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We study quantum quenches in two-dimensional lattice gauge theories with fermions coupled to dynamical
Z2 gauge fields. Through the identification of an extensive set of conserved quantities, we propose a generic
mechanism of charge localization in the absence of quenched disorder both in the Hamiltonian and in the initial
states. We provide diagnostics of this localization through a set of experimentally relevant dynamical measures,
entanglement measures, as well as spectral properties of the model. One of the defining features of the models that
we study is a binary nature of emergent disorder, related to Z2 degrees of freedom. This results in a qualitatively
different behavior in the strong disorder limit compared to typically studied models of localization. For example,
it gives rise to a possibility of a delocalization transition via a mechanism of quantum percolation in dimensions
higher than 1D. We highlight the importance of our general phenomenology to questions related to dynamics
of defects in Kitaev’s toric code, and to quantum quenches in Hubbard models. While the simplest models
we consider are effectively noninteracting, we also include interactions leading to many-body localizationlike
logarithmic entanglement growth. Finally, we consider effects of interactions that generate dynamics for conserved
charges, which gives rise to only transient localization behavior, or quasi-many-body localization.
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I. INTRODUCTION

Gauge theories play a central role in theoretical physics,
most famously in the unified description of fundamental
particles in the standard model, but also increasingly in the
description of condensed matter systems [1–5], where lattice
gauge theory (LGT) models often arise as effective descriptions
of strongly correlated systems. The celebrated toric code [6]
is such an example of a Z2 lattice gauge theory, which is
a prototypical quantum stabilizer code, which also serves as
an effective description of the Kitaev honeycomb model with
strongly anisotropic couplings [7].

The honeycomb Kitaev model can itself be understood in
terms of itinerant Majorana fermions coupled to static Z2

gauge fields. Other examples include the resonating valence-
bond liquid [8,9], slave-particle descriptions of the Hubbard
model [10,11], non-Fermi metals [12] and glasses [13], the
Falicov-Kimball model [14–17], etc. While models of lattice
gauge theories are often difficult to realize in experiment,
recent developments in cold atom quantum simulators have
opened possibilities in studying these models, see, e.g., the pi-
oneering experiment on cold ion simulations of the Schwinger
model [18]. This progress motivates the importance in un-
derstanding simple exactly solvable models, which one could
use to benchmark experiments and to improve our theoretical
understanding of universal behavior of LGTs.
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Another field of importance in condensed matter physics
is localization (Anderson localization [19] and many-body lo-
calization), which has seen recent remarkable developments in
theory [20,21] and experiments [22,23]. Localization phenom-
ena provide a set of fundamental concepts about the insulating
behavior of itinerant degrees of freedom in the presence of
disorder. Remarkably, localization was shown to persist even in
presence of interactions and the resulting many-body localized
(MBL) phase is a novel exotic dynamical phase of matter
[24–26], which is robust to generic perturbations. Many-body
localization provides a mechanism for nontrivial relaxation,
beyond integrable models, and serves as a counterexample to
eigenstate thermalization [27].

Following original ideas of Kagan and Maksimov [28],
a number of models for disorder-free localization featuring
heavy and light particles have been proposed. In this setup,
localization may be induced purely via interactions between
the two species [29–32] without any quenched disorder in
the Hamiltonian. While numerics suggests localization be-
havior in these systems, so far, it has been found to be only
transient, giving way to ergodic behavior in the long-time
limit. This behavior was therefore dubbed quasi-MBL [31].
Another interesting approach is to take quantum analogues
of classically-glassy systems, where non-ergodic behavior
[33–35] has also been observed. Unfortunately, due to small
available system sizes, glassy behavior in these models has not
yet been distinguished from that of quasi-MBL.

In previous work [36,37], we have demonstrated, for the first
time, a general mechanism for disorder-free localization in a
model of fermions with a localZ2 gauge symmetry. We showed
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FIG. 1. Schematic picture of the model (1). Left panel shows star Â and plaquette B̂ operators, with σ̂ x , σ̂ z operators denoted by crosses
and circles, respectively. Fermion hopping is defined by J and the direction of the spin-1/2 on that bond. Center and right panels show the
duality transformation to new spins τ̂ . The model can be defined with periodic boundary conditions, as in the center panel. In the case of open
boundaries, we define incomplete boundary “stars” as shown in the right panel.

how the localization signatures can be revealed through an
exact identification between conserved charges associated with
aZ2 gauge symmetry and an effective binary potential for non-
interacting fermions. Moreover, we were able to map fermion
or spin correlators to disorder averaged fermionic correlators
despite both the Hamiltonian and the initial state having no
quenched disorder at all.

In this paper, we extend our theory to a family of Z2

lattice gauge models of spinless fermions coupled to spins-
1/2. These models can be defined in any dimension, and
for lattices described by arbitrary graphs, and in particular
we focus on two-dimensional square lattices. Here we show
that the localization mechanism we discussed in the 1D case
applies in a more general context. We use experimentally
relevant dynamic probes to diagnose localization [22,23]. In
two dimensions, we are able to make a direct connection
between our model and Kitaev’s toric code model in presence
of dynamical charges.

We also analyze in more detail the limit of strong disorder. In
the case ofZ2 gauge degrees of freedom, this disorder takes bi-
nary values, which gives rise to a phenomenology not found in
the typically studied continuous quenched disorder realizations
[38]. We find a mechanism for delocalization in 2D related to
the phenomenology of quantum percolation [39,40]. Further,
we study perturbations that render our models fully interacting.
As our preliminary studies in Ref. [37] have indicated, here we
demonstrate that in presence of perturbations that do not induce
dynamics of conserved charges, the entanglement entropy is
characterized by a logarithmic growth, which can be likened
to MBL behavior. In addition, we provide an analysis of the
effects of perturbations that generate dynamics of conserved
charges, which leads to quasi-MBL behavior in the region of
parameters that we have explored.

The structure of the paper is the following. In Sec. II, we
define the family of models in arbitrary spatial dimension and
on arbitrary lattices. We identify conserved charges which
reveal the general disorder-free mechanism for localization.
We provide details about the transformations, the initial
states, and the calculations. We explain the phenomenology
of disorder-free localization for the example of 2D Kitaev’s
toric code and the dynamics of defects therein in Sec. II C.
In Sec. III, we present a discussion on the diagnostics of
localization behavior. In Secs. III B and III D, we focus on
the binary nature of the effective disorder, which leads to
qualitative differences in behavior. In Sec. IV, we discuss the

effects of integrability-breaking perturbations. In Sec. IV A, we
discuss MBL physics which arises in presence of perturbations,
while in Sec. IV B, we consider terms that give dynamics to our
effective disorder, leading to quasi-MBL behavior. A general
discussion and conclusions are presented in Sec. V. We provide
in-depth details of all of the numerical methods used in the
paper in Appendices.

II. MODEL

We study a family of lattice models with spinless fermions
f̂i , which live on the sites of a lattice minimally coupled to spins
1/2 σ̂jk , positioned on the bonds. These models can be defined
on an arbitrary graph, however, in this paper we focus on
one-dimensional chains and a two-dimensional square lattice
with both open and periodic boundary conditions. We also
discuss three-dimensional generalizations, as well as effects of
perturbations. The models are described by the Hamiltonian

Ĥ = −
∑
〈jk〉

Jjkσ̂
z
jkf̂

†
j f̂k −

∑
j

hj Âj , (1)

where 〈jk〉 denotes nearest neighbors, and Âj is the star
operator, which is the product of all spins on the bonds
connected to site j , shown for a 2D square lattice in Fig. 1,

Âj =
∏

k:〈jk〉
σ̂ x

jk, (2)

and Jjk and hj define coupling strength, and local magnetic
field, respectively. In the following, we assume that both of
them are position independent. The Hamiltonian possesses
an extensive number of conserved quantities (charges) q̂i =
(−1)n̂i Âi , where n̂i = f̂

†
i f̂i . The charges have eigenvalues ±1

and commute with the Hamiltonian and amongst themselves
[Ĥ ,q̂i] = 0, and [q̂i ,q̂j ] = 0. They can be used to generate
local Z2 gauge transformations under which the Hamiltonian
is invariant. Explicitly, these transformations are given by
the unitary operators Û ({θi}) = ∏

i q̂
(1−θi )/2
i , where θi = ±1,

which transform the operators accordingly,

f̂ → θi f̂ , σ̂ z
ij → θiθj σ̂

z
ij . (3)

It is worth noting that our model is an example of an uncon-
strained Z2 lattice gauge theory. Explicitly while the Hamil-
tonian is invariant under the gauge transformation, the Hilbert
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space is not. What is typically understood as a gauge theory is
constrained to the physical subspace of gauge invariant states
by Gauss law [1–3] q̂i |�〉 = |�〉, which we do not impose in
our case, cf. the gauge structure of Kitaev honeycomb model
[7].

