature of our formulation is that it is fully gauge invariant.
This is in contrast to previous Wannier-based schemes, where
a parallel-transport gauge was assumed when calculating the
interband matrix elements [25,26].

The paper is organized as follows. In Sec. II we provide
some background on the microscopic theory of the shift
current. In Sec. III we first review the Wannier-interpolation
scheme for calculating the energy bands and the interband
dipole matrix elements; the same interpolation approach is then
applied to the generalized derivative of the interband dipole
matrix, completing the list of ingredients needed for evaluating
the shift current. The technical details of our electronic-
structure and Wannier-function calculations are described in
Sec. IV, and the resulting shift-current spectra of GaAs and
monolayer GeS are presented and discussed in Sec. V. We
provide some concluding remarks in Sec. VI, and leave
additional technical discussions to the appendices.

II. PRELIMINARIES

A. Definitions and background

Our starting point is the formalism of Sipe and Shkrebtii for
calculating second-order interband optical responses of bulk
crystals within the independent-particle approximation [18].
The basic ingredients are the interband dipole matrix, and its
“generalized derivative” with respect to the crystal momentum
k. They are given by

ra
knm = (1 − δnm)Aa

knm (1)

and

r
a;b
knm = ∂br

a
knm − i

(
Ab

knn − Ab
kmm

)
ra

knm (2)

respectively, where

Aa
knm = i〈ukn|∂aukm〉 (3)

is the Berry connection matrix, where |ukm〉 denotes the cell-
periodic part of a Bloch eigenstate and ∂a stands for ∂/∂ka .

The three equations above define Hermitian matrices in the
band indices n and m. Importantly, the first two transform

covariantly under band-diagonal gauge transformations,

|un〉 → eiβn |un〉 ⇒
{
ra
nm → ei(βm−βn)ra

nm,

ra;b
nm → ei(βm−βn)ra;b

nm ,
(4)

where the subscript k has been dropped for brevity. As a result,
the combination

I abc
mn = rb

mnr
c;a
nm (5)

appearing in Eq. (8) below is gauge invariant.
Consider a monochromatic electric field of the form

E(t) = E(ω)e−iωt + E(−ω)eiωt , (6)

with E(−ω) = E∗(ω). Phenomenologically, the dc photocur-
rent density from the linear BPVE reads [1–3]

ja = 2σabc(0; ω, − ω) Re [Eb(ω)Ec(−ω)]. (7)

The third-rank response tensor is symmetric under b ↔ c, and
transforms like the piezoelectric tensor. According to Eqs. (38)
and (41) in Ref. [18], the interband (shift-current) part of the
response is given by

σabc(0; ω, − ω) = − iπe3

4h̄2

∫
[dk]

∑
n,m

fnm

(
I abc
mn + I acb

mn

)
× [δ(ωmn − ω) + δ(ωnm − ω)]. (8)

Here fnm = fn − fm and h̄ωnm = Em − En are differences
between occupation factors and band energies, respectively,
and the integral is over the first BZ, with [dk] = ddk/(2π )d in
d dimensions. Because I abc

mn is Hermitian, the right-hand side
of Eq. (8) is real. Its transformation properties under inversion
and time-reversal symmetry are summarized in Appendix A.

For comparison, we also calculate the joint density of states
(JDOS) per crystal cell,

Djoint(ω) = vc

h̄

∫
[dk]

∑
n,m

fnmδ(ωmn − ω) (9)

(vc is the cell volume), and the interband contribution to the
absorptive (abs) part of the dielectric function [18],

εab
abs(ω) = iπe2

h̄

∫
[dk]

∑
n,m

fnmra
nmrb

mnδ(ωmn − ω). (10)

In nonmagnetic crystals εab
abs is purely imaginary and sym-

metric, and we report values for Im εab
r = Im εab

abs/ε0, the
imaginary part of the relative permittivity.

B. Sum rule for the generalized derivative

The matrix elements ra
nm and ra;b

nm appearing in Eq. (8) satisfy
the identities

ra
nm = va

nm

iωnm

(m �= n) (11)

and

ra;b
nm = i

ωnm

[
va

nm	b
nm + vb

nm	a
nm

ωnm

− wab
nm

+
∑

p �=n,m

(
va

npvb
pm

ωpm

− vb
npva

pm

ωnp

)]
(m �= n), (12)
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where

va
nm = 1

h̄
〈un|∂aĤ |um〉, (13a)

	a
nm = ∂aωnm = va

nn − va
mm, (13b)

wab
nm = 1

h̄
〈un|∂2

abĤ |um〉. (13c)

Equation (11) can be obtained by differentiating the identity
〈un|Ĥ |um〉 = Enδnm with respect to ka for m �= n. Differenti-
ating once more with respect to kb and inserting a complete
set of states yields the sum rule in Eq. (12) [7,18]. For
Hamiltonians of the form Ĥk = ( p̂ + h̄k)2/2me + V (r), the
term wab

nm therein has no off-diagonal components and does
not contribute to the sum rule. That term should however
be included in tight-binding calculations [7], and in first-
principles calculations with nonlocal pseudopotentials [26].

Equation (12) has been used in ab initio calculations of the
shift current [21,23], with a truncated summation over inter-
mediate states p �= n,m. An exact (truncation-free) expression
for ra;b

nm that only requires summing over a finite number of
wannierized bands, Eq. (36) below, constitutes a central result
of the present work.

III. WANNIER INTERPOLATION SCHEME

The needed quantities for calculating the shift-current re-
sponse from Eq. (8) are the energy eigenvalues, and the matrix
elements ra

nm and ra;b
nm defined by Eqs. (1) and (2). In this section

we describe how to evaluate each of them in a Wannier-function
basis.

Consider a set of M well-localized Wannier functions per
cell wj (r − R) = 〈r|Rj 〉 spanning the initial and final states
involved in interband absorption processes up to some desired
frequency ω. (In practice we shall construct them by post-
processing a first-principles calculation, using the method of
maximally localized Wannier functions [27,28].) Starting from
these orbitals, we define a set of Blochlike basis states as∣∣u(W)

kj

〉 =
∑

R

e−ik·(r̂−R−τ j )|Rj 〉, (14)

where the superscript (W) stands for “Wannier gauge” [25].
Note that at variance with Ref. [25], we have chosen to include
the Wannier center

τ j = 〈0j |r̂|0j 〉 (15)

in the phase factor of Eq. (14). This phase convention, often
used in tight-binding calculations, is the most natural one
for expressing the Berry connection and related geometric
quantities in reciprocal space [29].

A. Energy eigenvalues

The matrix elements of the first-principles Hamiltonian
Ĥk = e−ik·r̂Ĥ eik·r̂ between the Blochlike states (14) read

H
(W)
kij = 〈

u
(W)
ki

∣∣Ĥk

∣∣u(W)
kj

〉
=

∑
R

eik·(R+τ j −τ i )〈0i|Ĥ |Rj 〉. (16)

Diagonalization of this M × M matrix yields the Wannier-
interpolated energy eigenvalues,(

U
†
kH

(W)
k Uk

)
nm

= Eknδnm, (17)

where Uk is the unitary matrix taking from the Wannier gauge
to the Hamiltonian gauge. This Slater-Koster type of inter-
polation, with the Wannier functions acting as an orthogonal
tight-binding basis, has been shown in practice to provide
a smooth k-space interpolation of the ab initio eigenvalues.
(With disentangled Wannier functions, the interpolation is
faithful only within the so-called “inner” or “frozen” energy
window [28].)

B. Berry connection and interband dipole

The same interpolation strategy can be applied to other
k-dependent quantities. In particular, the Hamiltonian-gauge
Bloch states

|ukn〉 =
M∑

j=1

∣∣u(W)
kj

〉
Ukjn (18)

interpolate the ab initio Bloch eigenstates, allowing us to treat
wave-function-derived quantities.

As a first example, consider the Berry connection matrix
defined by Eq. (3). Inserting the above expression for |ukn〉 in
that equation yields [25]

Aa
nm = Aa

nm + aa
nm, (19a)

Aa
nm = i(U †∂aU )nm, (19b)

aa
nm = (

U †A(W)
a U

)
nm

, (19c)

where A(W)
a in Eq. (19c) denotes a Cartesian component of the

Berry connection matrix in the Wannier gauge,

A(W)
kij = i

〈
u

(W)
ki

∣∣∂ku
(W)
kj

〉
=

∑
R

eik·(R+τ j −τ i )〈0i|r̂ − τ j |Rj 〉. (20)

The term Aa
nm in Eq. (19) carries the interpretation of a Berry

connection for the eigenvectors of H (W) (the column vectors of
U ). Introducing the notation ||un〉〉 for those vectors,1 Eq. (19b)
becomes Aa

nm = i〈〈un||∂aum〉〉. This is the “internal” Berry
connection for the tight-binding model defined by Eq. (16) in
terms of the Hamiltonian matrix elements and Wannier centers.

The extra term aa
nm in Eq. (19) arises from off-diagonal

matrix elements of the position operator in the Wannier basis,
as can be seen by inspecting the matrix element in Eq. (20)
together with Eq. (15). In tight-binding formulations, it is
customary to postulate a diagonal representation for r̂ [29–33],

〈0i|r̂|Rj 〉 .= τ iδR,0δji, (21)

1When the Wannier centers are included in the phase factors of the
Bloch sums as in Eq. (14), the eigenvectors of H (W) can be thought of
as tight-binding analogs of the cell-periodic Bloch states, hence the
notation ||un〉〉. The fact that Berry-phase-type quantities are defined
in terms of the cell-periodic Bloch states is the reason why that phase
convention is the most natural one for dealing with such quantities in
tight binding [29].
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where we have introduced the symbol “
.=” to denote equal-

ities that only hold only within this “diagonal tight-binding
approximation” (diagonal TBA). Thus, aa

nm is the part of the
Berry connection matrix Aa

nm that is discarded when making
the diagonal TBA, and we will refer to it as the “external” part.

For the interband dipole matrix of Eq. (1) we get

ra
nm =

{
ra
nm + aa

nm, if m �= n,

0, if m = n,
(22)

where

ra
nm = (1 − δnm)Aa

nm =
⎧⎨
⎩

va
nm

iωnm

, if m �= n,

0, if m = n,
(23a)

va
nm = 1

h̄
[U †(∂aH

(W))U ]nm, (23b)

with ∂aH
(W) obtained by differentiating the right-hand side

of Eq. (16). Equation (23a) is the “internal” counterpart of
Eq. (11) for ra

nm. It can be derived in a similar manner, by
differentiating Eq. (17) with m �= n.

C. Generalized derivative of the interband dipole

The energy eigenvalues and interband dipole matrix ele-
ments ra

nm are the only ingredients entering Eq. (10) for the
dielectric function, which has been previously evaluated by
Wannier interpolation [34]. Equation (8) for the shift current
contains in addition the generalized derivative ra;b

nm , and in
the following we describe how to evaluate it within the same
framework.