In our previous work [36,37], we studied the Hamiltonian
(1) defined on a 1D chain. In this case, the star operators reduce
to nearest-neighbor exchange couplings Âj = σ̂ x

j−1,j σ̂
x
j,j+1,

and the Hamiltonian (1) assumes the following form:

Ĥ1D = −J
∑
〈jk〉

σ̂ z
jkf̂

†
j f̂k − h

∑
j

σ̂ x
j−1,j σ̂

x
j,j+1. (4)

Previously, we have shown for this 1D model that conserved
charges q̂i play a role of emergent binary disorder, which gives
rise to localization of electron degrees of freedom.

Models described by the class of Hamiltonians (1) appear
in the studies of a wide range of systems. Specifically, by
imposing a global constraint on the conserved charges such
that

∑
i(q̂i + 1)|�〉 = μ|�〉, where μ ∈ Z, we recover the

Falicov-Kimball model [14–16], where μ/N is the density
of localized electrons, see discussion below. Further, in the
case of spin-1/2 fermions with the kinetic term described by∑

α=↑,↓,〈ij〉 σ̂ z
ij f̂

†
iαf̂jα and imposing the Gauss law constraint,

we arrive at the slave-boson description of the Hubbard model
[11]. For a recent exposition of other interesting directions
where the phenomenology of disorder-free localization de-
scribed in this paper applies see, e.g., Ref. [41]. Also see
Ref. [42], which studies a mechanism similar to ours in the
Schwinger model with discrete Z2 symmetry replaced by a
continuous U (1) gauge field.

A. Duality mapping

In our previous work [36,37], we found a mapping that
reveals an equivalence between charge configurations {qi =
±1} and configurations of on-site potentials for the fermions.
Here we explain this mapping in greater detail and for the more
general class of models described by Eq. (1).

We proceed by a duality transformation of the operators σ ,
defining spin-1/2 operators τ , which live on the sites of the
lattice,

τ̂ z
j = Âj , τ̂ x

j τ̂ x
k = σ̂ z

jk, (5)

where indices j and k correspond to nearest neighbor sites, see
Fig. 1. We have to choose one of the disconnected subspaces of
the model. These disconnected subspaces can be enumerated
by another set of conserved quantities defined as products of σ̂ z

along closed loops on the lattice. These conserved quantities
can be expressed in terms of plaquette operators, B̂p , defined on
the irreducible plaquettes of the lattice (see Fig. 6) and Wilson
loop operators �̂n,

B̂p =
∏

plaquette p

σ̂ z
jk, �̂n =

∏
〈jk〉∈γn

σ̂ z
jk, (6)

where γn is any closed path that winds around a torus and
which cannot be written as a product of plaquette operators. For
concreteness, we give two examples: in a 1D periodic chain,
there is only one such operator which is the loop around the
entire system

∏
σ̂ z. This is equivalent to a statement that a

number of domain walls modulo 2 is conserved. On a 2D torus

we have B̂p on all square plaquettes of the lattice and the two
Wilson loops around the two periodic directions. Importantly,
as well as commuting with the Hamiltonian, these operators
commute with the generators of the Z2 gauge symmetry q̂i .
The eigenvalues ±1 of these operators label subspaces which
are disconnected under gauge transformations.

The duality mapping in Eq. (5) forces the choice B̂p = 1
on all plaquettes and all �̂n = 1. For a discussion of different
plaquette sectors, see Ref. [41]. In all but one dimension with
open boundary conditions, we also have a global constraint
which is due to the product of all star operators being equal to
the identity, i.e.,

∏
all i Âi = 1. On the other side of the duality

mapping this amounts to the constraints∏
all i

τ̂ z
i = 1,

∏
all i

q̂i = (−1)N̂f , (7)

where N̂f = ∑
i n̂i is the total fermion number.

In terms of the τ spins, the Hamiltonian assumes the form

Ĥ = −J
∑
〈jk〉

τ̂ x
j τ̂ x

k f̂
†
j f̂k − h

∑
j

τ̂ z
j . (8)

Although this Hamiltonian is equivalent to Eq. (1) only on
a restricted Hilbert space, we will not use notation to dis-
tinguish between the two. This form is identical to the one
exposed for the 1D chain [36,37], but here the nearest-neighbor
connectivity can be described by any graph. In this form we
can identify local conserved quantities q̂j = τ̂ z

j (−1)n̂j with

n̂j = f̂
†
j f̂j . These charges commute with the Hamiltonian

and amongst themselves. The charges are precisely those that
generate the gauge symmetry identified in the original degrees
of freedom.

Finally, by a change of variables ĉj = τ̂ x
j f̂j , the Hamil-

tonian can be written in terms of conserved charges and the
spinless fermions ĉ:

Ĥ = −J
∑
〈jk〉

ĉ
†
j ĉk + 2h

∑
j

q̂j (ĉ†j ĉj − 1/2), (9)

where we have used the fact that n̂j = f̂
†
j f̂j = ĉ

†
j ĉj , since

(τ̂ x
j )2 = 1. The canonical commutation relations {ĉ†j ,ĉk} = δjk

can be similarly verified. For a given charge configuration—
that is in the subspace of fixed {qj } = ±1—Hamiltonian (9)
describes a tight-binding model with a binary potential whose
sign is set at each site by the value of qj . Note that we
recover the Falicov-Kimball model if we impose the global
constraint

∑
i(q̂i + 1)|�〉 = μ|�〉, where μ is an integer that

corresponds to the chemical potential for the static auxiliary
fermions ĝj , defined via q̂i = ĝ

†
i ĝi .

As well as understanding how the operators transform under
the mapping, we must also make an identification between the
eigenstates. Let us consider tensor product states of the form
|�〉σ,f = |S〉σ ⊗ |ψ〉f , which we wish to identify with a state
|�〉τ,c in the Hilbert space of the τ and c degrees of freedom,
and in turn with |�〉q,c. If for the fermion states we choose the
Fock states, i.e., |ψ〉f = f̂

†
j · · · f̂ †

l | vacuum〉, then these states
take the same form for the c fermions, and we will drop the
subscript in the following. Without loss of generality, let us
consider spins in the z-polarized state |↑↑↑ · · · 〉σ —any other
spin state in the sector defined by all B̂j = 1 can be reached via
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FIG. 2. Schematic picture showing the transformation of the initial state into a dual representation. On the left is an initial state with fermions
in a charge density wave (filled sites—blue, empty sites—white). The bond spins are polarized along the z axis. The dual state (right panel) has
the fermions in the same configuration, but the wave function is an equal superposition of all charge configurations. In the dual representation,
the charge sector leads to exact averaging over the binary potential, which is shown in gray.

application of star operators Âj . By the duality transformation
and the global constraint of Eq. (7), we have that

τ̂ x
i τ̂ x

j |↑↑↑ · · · 〉σ =
∏
all i

τ̂ z
i |↑↑↑ · · · 〉σ = |↑↑↑ · · · 〉σ , (10)

and we make the correspondence between states |↑↑↑ · · · 〉σ =
1√
2
(|→→ · · · 〉τ + |←← · · · 〉τ ). Therefore we can generally

make identifications of the form |S〉σ ⊗ |ψ〉 ∝ |S〉τ ⊗ |ψ〉,
where |S〉σ (τ ) has a definite local z(x) component of spin, and
|ψ〉 has a definite local occupation.

Now we can express these tensor product states in terms of
conserved charges in place of the τ spins. For a z-polarized
state this proceeds as follows:

|↑↑↑ · · · 〉σ ⊗ |ψ〉 = 1√
2N−1

∑
{τi }=↑,↓

′ |τ1,τ2 · · · 〉τ ⊗ |ψ〉,

(11)

where we have identified |→〉τ = (|↑〉τ + |↓〉τ )/
√

2, for each
τ spin, and the prime indicates that the sum runs over all
configurations satisfying constraint (7). Let us consider a single
state in this sum |τ1τ2 · · · 〉τ ⊗ |ψ〉, then since the fermion
state is a simple tensor product of site occupation, this can
be rewritten as

|τ1(−1)n1 ,τ2(−1)n2 , · · · 〉q ⊗ |ψ〉. (12)

The occupation numbers for the fermion state are fixed and
thus only contribute a common sign structure to the charge
configuration. Since we sum over all τ configurations, all
with a positive weight, this equates to a sum over all charge
configurations:

| ↑↑ · · · 〉σ ⊗ |ψ〉 = 1√
2N−1

∑
{qj }=±1

′ |q1,q2, · · · ,qN 〉 ⊗ |ψ〉,

(13)

where again the primed sum indicates the constraint (7). This
transformation of states is shown schematically in Fig. 2. The
fact that all of the weights are equal and positive is important for
this final form, otherwise there would be a sign structure that
depends both on the spin and the fermion configuration. Other
spin states in the same spin sector can be accessed through the
application of star operators.