1. Useful definitions and identities

Our strategy will be to evaluate Eq. (2) for ra;b
nm starting from

Eqs. (19) and (22) for Aa
nm and ra

nm, respectively. Inspection
of those equations reveals that we need to differentiate with
respect to kb the matrices va

nm and aa
nm. Noting that both of

them are of the form

O = U †O(W)U (24)

and using the identity

∂bU = −iUAb, (25)

we find

∂bO = U †(∂bO(W))U + i[Ab,O]. (26)

Writing Ab
nm in the commutator as δnmAb

nn + rb
nm and then

expanding [rb,O] as a sum over states yields

∂b(O)nm = [U †(∂bO(W))U ]nm − i(Onn − Omm)rb
nm

+ i

M∑
p �=n,m

(
rb
npOpm − Onpr

b
pm

)

+ i
(
Ab

nn − Ab
mm

)
Onm, (27)

where the contribution from intermediate states p �= n,m has
been separated out.

We find it convenient to define an “internal generalized
derivative” of the matrix O in analogy with Eq. (2),

(O);b
nm = ∂b(O)nm − i

(
Ab

nn − Ab
mm

)
Onm. (28)

Note that this is equal to the sum of the first three terms in
Eq. (27). Before proceeding, let us also define the following
internal quantities in analogy with Eq. (13),

bab
nm = [

U †(∂bA
(W)
a

)
U

]
nm

, (29a)
a

nm
= va

nn − va
mm, (29b)

wab
nm = 1

h̄

[
U †(∂2

abH
(W)

)
U

]
nm

. (29c)

2. Derivation

We begin by differentiating the term ra
nm in Eq. (22) for ra

nm.
From Eq. (23a) we get

∂br
a
nm = i

ω2
nm

va
nm

b

nm
− i

ωnm

∂bv
a
nm (m �= n). (30)

Evaluating ∂bva
nm with the help of Eq. (27) and expressing the

result in the form of Eq. (28),

∂br
a
nm = ra;b

nm + i
(
Ab

nn − Ab
mm

)
ra
nm (m �= n), (31)

we find

ra;b
nm = i

ωnm

[
va

nm

b

nm
+ vb

nm

a

nm

ωnm

− wab
nm

+
M∑

p �=n,m

(
va

npv
b
pm

ωpm

− vb
npv

a
pm

ωnp

)]
(m �= n). (32)

This is the internal counterpart of the sum rule (12), written
in terms of the tight-binding eigenvectors, eigenvalues, and
Hamiltonian, instead of the ab initio ones.

The same procedure can be used to differentiate the term
aa

nm in Eq. (22), given by Eq. (19c). The result is

∂ba
a
nm = aa;b

nm + i
(
Ab

nn − Ab
mm

)
aa

nm, (33)

where

aa;b
nm = bab

nm − (
aa

nn − aa
mm

) vb
nm

ωnm

+
M∑

p �=n,m

(
vb

npa
a
pm

ωnp

− aa
npv

b
pm

ωpm

)
(m �= n). (34)

Adding ∂bra
nm and ∂baa

nm from Eqs. (31) and (33) to form
∂br

a
nm, and then subtracting the amount i(Ab

nn − Ab
mm)ra

nm in
the form

i
(
Ab

nn + ab
nn − Ab

mm − ab
mm

)(
ra
nm + aa

nm

)
(35)

to obtain ra;b
nm as per Eq. (2), we arrive at

ra;b
nm = ra;b

nm + aa;b
nm − (

ab
nn − ab

mm

) va
nm

ωnm

− i
(
ab

nn − ab
mm

)
aa

nm (m �= n). (36)

This expression for the generalized derivative in the Wannier
representation is a central result of the present work. An
alternative expression that is equally valid was obtained in
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Ref. [26], and the precise relation between the two formulations
is established in Appendix B.

D. Discussion

1. Summary of the interpolation algorithm

To summarize, the response tensor σabc(0; ω, − ω) is given
by Eq. (8) in terms of the energy eigenvalues and of the matrix
elements I abc

mn defined by Eq. (5). At each k, the former are
interpolated using Eq. (17), and the latter using Eqs. (22)
and (36) for ra

nm and ra;b
nm , respectively. These equations depend

on a small number of ingredients: the matrices H (W) [Eq. (16)]
and A(W) [Eq. (20)], their first and second mixed derivatives
with respect to ka and kb, and the unitary matrix U that
diagonalizes H (W). The needed real-space matrix elements,
〈0n|Ĥ |Rm〉 and 〈0n|r̂|Rm〉, can be evaluated as described in
Ref. [25].

2. Independence of the Berry connection matrix from the choice
of phase convention for the Bloch sums

It is well known that the tight-binding expression for an
operator depends on the phase convention used for the Bloch
sums [35]. Let us discuss how this plays out for the Berry
connection matrix (similar remarks apply to the interband
dipole matrix and its generalized derivative).

The phase convention we have adopted in this work is
that of Eq. (14). The other commonly used convention is to
drop τ j from that equation [29,35], in which case the Berry
connection matrix is still given by Eq. (19) but τ i and τ j

should be removed from Eqs. (16) and (20). As a result, the
term Aa

nm in Eq. (19) becomes a function of the Hamiltonian
matrix elements only and not of the Wannier centers, whose
contributions to the Berry connection are absorbed byaa

nm. The
total Berry connection Aa

nm remains the same as before, but the
term aa

nm is now nonzero under the diagonal TBA of Eq. (21).

3. Gauge covariance of the generalized derivative

Although Eq. (2) for ra;b
nm is gauge covariant in the sense

of Eq. (4), its individual terms are not, leading to numerical
difficulties. Instead, the individual terms in the Wannier-based
expression (36) for ra;b

nm transform covariantly under band-
diagonal gauge transformations. As a result, its numerical
implementation is very robust.

Contrary to Ref. [26], we did not impose the parallel-
transport condition Ab

nn = 0 in our derivation of a Wannier-
based expression for ra;b

nm . The gauge-dependent quantities Ab
nn

appear in intermediate steps of our derivation, only to drop out
in the final step leading to Eq. (36). (A parallel-transport gauge
was also assumed in Ref. [25] when deriving a Wannier-based
expression for the Berry curvature, and in Appendix C we
indicate how to remove that unnecessary assumption.)

4. Generalized derivative versus the effective-mass sum rule: The
role of position matrix elements

As remarked in Sec. II B, Eq. (12) for ra;b
nm follows from

differentiating the identity 〈un|Ĥ |um〉 = Enδnm once with
respect to ka and once with respect to kb, for m �= n. Doing
so for m = n yields the effective-mass sum rule.

For tight-binding models with a finite number of bands,
the effective-mass sum rule can be formulated exactly. The
modified sum-rule expression, which only depends on the
Hamiltonian matrix elements, includes an intraband term wab

nn

given by Eq. (29c) [30,34,36].
The effect of the basis truncation on the calculation of

nonlinear optical responses has been the subject of several
recent investigations [7,37,38]. In particular, it was suggested
in Ref. [7] that Eq. (32) for ra;b

nm, which includes an interband
term wab

nm, is the correct expression for ra;b
nm in tight-binding

models. In fact, that expression only accounts for part of the
wave-function dependence of ra;b

nm , via the diagonal position
matrix elements. The full expression, Eq. (36), has additional
terms that depend on the off-diagonal position matrix elements.
Those should be included in order to completely describe the
wave-function dependence, and to render the result indepen-
dent of the choice of Wannier basis orbitals [32].

In the diagonal TBA of Eq. (21), Eqs. (22) and (36) for ra
nm

and ra;b
nm reduce to their internal terms, ra

nm

.= ra
nm and ra;b

nm

.=
ra;b
nm. In this approximation the shift current only depends on the

Hamiltonian matrix elements and on the Wannier centers, and
a strong dependence on the latter was found in Ref. [7]. As we
will see in Sec. V (and also noted in Ref. [26]), the additional
contributions from off-diagonal position matrix elements can
modify appreciably the calculated shift-current spectrum.

5. The two-band limit

The shift-current response of two-band tight-binding mod-
els has been considered in Refs. [7,19]. In that limit the
three-band terms in Eq. (36) (those containing intermediate
states) vanish identically, and ra;b

nm is completely specified by
the two-band terms, which pick up the missing contributions
(the importance of the wab

nm term in this regard was emphasized
in Ref. [7]). It appears to have gone unnoticed that the diagonal
TBA introduces a qualitative error for two-band models, as we
now discuss.

In the diagonal TBA, Eq. (36) for a two-band model reduces
to the first two terms in Eq. (32),

ra;b
nm

.= i

ωnm

[
va

nm

b

nm
+ vb

nm

a

nm

ωnm

− wab
nm

]
. (37)

This expression is symmetric under a ↔ b, and when used in
Eq. (5) for I abc

mn it renders Eq. (8) for σabc(0; ω, − ω) totally
symmetric, irrespective of crystal symmetry. This unphysical
behavior is not an artifact of two-band models, but of the
diagonal TBA applied to such models. The shift current arising
from the photoexcitation of carriers between the two bands
can be calculated exactly, without adding more bands to the
model, by including the additional two-band terms in Eq. (36)
associated with off-diagonal position matrix elements. These
considerations appear relevant to the ongoing discussion on
the shift-current response of Weyl semimetals [11–13].

IV. COMPUTATIONAL DETAILS

In this section we describe the various steps of the cal-
culations that we have carried out for two test systems, bulk
GaAs and single-layer GeS. In a first step, we performed
density-functional theory calculations using the QUANTUM
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FIG. 1. The ab initio and Wannier-interpolated energy bands
of GaAs, including a scissors correction of 1.15 eV (energies are
measured from the valence-band maximum). The horizontal dashed
line at 6.9 eV denotes the upper limit of the inner energy window used
in the disentanglement step of the Wannier construction procedure.

ESPRESSO code package [39]. The core-valence interaction
was treated by means of fully relativistic projector-augmented-
wave pseudopotentials (taken from the QUANTUM ESPRESSO

website) that had been generated with the Perdew-Burke-
Ernzerhof exchange-correlation functional [40], and the en-
ergy cutoff for the plane-wave basis expansion was set at
60 Ry. Maximally localized Wannier functions were then
constructed in a post-processing step, using the WANNIER90
code package [41]. Finally, the shift-current spectrum [Eq. (8)],
the JDOS [Eq. (9)], and the dielectric function [Eq. (10)] were
calculated in the Wannier basis as described in Sec. III.

In the case of zinc-blende GaAs, the self-consistent calcu-
lation was carried out on a 10 × 10 × 10 k-point mesh, using
the experimental lattice constant of a = 10.68a0. Starting from
the converged self-consistent Kohn-Sham potential, the 24
lowest bands and Bloch wave functions were then calculated
on the same mesh. Finally, a set of 16 disentangled Wannier
functions spanning the eight valence bands and the eight low-
lying conduction bands were constructed using s and p atom-
centered orbitals as trial orbitals. The Wannier-interpolated
energy bands are shown in Fig. 1 together with the ab initio
bands (including in both cases a “scissors correction”). The
agreement between the two is excellent inside the inner energy
window [28], which spans the energy range from the bottom
of the figure up to the dashed horizontal line.