B. Emergent disorder and disorder averaging

In the previous section, we showed a transformation to the
Hamiltonian (9) which has an effective binary potential, and

that the states in the dual configuration are superpositions of the
states with a given charge configuration, with the sign of the
charges generating a potential for the fermions. Throughout
this paper—except briefly in Sec. II C—we will consider
the quenched initial states |�〉 = |↑↑↑ · · · 〉σ ⊗ |ψ〉 with
z-polarized spins and a selection of fermion Slater determi-
nants. In order to make a connection with the localization
problem, the final step is to show that expectation values
of observables with respect to these initial states amount to
averages over effective disorder.

Let us for concreteness consider a spin expectation value

〈�|σ̂ z
jk(t)|�〉 = 1

2N−1

∑
{sl},{qm}=±1

′ 〈ψ |〈s1, · · · |

× eiĤ t τ̂ x
j τ̂ x

k e−iĤ t |q1, · · · 〉|ψ〉. (14)

In order to simplify expressions, we introduce the fermion
Hamiltonian

Ĥ ({qj }) = −J
∑
〈jk〉

ĉ
†
j ĉk + 2h

∑
j

qj (ĉ†j ĉj − 1/2). (15)

The difference with Eq. (9) is that this Hamiltonian (15)
acts only in the fermion subspace and the qj are no longer
operators—the configuration {qj } = ±1 is specified. Equation
(14) can then be written as

〈�|σ̂ z
jk(t)|�〉

= 1

2N−1

∑
{qi }=±1

′ 〈ψ |eiĤ ({qi })t e−iĤ ({qi :q̄j ,q̄k})t |ψ〉, (16)

where q̄j signifies that the value of charge qj in the Hamiltonian
has been reversed. This reversal of the charge arises from
commuting τ operators past the time evolution operator. Note
that one can also then remove the second sum over charges
because of charge conservation. Similar arguments can be used
to show that all correlators of this form reduce to fermion
correlators averaged over all charge configurations, which
amounts to all disorder configurations in the Hamiltonian (15)
[43,44]. The correlators can be efficiently computed using
determinants, see Appendix A. It is important to note that, as in
Eq. (16), the expressions for the correlators that we obtain are
distinct from, e.g., the fermion correlators of a tight-binding
model with disorder. For instance, the Green’s function

〈f̂ †
j (t)f̂k(0)〉

= 1

2N−1

∑
{qi }=±1

′ 〈ψ |eiĤ ({qi })t ĉ†j e
−iĤ ({qi :q̄j })t ĉk|ψ〉, (17)
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does not correspond to averaging over disorder configurations
for the Green’s functions 〈ĉ†j (t)ĉk(0)〉 because of the flipped
charges between the forward and backward time evolution. In
this respect, the correlators that we obtain are similar to the
ones appearing in the x-ray edge problem and the dynamical
structure factor for the honeycomb Kitaev model [45,46]. On
the other hand, density averages and correlators do equate to
simple disorder-averaging without flipped charges.

C. Defect attachment in the toric code model

Before moving on to study the physics of localization in our
model, let us first consider Hamiltonian (1) defined on a 2D
square lattice with periodic boundary conditions. This becomes
equivalent to Kitaev’s toric code—with plaquette dynamics
frozen—coupled to spinless fermions. Note that one way of
introducing dynamical defects into the toric code is by adding
transverse field terms

∑
〈jk〉 σ̂

z
jk . Here we briefly outline the

dynamics induced by our coupling to fermions.
For our discussion of localization, we study the initial states

of spins polarized along the z axis. However, let us for a
moment focus on spin states describing the ground state of
the toric code, that is,

Âj |S0〉 = |S0〉, B̂p|S0〉 = |S0〉. (18)

We note that our choice of duality transformation is consistent
with this ground state, and it fixes Wilson loop operators to
be �̂1 = �̂2 = 1, thus it uniquely chooses one of the four
degenerate ground states (for J = 0) of the toric code. To
access other ground state sectors we can modify the duality
transformation (5) by defining a vertical and horizontal line
(going through bonds) over which the implicit definition of
τ̂ x , picks up a sign �1,�2 = ±1, respectively. More explicitly,
one can define

τ̂ x
j τ̂ x

k = (�1)δ
1
jk (�2)δ

2
jk σ̂ z

jk, (19)

where δ
1(2)
jk is 1 when the bond 〈jk〉 crosses a verti-

cal(horizontal) reference line, and 0 otherwise. Note that this
choice changes the action of the Wilson loop operators but not
B̂p, since any plaquette crosses any line an even number of
times.

Having chosen the initial spin configuration, we can con-
sider the coupling to fermions. For a simple tensor product
state |S0〉 ⊗ |ψ〉, this maps to

| ↑↑ · · · 〉τ ⊗ |ψ〉 = |(−1)n̂1 ,(−1)n̂2 , · · · 〉q ⊗ |ψ〉, (20)

that is, for an initial fermion state of definite local occupation,
the charge configuration is uniquely specified by the parities
of fermion occupation numbers on each site. The Hamiltonian
then takes a simple form,

ĤTC = −J
∑
〈jk〉

ĉ
†
j ĉk + 2h

∑
j

qj (ĉ†j ĉj − 1/2), (21)

where in contrast to Eq. (9), the potential given by qj is fixed
and equal to −1 if there is a fermion on this site in the initial
state, and+1 if the site is empty. If we consider the limith 
 J ,
then the fermions lie at the bottom of large potential wells,
and fermion hopping is suppressed, and we recover the static
toric code. The form of the conserved charges is essentially a

statement that defects in the toric code are attached to fermions
(or holes).

Let us now consider excitations of this model in the limit
of h 
 J . Addition of a star defect on a site amounts to
flipping a τ -spin and corresponds to changing the sign of the
potential on the same site. This defect is then free to move
in a restricted geometry on the lattice that is determined by
the sites occupied by fermions, since the defect is attached
to a fermion (hole). This geometry corresponds to a connected
region of the lattice which has the opposite fermion parity to the
fermion/hole attached to the defect. This can be understood as
site percolation problem for the defects, and we will encounter
it again in Sec. III D. Importantly, on a square lattice, the
percolation threshold is pc ≈ 0.5927, which means that for
fermions at half-filling and in a random configuration, the
defects are localized.

Let us now return to the discussion of the plaquette op-
erators. We can include the latter in our model and through
the symmetries of the model do exactly the same procedure
of attaching defects to fermions. If we consider a dual lattice,
which is a square lattice with sites at the centres of plaquettes,
then the plaquette operators become star operators and vice
versa. We can then add a second fermion species on this
dual lattice which will be attached to plaquette defects. If we
denote fermions attached to star defects â and those attached
to plaquette defects b̂, then the toric code model with fermion
attachment reads

ĤTC = −hA

∑
s

Âs − hB

∑
p

B̂p

− JA

∑
〈ij〉s

σ̂ z
j,kâ

†
i âj − JB

∑
〈ij〉p

σ̂ x
j,kb̂

†
i b̂j , (22)

where 〈ij 〉s denotes nearest neighbors on the original lattice,
and 〈ij 〉p denotes those on the dual lattice. The conserved

charges are q̂A
j = Âj (−1)â

†
j âj and q̂B

j = B̂j (−1)b̂
†
j b̂j , respec-

tively. We now have a full toric code with defects attached to
fermions. We are then able to control the dynamical behavior of
the defects by choosing the initial configuration and occupation
numbers for the fermions.

III. LOCALIZATION

In this section, we discuss the localization behavior of the
model defined by Eq. (1) in the case of a 1D chain and a
2D square lattice. Since the model can be mapped to free
fermions, we can calculate correlators using determinants
as explained in Appendix A. This approach allows us to
study systems with ∼102–103 sites. For entanglement entropy
calculations, we require the full density matrix and resort to
exact diagonalization in 1D for up to N = 12 sites. To calculate
the density of states, we use the kernel polynomial method [47],
see Appendix C, which can be used for systems of order 105–
106 sites. Localization lengths are computed using a standard
transfer matrix approach [48] described in Appendix D.