The calculations for monolayer GeS were done in a slab
geometry, with a supercell of length 15 Å along the non-
periodic direction and a 1 × 12 × 12 k-point mesh for both
the self-consistent and for the band structure calculation. The
parameters for the structure with an in-plane polar distortion
were taken from Table II in the Supplemental Material of
Ref. [23]. Starting from a manifold of 46 bands, we constructed
32 disentangled Wannier functions spanning the 20 highest
valence bands and the 12 lowest conduction bands. For the
initial projections, we again chose s andp trial orbitals centered
on each atom. The ab initio and Wannier-interpolated energy
bands are shown in Fig. 2.
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FIG. 2. The ab initio and Wannier-interpolated energy bands of
monolayer GeS. The horizontal dashed line denotes the upper limit
of the inner energy window.

To obtain well-converged shift-current spectra, we used
dense k-point interpolation meshes of 100 × 100 × 100 for
GaAs and 1 × 1000 × 1000 for GeS. In the case of GaAs,
we employed an adaptive scheme [34] for choosing the width
of the broadened delta functions in Eq. (8). For GeS we
used a fixed width of 0.02 eV, as it was found to handle
better the strong Van Hove singularities characteristic of two-
dimensional (2D) systems.

In the sum-over-states expression for σabc(0; ω, − ω), the
energy denominators involving intermediate states should be
interpreted as principal values [15]. In our formalism such
denominators appear in Eqs. (32) and (34), and in practice
we make the replacement

1

ωnp

→ ωnp

ω2
np + (η/h̄)2

, (38)

and similarly for 1/ωpm. Such a regularization procedure is
needed to avoid numerical problems caused by near degen-
eracies. Following Ref. [21], we choose η in a range where
the calculated spectrum remains stable. In the calculations
reported below, we have used η = 0.04 eV for both GaAs and
GeS.

As mentioned earlier, a scissors correction was applied to
the calculated band structure of GaAs in Fig. 1, in order to
cure the underestimation of the gap. The conduction bands
were rigidly shifted by 1.15 eV and the spectral quantities
plotted in Fig. 3 were modified accordingly as described
below, facilitating comparison with Ref. [21] where a scissors
correction was also applied.

It is clear from Eq. (9) that the scissors correction leads
to a rigid shift of the JDOS. Although less obvious, the
shift-current spectrum [Eq. (8)] and the dielectric function
[Eq. (10)] also undergo rigid shifts. The reason is that Eqs. (8)
and (10) do not contain any frequency prefactors, and the
matrix elements therein are intrinsic properties of the Bloch
eigenstates [see Eqs. (1) and (2)], which are unaffected by
the scissors correction (only the eigenvalues change). The
eigenvalues do appear in Eqs. (11) and (12) that are used in
practice to evaluate the optical matrix elements, but a careful
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FIG. 3. (a) Shift-current spectrum, (b) imaginary part of the
dielectric function, and (c) joint density of states of GaAs, calculated
by Wannier interpolation including a scissors correction. “Diagonal
TBA” denotes spectra calculated making the diagonal tight-binding
approximation of Eq. (21) for the optical matrix elements. Data
adapted from Ref. [21] are also shown.

analysis reveals that those equations remain invariant under a
scissors correction [42].

V. RESULTS

A. Bulk GaAs

The zinc-blende semiconductor GaAs was the first piezo-
electric crystal whose shift-current spectrum was evaluated
using modern band structure methods. The original calcula-
tion [18] suffered from a computational error, and a corrected
spectrum was reported later [21]. Given the existence of this
benchmark calculation, we have chosen GaAs as the first test
case for our implementation.

Figure 3(a) shows the calculated σxyz(0; ω, − ω), which is
equal to σabc(0; ω, − ω) for any permutation abc of xyz, and
all other components vanish by symmetry [18]. The imaginary
part of the dielectric function is shown in panel (b) of the same
figure, and the JDOS in panel (c). For comparison, we have
included in panels (a) and (b) the spectra calculated in Ref. [21].

The dielectric function and the shift-current spectrum share
similar peak structures, inherited from the JDOS. The level of
agreement with Ref. [21] is excellent for Im εxx

r (ω) and also

2 4 6 8
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FIG. 4. Decomposition of the shift-current spectrum of GaAs
shown in Fig. 3(a) into “internal” (solid lines) and “external” (dashed
lines) terms on one hand, and into “three-band” (black lines) and
“two-band” (gray lines) terms on the other.

very good for σxyz(0; ω, − ω), with only minor deviations.
The presence of small discrepancies is not surprising, given
that the shift current is rather sensitive to the wave functions
[15–17] and that the two calculations differ on several technical
aspects. For example, we use pseudopotentials instead of an all-
electron method, and a generalized gradient approximation for
the exchange-correlation potential instead of the local-density
approximation. The BZ integration methods are also different,
and the spin-orbit contribution to the velocity matrix elements
was not included in Ref. [21].

The dash-dotted gray lines in panels (a) and (b) of Fig. 3
show the spectra calculated in the diagonal TBA of Eq. (21).
While in the case of Im εxx

r (ω) the changes are quite small,
they are more significant for σabc(0; ω, − ω). This reflects the
strong wave-function dependence of the shift current, encoded
not only in the Wannier centers [7] but also in the off-diagonal
position matrix elements 〈0n|r̂|Rm〉. Those matrix elements
are usually discarded in tight-binding calculations, but they
should be included to fully embed the tight-binding model
in real space. The sensitivity of the shift current to those
matrix elements can be understood from the charge-transfer
nature of the photoexcitation process in piezoelectric crys-
tals [15,16,21].