A. Dynamical localization in 1D

The quench problem that we study here has initial states
with bond spins polarized along the z axis |↑↑↑ · · · 〉, and with
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FIG. 3. Results for the time-evolution of the fermion subsystem in 1D. (a) Persistence of a charge density wave measured by the density
imbalance between neighboring sites, �ρ, see Eq. (23), for N = 200 sites with periodic boundary conditions. The inset shows results in the
long-time limit, J t = 109, as a function of effective disorder strength h/J . (b) and (c) Spreading of a domain wall (in the initial configuration)
for h/J = 0.5 and 2, respectively, for the system with N = 20 sites and open boundary conditions. Local density is shown (filled—yellow,
empty—blue). (d) Time evolution of particle occupation numbers on the right-half of the system Nhalf from an initial domain wall configuration
for N = 200 sites. Inset shows results for the long time limit as a function of h/J . All calculations are performed using the determinant method
of Appendix A.

fermions in one of the following Slater determinant states. (i)
Charge density wave described by fermions in a Fock state with
occupation numbers | · · · 1010 · · · 〉. We will probe the memory
of this initial state via the nearest-neighbor density imbalance

�ρ(t) = 1

Ñ

∑
j

|〈�|n̂j (t) − n̂j+1(t)|�〉|, (23)

where Ñ = N − 1,N , for open and periodic boundary condi-
tions, respectively. This measure was used, e.g., to identify the
MBL transition in cold atom experiments, see Ref. [23].

(ii) Domain wall configuration with the left half of the chain
filled and the right half empty | · · · 111000 · · · 〉. In order to
quantify localization in this case, we measure the total number
of particles in the right half of the system (which is empty in
the initial state), which tells us how many particles make it
across the domain wall,

Nhalf(t) =
∑

j∈ right half

〈�|n̂j (t)|�〉. (24)

This observable, as well as the long-time fermion density dis-
tribution, reveal the extent to which the fermions are localized.
A similar measurement was used to identify the MBL transition
in 2D, see the cold atom experiments of Ref. [22], and in
theoretical work as a dynamical measure of localization, see
Ref. [49].

Let us first consider the charge density wave initial state,
where we measure the density imbalance �ρ(t), see Fig. 3(a).
While the latter decreases as a function of time from its initial
value of 1, at long times it approaches a nonzero value for
all h �= 0. Furthermore, the asymptotic value �ρ(t → ∞)
increases monotonically with h/J , as shown in the inset. This
shows the memory of the initial state, which is preserved
in breaking of ergodicity due to emergent disorder. We also
note that fluctuation in the asymptotic value of the density
imbalance increase both in amplitude and longevity with
increasing h. These fluctuations can be linked to the behavior
of the density of states shown in Fig. 5(a), where we see that
the DOS shows multiple spikes at the band edges that lead to
resonances.

Next, let us consider the domain wall configuration shown
in Figs. 3(b)–3(d). For h/J < 1, we observe initial linear
spreading of the domain wall at short times. At longer times,
this linear spreading halts, and the density quickly approaches
its limiting value with exponential tails set by the single-
particle localization length [36], see Fig. 7(b). For h/J > 1,
we see a similar phenomenology except the halting is much
more abrupt and the domain wall spreads over only a few
sites, see Fig. 3(c). The persistence of the domain wall can
be most clearly quantified by Nhalf(t): the number of particles
that make it into the initially empty half of the system, as shown
in Fig. 3(d). We see that for h �= 0 its behavior deviates from
linear growth, which we observe for h = 0. The number of
particles, which makes it across the domain wall, is bounded
showing that there is a remaining imbalance between the two
halves of the system, and thus the memory of the initial domain
wall remains at arbitrary long times.

B. Strong disorder limit

While we find localization for all values of h, we also
observe a qualitative change in behavior for h/J > 1, which
can be traced back to the binary nature of the effective disorder.
See, for example, Refs. [38,39] for further discussion of the
differences between binary and continuous disorder. In our
model, this difference is most evident in the bipartite von
Neumann entanglement entropy, shown in Fig. 4, where we
observe a plateau with area-law scaling. For both the CDW
and the domain wall initial states, we also find that dynamical
observables show larger amplitude and longer lived oscillations
with increasing h/J . This can be seen as fluctuations in �ρ in
Fig. 3(a) and side-to-side fluctuations near the domain wall in
Fig. 3(c).

To understand this behavior, let us consider the strong
disorder limit, h/J 
 1. Here one can think of the 1D chain
as a collection of finite-length disconnected chains, with the
distribution of lengths, l, given by (1/2)l , as shown in the inset
of Fig. 5(b). In each isolated chain of length l, we then have
l single-particle wave functions and energy levels E. In this
limit, we can separate the Hamiltonian into Ĥh and ĤJ given
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FIG. 4. Time evolution of the bipartite von Neumann entangle-
ment entropy in the 1D case. We start from a charge density wave
initial state in a system with open boundary conditions and h/J = 10.
We partition the system into two halves along the central bond and
results are computed using exact diagonalization.

by

Ĥh = 2h
∑

i

qi(ĉ
†
i ĉi − 1/2) − J

∑
〈ij〉:qi=qj

(ĉ†i ĉj + H.c.),

ĤJ = J
∑

〈ij〉:qi=−qj

(ĉ†i ĉj + H.c.).
(25)

Here, the sums are over nearest neighbors satisfying the
condition on the relative sign of q. Note that we omit an overall
energy shift h

∑
i qi in the Hamiltonian, which is defined by

a charge configuration. This shift does not affect the results
since there is no matrix element between different charge
sectors. The Hamiltonian Ĥh describes disconnected uniform
tight-binding chains, and ĤJ corresponds to a hopping between
these chains.

The DOS of the Hamiltonian Ĥh can be constructed using an
ensemble of the energy levels for disconnected chains weighted
by their probability distribution using the following equation:

g(ω) ∝ − 1

π
�m lim

δ→0

∞∑
l=1

∑
El

(1/2)l

ω − El + iδ
, (26)

where El denote single-particle eigenvalues of the tight-
binding Hamiltonian for a uniform chain of length l. In order to
obtain the DOS numerically, we introduce a cutoff on the sum
over l and choose a finite broadening δ = 0.0015. This form of
the Hamiltonian and the corresponding DOS reveals two main
features. First, for h/J > 1, we have a gap in the spectrum
which splits into two sub-bands of bandwidth 4J , centered at
±2h, see inset of Fig. 5(a). Note that in the Falicov-Kimball
model this corresponds to the Mott phase [14]. Second, the
DOS is characterized by a set of discrete peaks. In Fig. 5(b), we
compare the exact DOS centered around one of these sub-bands
at E = 2h for a large but finite system with large h 
 J ,
and the DOS constructed from Eq. (26), which shows good
agreement.

FIG. 5. Density of states for the 1D chain (15). (a) DOS for
different values of h/J . Inset shows the DOS for values of h > J

(where there is a gap in the DOS). (b) DOS for a very large value of
h/J = 500. The energy is offset by 2h and we focus on one of the two
sub-bands that form for large h. The DOS is computed using the kernel
polynomial method (see Appendix C), shown in blue. We compare
this with the DOS constructed using Eq. (26), shown in red. Inset in
(b) shows a comparison of the observed distribution of chain lengths
with the corresponding distribution in the thermodynamic limit.

The fact that the DOS splits up into a discrete set, of which
only a few carry the majority of the spectral weight, explains the
observed fluctuations in our localization diagnostics together
with the area-law plateau in the entanglement entropy. These
features can be attributed to resonant processes between these
few discrete states. Figure 5 shows that a similar structure
persists, to some extent, below h/J = 1. The effect of ĤJ

on the DOS appears at second order in perturbation theory.
This gives rise to the broadening of the spectrum, and provides
a timescale ∼(h/J )2 which sets the lifetime of the area-law
plateau and of the fluctuations in the fermion density. The long-
time area-law appears because the spin subsystem relaxation
time is given by this timescale ∼(h/J )2 arising from resonant
processes. On this timescale the fermion subsystem explores
the global structure of the charge distribution leading to a
saturation of the entanglement between the charges and the
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FIG. 6. Time evolution of the fermion subsystem in 2D. (a) Density imbalance �ρ measured along a slice through the center of the system
with the initial state described by a charge density wave, see text. Inset shows the long-time limit for the charge density wave, and checkerboard
initial states. (b) and (c) Spreading of the domain wall for h/J = 0.5 and h/J = 2, respectively, measured along the slice through the center
of the system. (d) Number of particles Nhalf along the center in the initially empty half of the system. In (a)–(c), we use a square lattice with
N = 32 × 32 sites and in (d) N = 30 × 50. Results are computed using the determinant method of Appendix A.

fermions. Differences between binary and continuous disorder
are discussed in, e.g., Ref. [38].

C. Dynamical localization in 2D

In two dimensions, we will consider the Hamiltonian (1) on
a square lattice, see Fig. 1. As in 1D, we consider initial states
with spins polarized along the z axis. We study the initial states
of fermions in one of the three following configurations: (i)
charge density wave with alternating occupation along one of
the directions of the lattices and uniform occupation along the
other (stripes); (ii) checkerboard pattern with alternating occu-
pation along both directions of the lattice; and (iii) domain wall
configuration with one half of the system filled, and the other
empty, such as studied in cold-atom experiments, see Ref. [22].

For all diagnostics we consider a cut through the system,
e.g., perpendicular to the domain wall. As in 1D, we find that
the density imbalance saturates at a nonzero value at long times,
see Fig. 6(a). However, in contrast to 1D, the localization length
is larger in 2D (for the same h/J ) leading to smaller long-time
values for �ρ and larger values for Nhalf. Furthermore, for the
values of h/J shown in Fig. 6, which are much larger than those
presented for the 1D case, the amplitude of the fluctuations is
much smaller. In other words, the extra dimension produces
a damping effect on these fluctuations because of the much
smoother single-particle DOS, even for h/J > 1, see Fig. 7(a).
We also find that for the checkerboard initial state, the density
imbalance persists more than for the charge density wave, as
shown in the inset. This can be understood by considering the
action of the Hamiltonian on this initial state. In contrast to
the CDW, in the checkerboard case, delocalization of fermions
appears at higher order in J/h, thus constraining the fermion
dynamics in the checkerboard initial state compared to a
charge density wave. Comparison of the corresponding 1D
and 2D results shows that the remaining imbalance is generally
much smaller in 2D than in 1D, which is due to the fact that
localization lengths are much larger in 2D, see Fig. 7(b).

Starting from the domain wall initial states, we can again
see a linear initial spreading, which is halted due to the
effective disorder, see Figs. 6(b) and 6(c). In this case, we
do not find long-lived oscillations for h/J > 1. Our results
clearly show that the localization length is much larger in

FIG. 7. (a) Single-particle density of states for a 2D square lattice
for different h/J . The DOS is computed using the kernel polynomial
method, see Appendix C. (b) Localization length in 1D and 2D. In 1D,
the localization length is computed using the spectral formula (27) as
explained in the main text. In 2D, the localization length is scaled by
a factor of 20 and is computed by the transfer matrix method on a
strip of width 100 sites and length 250 000 sites.
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2D compared to 1D, which can be seen from the dynamics
of domain wall spreading (on a larger length scale) for the
same disorder strength as in 1D. We can use again Nhalf

to quantify the dynamics of domain wall spreading. This
observable approaches a finite value in the localized case, see
Fig. 6(d).

If we compare the DOS for 2D with that of 1D, we notice
some important similarities and differences. First, we see a gap
opening as in 1D for large values of h. Whereas in the 1D case
this gap appears at h = J , the spectrum is still gapless for h

order of J in 2D. There is also an increase in the bandwidth,
both of the total DOS and of the individual subbands that
develop in the large h limit, owing to the extra dimension. More
importantly, we find that subbands remain much smoother than
in 1D for a much wider range of effective disorder strength.

In Fig. 7, we show the dependence of the maximum
localization length on h/J in 1D and 2D. The localization
length is the characteristic length scale of the exponential tails
of the single-particle wave functions defined via e−j/λ. In the
1D case, the results are obtained using the spectral formula
[48,50]

1

λ
= min

E

∫ ∞

−∞
g(x) ln |E − x| dx, (27)

where g(x) is the DOS calculated via the kernel polynomial
method (Appendix C). In the 2D case, we used the transfer
matrix method [48], see Appendix D. The 2D results are
rescaled by a factor of 20, which demonstrates an order of
magnitude difference in localization lengths in 1D and 2D.
However, the localization length as a function of disorder
strength shows similar power law in 1D as in 2D.

D. Delocalization in 2D and quantum percolation

It is known that all single-particle states in 1D and 2D are
localized in the presence of disorder. However, it is possible
to have delocalized states and even a mobility edge separating
localized and delocalized states in case of correlated disorder.
The famous example in 1D is the Aubry-Andre model, which
has a periodic potential incommensurate with the lattice.
Another example is when time-reversal symmetry is broken,
for example, by a magnetic field.

Due to the binary nature of the disorder potential in our
model, we can get delocalized states in 2D without the need
of correlated disorder. This can be achieved by biasing the
distribution of charges q with a probability p, such that q =
±1 with probability p and 1 − p, respectively. Alternatively,
one could impose a stricter global constraint N−1 ∑

i(q̂i +
1)|�〉 = p|�〉. In the large h limit of strong disorder, we arrive
at a quantum site percolation problem [39]. The lattice then is
decomposed into parts with sites sitting at the top or bottom
of the binary potential, and to the lowest order only hopping
between sites with the same sign of potential is allowed. This
can be appreciated by considering Eq. (25) on a 2D lattice.
In Ĥh, there will only be hopping terms between neighboring
sites with the same values of q, see Fig. 8. Since the threshold
in the classical site percolation problem is pc ≈ 0.5927, this
is consistent with having localized wave functions for all h for
our typical setting of p = 1/2. However, if we set p > pc, or
1 − p > pc, then we should expect percolation in our model

FIG. 8. Schematic picture of the site percolation problem. (a)
A fully connected lattice on which fermions can hop in the limit
h/J = 0. [(b) and (c)] When h/J 
 1, the fermions are constrained
to hopping between sites with the same effective potential (filled sites
and bonds) and the other sites become inaccessible (open circles)
leading to a quantum site percolation problem. (b) Connected sites
for the bias p = 0.5 showing that the absence of paths (in the
thermodynamic limit), which connect opposite sides of the lattice.
(c) The same for the bias p = 0.7, which is above the percolation
threshold pc ≈ 0.5927, showing in red connected paths across the
system.

for large h. Note that if we get percolation, say at the top of the
potential, then we necessarily localize the modes at the bottom
of the potential more, and vice versa.

In order to understand the effect of percolation, we study the
time evolution from a domain wall initial state with changing
system size and bias p, as shown in Fig. 9(a). We plot Nhalf(t →
∞)/L, where L is the linear dimension of a square lattice
with N = L × L sites. If particles are localized then we would
expect Nhalf(t → ∞)/L to tend to zero as L is increased—i.e.,
Nhalf is finite and independent of L. Whereas, if the particles
are delocalized, we should find that a finite proportion of the
particles makes it across the domain wall, Nhalf(t → ∞)/L →
constant. In Fig. 9(a), we show the extrapolation from finite
size scaling, which agrees with this expected behavior in the
two limits. Furthermore, the change in behavior is observed to
happen around the critical percolation threshold p = pc.

We can also understand this percolation behavior by looking
at the DOS and the energy-resolved localization length as a
function of p, as shown in Fig. 9(b). As p is increased past the
critical point, we see a clear asymmetry with respect to energy
in these results. In the DOS, one of the sub-bands becomes
similar to that of the large h limit of p = 1/2 problem. The
other sub-band becomes much smoother and similar to the
DOS for a clean 2D system. Furthermore, we respectively see
a decrease and increase in the localization length in these two
sub-bands, see inset, which is consistent with percolation of the
fermions at a positive potential and the localization of those at
a negative potential.

Because we are studying a quantum model, it is not
clear that there should be a direct correspondence with site
percolation. In particular, given a path through the system,
as in Fig. 8, we would generally expect quantum fluctuations
to lead to backscattering, which may hinder conductance.
References [17,40] showed, using large scale numerics with
the kernel polynomial methods, that the quantum percolation
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FIG. 9. (a) Total number of particles making it across a domain
wall Nhalf for various values of the charge distribution bias, p. The
figure shows the rescaled value Nhalf/L, and the extrapolated limit
L → ∞, where L is the linear dimension of the system. Error bars
correspond to two standard deviations in the linear fit from finite
size scaling. Note that pc ≈ 0.5927 corresponds to the classical
site percolation threshold for a square lattice. (b) Density of states
for different values of the bias p and h/J = 20. Inset shows the
corresponding energy-resolved localization length. The results shown
in (a) were obtained using the determinant method (Appendix A).
We used the KPM (Appendix C) for the DOS in (b) and the transfer
matrix approach for the localization length (Appendix D) for a system
of 150 × 250 000 sites.

threshold p
q
c < 1, and we necessarily have pc � p

q
c . Fur-

thermore, studies on the Bethe lattice seem to show that the
quantum site percolation threshold agrees with the classical
threshold [39], and our results are also consistent with the
classical site percolation on a square lattice. However, this
point is far from having been settled and Ref. [40] observes that
pc < p

q
c by doing a careful analysis using local density of states

for much larger systems. In particular, they find that pq
c > 0.65,

which we do not see in our results. However, because of the
modest system sizes used in our calculations, our results may
still show finite-size effects.