It is instructive to break down the shift-current spectrum
calculated by Wannier interpolation into different types of
contribution. Inserting Eqs. (22) and (36) for ra

nm and ra;b
nm into

Eq. (5) for I abc
nm generates a number of terms. Each can be

classified as “external” or “internal” depending on whether or
not it contains off-diagonal position matrix elements: the term
rb
mnr

c;a
nm is internal, and all others are external. In addition, we

classify each term as “two-band” or “three-band” depending on
whether it only involves states n and m, or intermediate states
p as well. This gives a total of four types of terms, whose
contributions to the shift current are shown in Fig. 4.

The dominant contribution comes from internal three-band
terms, which by themselves provide a reasonable approxima-
tion to the full spectrum shown in Fig. 3(a). They are followed
by the internal two-band terms, while the two external terms are
somewhat smaller. Over most of the spectral range, the external
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FIG. 5. (a), (b), and (c) show the calculated zzz component of the
shift-current spectrum, the zz component of the dielectric function,
and the joint density of states of monolayer GeS, respectively. The
first two have been rescaled according to Eq. (39) to become 3D-like
quantities.

terms have the opposite sign compared to the internal ones.
Since the diagonal TBA amounts to discarding the external
terms, that explains why the dash-dotted gray line in Fig. 3(a)
overestimates the magnitude of the full spectrum given by
the solid black line. We emphasize that the decomposition of
the shift-current spectrum in Fig. 4 depends on the choice of
Wannier functions.

B. Monolayer GeS

GeS is a member of the group-IV monochalcogenides,
which in bulk form are centrosymmetric, but become polar—
and hence piezoelectric—when synthesized as a single layer.
The point group of monolayer GeS is mm2, which allows
for seven tensorial components of σabc(0; ω, − ω) to be
nonzero [23]. With the same choice of coordinate axis as in
Fig. 1 of Ref. [23] (the in-plane directions are ŷ and ẑ, with the
spontaneous polarization along ẑ), the nonzero components
are zxx, zyy, zzz, yyz = yzy, and xxz = xzx.

The zzz component of the shift-current spectrum is dis-
played in Fig. 5(a). Following Ref. [23], we report a 3D-like
response obtained assuming an active single-layer thickness of
2.56 Å. This is achieved by rescaling the calculated response

of the slab of thickness 15 Å as follows,

σ zzz
3D = 15

2.56
σ zzz

slab. (39)

In Figs. 5(b) and 5(c) we plot the dielectric function [also
rescaled according to Eq. (39)] and the JDOS. As in the case
of GaAs, the main peak structures of the optical spectra in
panels (a) and (b) are inherited from the JDOS. The diagonal
TBA (dash-dotted gray lines) changes the calculated spectra
only slightly, consistent with what is found in Ref. [26] for
monolayer WS2.

Our calculated spectra in Fig. 5 are in reasonable agreement
with those reported in Ref. [23] (dashed red lines), including
on the positions of the main peaks and on the sign change of
the shift current taking place at around 2 eV. However, the
agreement is not as good as that seen in Fig. 3 for GaAs. This
may be due in part to some differences in computational details
between the two calculations, namely the use of different k-
point meshes and BZ integration methods: we have sampled the
BZ on a uniform mesh of 106 k points, while in Ref. [23] a more
sophisticated tetrahedron method was used for the integration,
but with far fewer k points (4900). There is however another
source of disagreement, which was not present in Fig. 3:
the approximate treatment in Ref. [23] of the optical matrix
elements within the nonlocal pseudopotential framework. This
source of error is discussed further in Appendix D.

C. Analysis of computational time

Here we compare the computational requirements of our
numerical scheme with a direct calculation of the shift-current
spectrum without Wannier interpolation (e.g., using the method
outlined in Appendix D). The spectrum is evaluated by dis-
cretizing the BZ integral in Eq. (8) over a mesh containing N
k points, and we wish to see how the computational times of
the two approaches scale with N .

For that purpose, let us define the following time scales
per k point: tw and td are the times to evaluate the integrand
in Eq. (8) by Wannier interpolation and using the direct
method, respectively, and tnscf is the time to carry out a
non-self-consistent calculation to obtain the ab initio Bloch
eigenfunctions and energy eigenvalues. Further, we define
Tscf as the total time needed to carry out the self-consistent
ground-state calculation, and Twf as the total time needed to
construct the Wannier functions on a grid of M k points. The
total time of a Wannier-based calculation of the shift current
is then

Tscf + Mtnscf + Twf + Ntw, (40)

while the total time of a direct calculation is

Tscf + N (tnscf + td) ≈ Tscf + Ntnscf , (41)

where we used td 
 tnscf .
Let us take as a concrete example a calculation for mono-

layer GeS done on a single Intel Xeon E5-2680 processor with
24 cores running at 2.5 GHz. For the choice of parameters
indicated in Sec. IV we find tw � 21 ms, tnscf � 46 s, Tscf � 0.5
hours, and Twf � 1 hour. In Fig. 6 we plot as a function of N

the total times obtained from Eqs. (40) and (41), for M = 122.
The use of Wannier interpolation is already quite advantageous
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FIG. 6. Time estimates for calculating the shift-current spectrum
of monolayer GeS on a single processor with and without Wannier
interpolation [Eqs. (40) and (41), respectively], as a function of the
size N of the BZ integration grid.

for N ∼ 500, and the speedup increases very rapidly with N .
If a dense k-point sampling with N ∼ 106 is required, the
speedup reaches three orders of magnitude. (The absolute times
reported in Fig. 6 can be reduced by parallelizing the loop over
the N k points, which is trivial to do both with and without
Wannier interpolation.)

VI. SUMMARY

In summary, we have described and validated a Wannier-
interpolation scheme for calculating the shift-current spectrum
of piezoelectric crystals, starting from the output of a con-
ventional electronic-structure calculation. The method is both
accurate and efficient; this is achieved by using a truncated
Wannier-function basis, but without incurring in truncation
errors when evaluating the optical matrix elements. The same
approach can be applied to other nonlinear optical responses,
such as second-harmonic generation, that involve the same
matrix elements [18,26].