E. Localization in 3D

For a 3D cubic lattice, it is generally believed that pc <

p
q
c < 1, though still p

q
c < 0.5 [40]. Therefore a 3D case offers

an interesting setting for studying localization. In 3D, there
is a critical disorder strength needed to achieve localization.
However, in the large h/J limit, we would expect delocalized
states for all values of the bias probability p. One can expect
delocalized states for both low and high h/J but localized
states for intermediate values.

IV. LOCALIZATION IN PRESENCE OF INTERACTIONS

Our model can be modified in a variety of ways to include
interactions. Here we consider a subset of such extensions,
focusing on the 1D case because of numerical limitations.
Terms which can be added to the Hamiltonian (1) fall into two
classes depending on whether they give dynamics to conserved
charges. Note that these terms in general lead to interactions
in contrast to Hamiltonian (9). In the presence of interactions,
it is not possible to use determinant methods, and instead we
have to resort to exact diagonalization and on Krylov subspace
methods to calculate the time evolution, see Appendix B.

A. Conserved charges and many-body localization

Those terms that commute with the charges include fermion
density-density interactions and longitudinal field terms:

�
∑
〈jk〉

n̂j n̂k, and Bx

∑
j

σ̂ x
jk, (28)

where n̂j = f̂
†
j f̂j .

Commutation relations between these terms and the charges
are most easily seen when they are expressed in terms of
the original degrees of freedom, q̂j = σ̂ x

j−1,j σ̂
x
j,j+1(−1)n̂j . The

charges clearly do not commute with any local terms con-
taining σ̂ z

j ,σ̂
y

j , but do commute with a longitudinal magnetic
field. Electron density-density interactions retain their form
under the transformation from f to c fermions, and the density
operator also commutes with the fermion parity operator
appearing in the expression for conserved charges.

First, we consider adding nearest-neighbor density-density
interactions between fermions. Up to constant terms, the model
can be written as

Ĥ = −J
∑
〈jk〉

σ̂ z
jkf̂

†
j f̂k − h

∑
j

σ̂ x
j−1,j σ̂

x
j,j+1

+�
∑

j

(2n̂j − 1)(2n̂j+1 − 1). (29)

Under transformation to c-fermions and charges, the first two
terms transform as before and the fermion interactions remain
invariant since f̂

†
j f̂j ≡ ĉ

†
j ĉj . We can then use a Jordan-Wigner

transformation, Ŝ+
j = ĉ

†
j (−1)

∑
l<j n̂l , and Ŝz

j = n̂j = 1
2 to cast

the Hamiltonian in the following form:

ĤXXZ = −J
∑

j

(Ŝ+
j Ŝ−

j+1 + Ŝ−
j Ŝ+

j+1)

+ 4�
∑

j

Ŝz
j Ŝ

z
j+1 + 2h

∑
j

q̂j Ŝ
z
j , (30)
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FIG. 10. Quantum quench from an initial charge density wave
state, h/J = 20. (a) Density imbalance �ρ(t) ∝ ∑

j |〈0|n̂j (t) −
n̂j+1(t)|0〉| and the time-averaged value of 1

t

∫ t

0 dτ �ρ(τ ) (dashed
lines) after the same quench. (b) Von Neumann entanglement entropy
computed using ED for N = 12 sites (thin, light) for various values
of � shown on a semi-log scale. The spatial bipartition is taken
along the central bond. (Inset) The same data on a linear scale
for �/J = 0,0.01. Dashed lines show fitted linear and logarithmic
curves.

which is an XXZ Hamiltonian describing a spin chain with a
binary potential set by qj = ±1. This XXZ Hamiltonian with
quenched disorder serves as one of the paradigmatic models
of many-body localization. Although in the context of MBL
this model is usually studied with uniformly sampled disorder
[25,26], is has also been studied in the case of binary disorder
[44,51,52]. Using this mapping and looking at dynamical
correlators, we observe the behavior usually found in MBL
phases. However, note that our starting point is a disorder-free
Hamiltonian (29).

Let us consider the charge density wave initial state as
explained in the noninteracting case, see Fig. 10(a). We find
that the density imbalance�ρ saturates at a nonzero value (as in
the noninteracting case) indicating the persistent memory due
to localization. For small interactions, the asymptotic value is
close to the one for the noninteracting case for � = 0.1J , but
as the interaction strength is increased it also acts to stabilize

the charge density wave which leads to an increase of the
asymptotic value, as can already be seen for � = 0.3J . We
also observe that the interactions have the effect of damping
the fluctuations around this asymptotic value, which is evident
even on the short time scales shown in Fig. 10(a).

Next, we can consider the von Neumann entanglement
entropy, shown in Fig. 10(b). Here we see a qualitative change
(compared to the noninteracting case) in the entanglement
growth following the initial area-law plateau. While in the
noninteracting case we get linear growth followed by satu-
ration, in presence of density-density interactions, we observe
a slower logarithmic growth, as shown by the dashed lines in
Fig. 10(b), and in the inset. This logarithmic behavior, which
sets in at times ∼�/J , is consistent with the phenomenology
of MBL.

Let us now consider another term which can be added to the
Hamiltonian, and which commutes with the charges, namely
the longitudinal field. The latter no longer commutes with
plaquette operators and thus the duality mapping (5) is no
longer useful. However, we still have the conserved quantities
q̂j = σ̂ x

j−1,j σ̂
x
j,j+1(−1)n̂j . In the original spin picture, the effect

of this term is to confine spin excitations [53].
In Fig. 11(a), we present the results for entanglement

entropy with the Hamiltonian having a longitudinal field term
whose strength is controlled by Bx . The results show a rich
behavior. In particular, one can notice two new qualitative
features. For small Bx/J ∼ 0.2, we observe logarithmic entan-
glement growth at a time scale set by Bx/J similar to the MBL
behavior observed above. However, for larger Bx/J ∼ 0.5,
we find a slower growth, which can be fit with ln(ln(t)) as
shown in the inset. Furthermore, for small h, the interactions
generate extra entanglement compared to the noninteracting
results, whereas for larger Bx the entanglement is reduced. We
also see this behavior in the density imbalance starting from a
charge density wave, shown in Fig. 11(b). We again see that
interactions have a damping effect on the fluctuations and that
a strong enough field stabilizes the charge density wave.

B. Dynamical charges and quasi-MBL

In the second category of terms, i.e., those terms that do
not commute with charges and generate their dynamics, we
consider three types of terms:

hz

∑
j

σ̂ z
j−1,j σ̂

z
j,j+1, Bz

∑
j

σ̂ z
j,j+1, ε

∑
〈ij〉

f̂
†
i f̂j . (31)

The localization behavior discussed above relies on the pres-
ence of static charges q̂j , which act as an effective disorder. It
is therefore a natural question to ask what happens when we
give dynamics to the charges.

Figure 12 shows the effect of these additional interactions
on the density imbalance after a quench from the charge density
wave initial state. Figures 12(a) and 12(b) clearly show that the
introduction of Bz and ε leads to the decay of this imbalance,
and ultimately to the disappearance of the charge density wave.
One can also see that the time scale at which the results
significantly deviate from the Bz = ε = 0 case is determined
by B−1

z and ε−1, respectively. A qualitative difference between
these two terms is that the fermion hopping ε to the lowest order
modifies J . Its effect can be seen in a decrease of the period
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FIG. 11. (a) Entanglement entropy after a quantum quench for
various values of the longitudinal field Bx shown on a semi-log scale.
A window of the same data for Bx/J = 0.2,0.5 is given in the inset.
Dashed lines correspond to ln(t) and ln(ln(t)) behavior. (b) Density
imbalance after a quench from a charge density wave. Results obtained
using ED.

of the oscillations at ε = 0.1. Beyond this point, there are only
quantitative differences between the two cases, and the time
averaged values look similar to the eye.

A different phenomenology is observed in the case of the
z-Ising coupling hz, shown in Fig. 12(c). In this case there
is little appreciable deviation in the time-averaged value for
hz/J = 0.001,0.01, beyond the damping of the oscillations.
When the coupling is increased to hz = 0.1J , we finally
see appreciable decay of the imbalance, but that does not
convincingly vanish, compared to the case for other terms.
This can be understood by considering the (anti-)commutation
relations of σ̂ z

j,j+1 with the charges q̂j , which are{
σ̂ z

j,j+1,q̂k

} = 0, k = j, j + 1,[
σ̂ z

j,j+1,q̂k

] = 0, k �= j, j + 1. (32)

We can then make an identification with spin operators q̂j →
q̂z

k and σ̂ z
j,j+1 → q̂x

j q̂x
j+1, that is, the transverse field induces an

effective Ising coupling between the charges. For the transverse
field, we are then precisely in the framework of heavy-light
mixtures, which are generally believed to become ergodic at
long times. However, the Ising coupling σ̂ z

j−1,j σ̂
z
j,j+1 maps

to the next-nearest neighbor Ising coupling q̂x
j−1q̂

x
j+1 for the

charges. Since the lattice is bipartite, the charges interact
separately on these two disconnected sublattices. Importantly,
this means that the charges—and by extension the effective
disorder potential—on neighboring sites do not become corre-
lated. This leads to increased persistence of localization seen
in Fig. 12(c).

Since we still have a heavy-light mixture with the addition
of the z-Ising coupling, we can ask whether this additional
persistence survives in the thermodynamic limit at long times,
which would be in contrast with the standard phenomenology
of these systems. Figure 13 shows density imbalance as a
function of the system size, which seems to suggest that we
also lose localization in this case in the thermodynamic limit,
consistent with Ref. [32].

V. DISCUSSION

In this paper, we have studied a family of unconstrained Z2

lattice gauge theories of spinless fermions coupled to spins-1/2.
Using these models, we have revealed a general phenomenol-
ogy of disorder-free mechanism for localization that extends
beyond the models we discussed here. The key feature of
this mechanism is the presence of an extensive set of local

FIG. 12. Density imbalance after a quantum quench from a CDW with dynamical charges. We study a system with N = 10 sites with periodic
boundary conditions and h = J . The light curves are the imbalance �ρ and the dark thick lines are the time averaged value 1

t

∫ t

0 dτ�ρ(τ ). (a) With

an additional transverse field Bz

∑
i σ̂

z
i,i+1. (b) Additional fermion hopping ε

∑
〈ij 〉 f̂

†
i f̂j . (c) Added transverse Ising coupling hz

∑
i σ̂

z
j−1,j σ̂

z
j,j+1.

Dynamics is computed using Krylov subspace methods (Appendix B).
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FIG. 13. Finite size scaling of the asymptotic density imbalance
in presence of additional Ising coupling hz

∑
i σ̂

z
j−1,j σ̂

z
j,j+1. We use

system sizes N = 6,8,10 with hz = 0.1J and h = J . Light curves
show the density imbalance �ρ and the dark and thick curves show
the time averaged value of 1

t

∫ t

0 dτ�ρ(τ ). See Appendix B for details
of the Krylov subspace numerical method used.

conserved quantities that emerge from the coupling between
the spins and the fermions, with fermions attached to defects
in the lattice gauge theory. In particular, we have outlined the
connection to the toric code when our model is defined on a
periodic square lattice and the resulting constrained dynamics
of defects therein. The coupling to fermions allows us to change
the behavior of defects depending on the fermion configuration
and filling.

As a diagnostic of localization, we have considered the
dynamics of the system after a global quantum quench, which
revealed the persistence of memory of initial states in both
one and two-dimensional case. The results for the density of
states and for the localization length confirmed the localization
picture. Through these numerical experiments and the exact
duality mapping of the Hamiltonian and states, we have
demonstrated that a disorder-free mechanism that we found
in 1D in Refs. [36,37] applies much more generally.

The effective disorder that appears in our models has a
binary nature in contrast to the continuously sampled disorder
that is usually studied in the context of localization physics.
While for small effective disorder strengths the localization
picture for binary disorder and uniform disorder should agree
qualitatively, in the strong-disorder limit, we reveal new
features that are specific to binary disorder. As most clearly
demonstrated in the 1D case, for strong disorder, we find
that the single-particle spectrum splits up into a discrete
set of degenerate energy levels, of which only very few
carry the majority of the spectral weight. This gives rise to
resonances which result in the observed area-law plateau in
the entanglement entropy, and in long-lived fluctuations of
the fermion density. These effects are somewhat washed-out
with increased dimensionality. Interestingly, in the 2D case,
the strong-disorder limit can be understood as a quantum
site percolation problem. By biasing the distribution of the
conserved charges above the percolation threshold, we found
a delocalization transition of fermions by the percolation
mechanism. This behavior was demonstrated by studying a

quantum quench from a domain wall initial state, the density
of states, and the localization length, which confirmed a
direct correspondence with the threshold for classical site
percolation. Importantly, our delocalization transition does
not require spatial correlations in the disorder, compared to
previously known cases. Due to the lower percolation threshold
in 3D, for the cubic lattice, we expect that one can observe two
delocalized phases for small and large effective disorder h/J ,
separated by an intermediate localized phase.

While the model we consider in Eq. (1) can be mapped to
a model of free fermions, we also considered effects of terms
which render the model truly interacting in one dimension.
These terms fall into two categories—those that commute with
the charges and those that do not. In the first category, we
studied nearest-neighbor density interactions, and a longitu-
dinal field. In both cases, in certain parameter regimes, we
observed the logarithmic entanglement growth characteristic
of many-body localization. Furthermore, for the longitudinal
field, we also observed sublogarithmic growth, which shows a
good fit with ln(ln(t)) behavior.

The second class of integrability-breaking terms are those
which give dynamics to the conserved charges. These terms
generate dynamics similar to that studied in heavy-light
mixtures. The latter showed quasi-MBL behavior, i.e., only
transient localization. We indeed observe quasi-MBL in the
region of parameters which we study. However, we find a
special case that was comparatively less effective at destroying
the localization behavior. This was due to the dynamics being
along the two disconnected chains in the bipartite lattice, which
means that nearest-neighbor correlations were not generated.
Despite this, it also appears to lead to ergodic behavior in the
thermodynamic limit at long times.

The models that we discuss in this paper are particular
relevant and timely because of the recent experimental progress
in the control of isolated quantum systems in cold atoms
experiments [22,23]. Similar to the recent simulation of the
Schwinger model [18], our models can be implemented with
current technological capabilities. Furthermore, they provide
minimal models for lattice gauge theories where in the non-
interacting case we are able to perform large scale numerical
simulations. Therefore they can serve as a benchmark about
which we can consider the truly interacting perturbations,
which are practically impossible to simulate in anything other
than finite 1D chains.
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APPENDICES

In the following appendices, we present details of the
numerical methods utilized in our calculations. We also include
a discussion of the parameters used to produce the figures
shown in the main text. In Appendix A, we outline the method
for calculating fermionic correlators using determinants for
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the case of bilinear Hamiltonians. We explain how to use the
Krylov subspace method for time evolution in Appendix B. In
Appendix C, we present an outline of the kernel polynomial
method. And in Appendix D, we discuss calculations of
localization length using transfer matrix techniques.

APPENDIX A: CALCULATION OF FERMION
CORRELATORS USING DETERMINANTS

In the case of a Hamiltonian bilinear in fermion operators,
dynamic correlation functions can be obtained in terms of
determinants. In the main text, we have shown that general cor-
relators for our set of models can be written in terms of purely
fermionic correlators. In the following, we explain how the
calculation of this correlators can be reduced to determinants,
see, e.g., Ref. [54]. A mapping to the free-fermion Hamiltonian
dramatically decreases the computational cost compared with
ED, which allows us to reach much larger system sizes.

Generically, we are interested in computing expressions of
the form

〈α| exp{i
∑
ij

Aij ĉ
†
i ĉj }|β〉, (A1)

where A is a Hermitian matrix, and |α〉 = ĉ
†
mN

· · · ĉ†m1 |vac〉 and
|β〉 = ĉ

†
nN

· · · ĉ†n1 |vac〉 are fermionic Slater determinants. To
proceed with the calculation of (A1), we first use the unitarity of
the exponential operator ÛA ≡ exp{i ∑

ij Aij ĉ
†
i ĉj } to rewrite

(A1) as

〈vac|ĉm1 · · · ĉmN
ÛAĉ†nN

Û
†
A · · · ÛAĉ†n1

Û
†
AÛA|vac〉

= 〈vac |ĉm1 · · · ĉmN
ˆ̃c†nN

· · · ˆ̃c†n1
|vac〉, (A2)

where ˆ̃c†j ≡ ÛAĉ
†
j Û

†
A and we use ÛA|vac〉 = |vac〉. With the

help of the Baker-Hausdorff formula, we obtain

ˆ̃c†i =
∑

j

exp{iAT }ij ĉ†j ≡
∑

j

UT
A,ij ĉ

†
j , (A3)

distinguishing between the operator ÛA and the matrix UA by
a hat. Finally, we insert (A3) into (A2), and use the fermionic
anticommutation relations to obtain

〈α|ÛA|β〉 = det D, Djk = [UA]nj mk
, (A4)

with j,k = 1, . . . ,N . In other words, we select from the matrix
UA those lines and columns that correspond to occupied states
in Slater determinants |β〉,|α〉.