Our work was motivated in part by the growing interest
in the calculation of nonlinear optical properties of novel
materials such as Weyl semimetals and 2D materials. We hope
that the proposed methodology, and its implementation in the
WANNIER90 code package, will help turn such calculations into
a fairly routine task.

When describing the formalism, we tried to emphasize the
notion that Wannier functions provide an essentially exact
(in some chosen energy range) tight-binding parametrization
of the ab initio electronic structure. Thus, we chose our
notation and conventions so as to facilitate comparison with
the expressions for nonlinear optical responses found in the
tight-binding literature. Our numerical results suggest that it
should be possible to systematically improve the tight-binding
description of such responses by including off-diagonal po-
sition matrix elements as additional model parameters. In
Ref. [31], an attempt was made along those lines to improve
the tight-binding parametrization of semiconductors for the
calculation of Born effective charges, but with limited success.
Clearly more work is needed in this direction, and the shift
current, with its strong sensitivity to the wave functions, is
particularly well-suited for such investigations.
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APPENDIX A: SYMMETRY CONSIDERATIONS

As mentioned in the Introduction, the shift current vanishes
in centrosymmetric crystals. To verify that Eq. (8) behaves
correctly in that limit, note that the presence of inversion
symmetry implies the relations

En(−k) = En(k), (A1a)

I abc
mn (−k) = −I abc

mn (k). (A1b)

Hence k and −k give equal and opposite contributions to
the BZ integral in Eq. (8), leading to σabc(0; ω, − ω) = 0.

The shift current has been mostly studied in acentric
crystals without magnetic order. The presence of time-reversal
symmetry in such systems implies

En(−k) = En(k), (A2a)

I abc
mn (−k) = −[

I abc
mn (k)

]∗
. (A2b)

The points k and −k now give equal contributions to the
BZ integral, and Eq. (8) reduces to

σabc(0; ω, − ω) = − iπe3

2h̄2

∫
[dk]

∑
n,m

fnm

(
I abc
mn + I acb

mn

)
× δ(ωmn − ω), (A3)

which is Eq. (57) in Ref. [18]. For b = c, this form remains
equivalent to Eq. (8) even without time-reversal symmetry.

APPENDIX B: COMPARISON WITH REFERENCE [26]

In Ref. [26], a similar Wannier-interpolation scheme for
calculating the shift current was proposed independently. The
expression given in that work for the generalized derivative
in the Wannier basis is however different from Eq. (36). In
this Appendix, we show that the two formulations are in fact
consistent with one another. Below their Eq. (7), the authors
of Ref. [26] write

∂bA
a = (∂bU

†)A(W)
a U + U †(∂bA

(W)
a

)
U

+U †A(W)
a ∂bU + i(∂bU

†)∂aU + iU †∂2
abU, (B1)

which follows from differentiating Eq. (19). The last term can
be expressed in terms of Da = U †∂aU = −iAa as

iU †∂2
abU = i∂bD

a + iDbDa. (B2)
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The non-Hermitian term iDbDa cancels the fourth term in
Eq. (B1), leaving an expression for ∂bA

a that is correctly
Hermitian, term by term. Let us now evaluate the term ∂bD

a

assuming Da
nn = 0 (parallel-transport) [26]. The off-diagonal

matrix elements of the matrix Da read

Da
nm = − va

nm

ωnm

(m �= n), (B3)

where va
mm was defined in Eq. (23b). Invoking Eq. (26) we find

∂bD
a
nm = − 1

ωnm

(
wab

nm −
∑
l �=m

va
nlv

b
lm

ωlm

−
∑
l �=n

vb
nlv

a
lm

ωln

+ vb
mmv

a
nm

ωnm

− vb
nnv

a
nm

ωnm

)
(m �= n), (B4)

with wab
nm given by Eq. (29c). Substituting the term ∂br

a
nm in Eq. (2) by Eq. (B1) combined with Eqs. (B2) and (B4), Eq. (36) for

ra;b
nm is eventually recovered (after using Ab = rb, which holds in a parallel-transport gauge). We can now proceed to compare

with Ref. [26]. Combining Eqs. (B2)–(B4) we obtain

(
U †∂2

abU
)
nm

= − 1

ωnm

⎛
⎝wab

nm −
∑
l �=m

va
nlv

b
lm

ωlm

−
∑
l �=n

vb
nlv

a
lm

ωln

+ vb
mmv

a
nm

ωnm

− vb
nnv

a
nm

ωnm

⎞
⎠ +

∑
l �=n,m

vb
nl

ωnl

va
lm

ωlm

. (B5)

The first two terms in this equation agree with those in Eq. (8) of Ref. [26], and in the following we show that the remaining
terms in both equations can also be brought into agreement. Dropping the first two terms of Eq. (B5) and using ωnm/(ωnlωlm) =
1/ωnl − 1/ωlm in the last term, we find2

− 1

ωnm

⎛
⎝−

∑
l �=n

vb
nlv

a
lm

ωln

+ vb
mmv

a
nm

ωnm

− vb
nnv

a
nm

ωnm

−
∑

l �=n,m

vb
nlv

a
lm

ωnl

−
∑

l �=n,m

vb
nlv

a
lm

ωlm

⎞
⎠

= − 1

ωnm

⎛
⎝−

∑
l �=n,m

vb
nlv

a
lm

ωlm

+ vb
nmv

a
mm

ωnm

+ vb
mmv

a
nm

ωnm

− vb
nnv

a
nm

ωnm

⎞
⎠

= − 1

ωnm

⎛
⎝−

∑
l �=m

vb
nlv

a
lm

ωlm

+ vb
nmv

a
mm

ωnm

+ vb
mmv

a
nm

ωnm

⎞
⎠, (B6)

which is indeed identical to the last three terms in Eq. (8) of
Ref. [26]. It is worth mentioning that in this formulation the
Hermiticity of ra;b

nm is only satisfied globally, not term by term
as in the case of Eq. (36).

APPENDIX C: BERRY CURVATURE IN THE WANNIER
BASIS: REMOVAL OF THE PARALLEL-TRANSPORT

ASSUMPTION

In Ref. [25], around Eqs. (23) and (24), a parallel-transport
gauge was imposed on the U matrices while evaluating the
Berry curvature in a Wannier basis. Should one then enforce
the parallel-transport condition when choosing those matrices
at neighboring k points? This is in fact not necessary, as we
now show.

The Berry curvature of bandn is given by them = n element
of the matrix

�ab
knm = i〈∂aukn|∂bukm〉 − i〈∂bukn|∂aukm〉. (C1)

2Equation (B6) was obtained by Chong Wang, commenting on an
earlier version of the paper (private communication).

Using

|∂aun〉 =
∑

j

∣∣∂au
(W)
j

〉
Ujn − i

∑
m

|um〉Aa
mn, (C2)

which follows from Eqs. (18) and (25), we find

�ab = �ab + i[Aa,Ab] − i[Ab,Aa] + i[Aa,Ab]. (C3)

This is Eq. (27) of Ref. [25], in a slightly different notation.
Recall from Eq. (19b) thatAa is the Berry connection for the U

matrices; instead of imposing the parallel-transport condition
Aa

nn = 0 as done in Ref. [25], we let Aa
nn be nonzero and write

Aa
nm = δnmAa

nn + ra
nm, in accordance with Eq. (23a). The first

commutator in Eq. (C3), for example, becomes

i[ra,Ab]nm − iAb,nm

(
Aa

mm − Aa
nn

)
. (C4)

Since the second term vanishes for m = n, we conclude that the
Berry curvature, given by the band-diagonal entries in Eq. (C3),
is insensitive to the value of the gauge-dependent quantityAa

nn.
This is consistent with the fact that the Berry curvature is gauge
invariant.
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APPENDIX D: APPROXIMATE TREATMENT OF THE
OPTICAL MATRIX ELEMENTS WITH NONLOCAL

PSEUDOPOTENTIALS

In some previous ab initio calculations of the shift cur-
rent [21,23], the velocity operator was approximated as

v̂ = p̂
me

= − ih̄

me

∇r . (D1)

The interband velocity matrix elements vnm in the Bloch basis
were then inserted into Eqs. (11) and (12) (dropping the term
wab

nm in the latter) to obtain the interband dipole matrix ra
nm and

its generalized derivative ra;b
nm .

When using either an all-electron method (as in the
GaAs calculation of Ref. [21]) or local pseudopotentials, the
above procedure is exact, at least when spin-orbit coupling
is neglected.3 However, modern pseudopotential calculations
employ nonlocal pseudopotentials, for which that procedure
introduces some errors: the velocity operator is not simply
given by Eq. (D1) [44,45], and as a result the term wab

nm

in Eq. (12) for ra;b
nm becomes nonzero (see Appendix B in

Ref. [26]).
In this Appendix we perform additional calculations for

single-layer GeS employing the same computational setup
as used in Ref. [23] (ABINIT code [46] with Hartwigsen-
Goedecker-Hutter pseudopotentials [47]), in order to estimate
the errors arising from the use of the approximate procedure
outlined above.

As a first step, we switched off by hand the nonlocal
terms in the pseudopotentials. For a given k-point sampling
and delta-function smearing, the resulting spectra Im εzz

r (ω)
and σ zzz(0; ω, − ω) (not shown) were found to be in perfect
agreement with those calculated by Wannier interpolation
using the same local pseudopotentials. This provided a strong
numerical check of our Wannier interpolation scheme, which
does not depend on whether an all-electron or a pseudopotential
method has been used, or on whether the pseudopotentials are
local or nonlocal.

We then redid both calculations using the full nonlocal
pseudopotentials. The results obtained by sampling the 2D BZ
on a relatively coarse 70 × 70 grid with a fairly large delta-

3The spin-orbit interaction gives an additional contribution to the
velocity operator [43]. That contribution is typically small and can
be safely neglected, as done in Ref. [21]. In our formulation, that
contribution is automatically included.

FIG. 7. (a) Shift-current spectrum, and (b) dielectric function of
single-layer GeS calculated using an exact (red) and an approximate
(blue) treatment of the optical matrix elements within the nonlocal-
pseudopotential approach. The red curve was obtained with Wannier
interpolation, while for the blue curve the optical matrix elements
were calculated directly in the plane-wave basis using Eq. (D1).

function broadening of 0.1 eV are shown in Fig. 7 (as a result
of the coarse k-point sampling and of the large broadening, the
spectral features are broadened compared to Fig. 5). There
are clear differences between the spectra calculated in the
manner of Ref. [23], and those obtained using the Wannier
interpolation scheme: the positions of the peaks are the same,
but their heights are somewhat different, as expected from
a small change in the matrix elements. Given the perfect
agreement that had been found with local pseudopotentials,
these differences must arise exclusively from the approximate
treatment of the optical matrix elements in the approach of
Ref. [23] combined with nonlocal pseudopotentials. Since the
level of disagreement seen in Fig. 7 is comparable to that
seen in Figs. 5(a) and 5(b), it seems plausible that there the
discrepancies may also arise in part from these small errors in
the matrix elements.
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