This derivation allows for further generalizations. For ex-
ample, in the case of an arbitrary number of unitary operators,
using repeatedly the Baker-Hausdorff formula, we obtain

〈α|ÛAÛB · · · |β〉 = det D, Djk = [UAUB · · · ]nj mk
. (A5)

This equation is suitable for evaluating correlators similar to
the one in Eq. (16). In case of the fermion correlators, e.g.,
(A1), we need to consider expressions of the following form:

Ckl = 〈α|ĉ†k exp

⎧⎨⎩i
∑
ij

Aij ĉ
†
i ĉj

⎫⎬⎭ĉl|β〉. (A6)

By commuting ĉ
†
k to the left, and ĉl to the right, we pick up

factors (−1)N−p and (−1)N−q , where mp = k and nq = l and

arrive at

Ckl = (−1)p+q〈vac|ĉm1 · · · ĉmp−1 ĉmp+1 · · · ĉmN

× ÛAĉ†nN
· · · ĉ†nq+1

ĉ†nq−1
· · · ĉ†n1

|vac〉. (A7)

In this case, we need to remove the q-row and the p-column
from the matrix D before taking the determinant and then
multiply by the corresponding sign. Specifically, we need the
q − p cofactor of D where D is given in Eq. (A4). The final
expression for the fermion correlator now can be written in a
simple form,

Ckl = D−1
lk det D, (A8)

where Djk = [UA]nj mk
, j,k = 1, . . . ,N .

The free-fermion mapping presented in the main text allows
one to extract dynamical correlators for system sizes far
beyond exact diagonalization. We can estimate the size of the
fermionic Hilbert space at half-filling as N−1/22N with the spin
degrees of freedom adding another factor of 2N . Instead of
diagonalizing exponentially large matrices, the identification
of conserved charges allows us to sample uniformly from ∼2N

determinants of N × N matrices, corresponding to different
charge configurations. Finally, finite-size scaling as well as
exact results (up to N = 20) show that the required number
of samples for a given accuracy scales polynomially with N .
Typically, we sample over 103–104 charge configurations.

APPENDIX B: KRYLOV SUBSPACE DECOMPOSITION

A major bottleneck for computing dynamics using exact
diagonalization is the memory requirement for storing many-
body wave functions. Although this can be drastically reduced
if the model has conserved quantities, memory is still the
limiting factor due to the exponential growth of the Hilbert
space dimension. A way around this for computing dynamical
quantities is to use a smaller set of basis states to perform the
time evolution via short time steps. An optimal basis of states
for this method can be identified with the Krylov subspace
generated by the Hamiltonian. In this appendix, we provide an
outline of this method.

Our goal is to efficiently calculate the time evolution of
a quantum state |�(t)〉 = e−iĤ t |�〉 for which we use Krylov
subspace

KR = span{|�〉,Ĥ |�〉,Ĥ 2|�〉, . . . ,Ĥ R−1|�〉}, (B1)

where Ĥ is our Hamiltonian, |�〉 is an initial state, and R

is the number of states in Krylov subspace (that we choose).
The idea is that at short enough times the state |�(t)〉 will be
predominantly in this subspace as can be seen from a Taylor
expansion of the unitary time evolution

|�(t)〉 =
∞∑

n=0

(−iĤ t)n

n!
|�〉. (B2)

Given a basis for the Krylov subspace {|vi〉}, the best approx-
imation to the unitary time evolution is given by e−iH̃ t with

H̃ =
∑
ij

|vi〉〈vi |Ĥ |vj 〉〈vj |. (B3)
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Therefore we need to diagonalize a matrix of dimension R with
matrix elements H̃ij = 〈vi |Ĥ |vj 〉. For a Hermitian operator,
the reduced Hamiltonian H̃ takes a simpler tridiagonal form,
which can be efficiently diagonalized.

One of the main practical considerations is the accuracy of
the Krylov subspace method and the orthogonality between
Krylov basis vectors. Due to limited numerical precision,
the computed Krylov eigenvectors will diverge from the true
ones as more of them are included. A way around this is to
orthogonalize each new vector to the previous set. However,
the numerical errors that arise in this procedure make it
also problematic, and eventually orthogonality will be lost.
To get around these issues, after roughly 25 applications of
matrix multiplications (the number is chosen empirically) we
orthonormalize the entire set of vectors using efficient QR
decomposition before proceeding further.

The accuracy of this approximation can be kept below a
prescribed threshold only for a finite value of t , which is set
by the size of the basis dimension R. To study time evolution
on longer timescales, we use a “restarted evolution method,”
which computes the time evolution up to a certain time δt and
then repeats with the new starting state |�(t + δt)〉 until the
desired time is reached. To check the accuracy of the method,
we then perform the reverse time evolution and check the
difference between the values on the forward and backwards
pass, which provides a good estimate of the deviation from the
true value [55,56].

The method described in this Appendix is limited by the
memory required to store the Hamiltonian Ĥ and the Krylov
basis states. Since the Hamiltonian is typically sparse and has
O(αN ) nonzero values, the memory requirement scales as
O((R + α)N ) compared with O(N2) for exact diagonaliza-
tion. In our calculations, we take R = 50, and δt = 1.2 and
compute values for dt = 0.2, which we find gives acceptable
errors of only 1–2 orders of magnitude above machine preci-
sion on the scale of the full time evolution. We note that the
computational cost also scales linearly with the number of time
steps.

APPENDIX C: DENSITY OF STATES: KERNEL
POLYNOMIAL METHOD

The kernel polynomial method (KPM) is a numerical
technique for computing spectral quantities. It uses a decom-
position into Chebyshev polynomials with modifications to the
coefficients to damp Gibbs oscillations which are inherent to
Fourier expansion. The benefit of the KPM is that calculations
can be reduced to repeated multiplications of the Hamiltonian
matrix, which is very efficient for sparse matrices. We will
briefly describe the basic procedure, also see Ref. [47] for more
details and examples.

1. Chebyshev expansion and modified moments

Chebyshev polynomials are defined on the interval [−1,1]
and form the orthogonal basis with respect to inner products
defined on this interval with a special weight function. For
Chebyshev polynomials of the first kind Tn(x), this weight
function is w(x) = (π

√
1 − x2)−1, so that the inner product

reads

〈f |g〉1 =
∫ 1

−1
dx

f (x)g(x)

π
√

1 − x2
, 〈Tn|Tm〉 = 1 + δn,0

2
δn,m.

(C1)

Chebyshev polynomials of the second kind Un(x) are defined
with respect to the weight function w(x) = π

√
1 − x2, i.e.,

〈f |g〉1 =
∫ 1

−1
dx π

√
1 − x2f (x)g(x), 〈Un|Um〉 = π2

2
δn,m.

(C2)

These polynomials obey useful recursion relations

Tn+1(x) = 2xTn(x) − Tn−1(x),

Un+1(x) = 2xUn(x) − Un−1(x),
(C3)

where T0(x) = 1, T1(x) = x, and U0(x) = 1, U−1(x) = 0.
Given an orthogonal basis together with the inner product,

we can expand a function defined on the interval [−1,1] as

f (x) = α0 + 2
∞∑

n=1

αnTn(x), (C4)

where the moments are given by

αn = 〈f |Tn〉1 =
∫ 1

−1
dx

f (x)Tn(x)

π
√

1 − x2
. (C5)

However, the numerical integration of the moments is prob-
lematic due to the square root appearing in the denominator.
To get around this, we instead define the functions

φn(x) = Tn(x)

π
√

1 − x2
, (C6)

which have the property 〈φn|φm〉2 = 〈Tn|Tm〉1, and thus we can
instead write the expansion as

f (x) = 1

π
√

1 − x2

[
μ0 + 2

∞∑
n=1

μnTn(x)

]
, (C7)

where the moments are given by

μn = 〈f |φn〉2 =
∫ 1

−1
dx f (x)Tn(x). (C8)

To use this expansion in terms of Chebyshev polynomials,
we must first rescale the energies and the Hamiltonian so that
the bandwidth lies in the interval [−1,1]. We thus define the
rescaled Hamiltonian and energies

H̃ = (H − b)/a, Ẽ = (E − b)/a, (C9)

where a = (Emax − Emin)/(2 − ε) and b = (Emax − Emin)/2.
We include a small factor ε to avoid stability problems near
±1. In practice, we can use analytically obtained bounds on
Emax/min to avoid computing them explicitly. One could also
compute Emax/min for smaller system sizes, add a margin of
error, and use these for our bounds.

We now have to discretize the function argument and
truncate the infinite sum. To make use of the properties
of Chebyshev function, we choose a set of K points,
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xk = cos(π (k + 1/2)/K), for k = 0, . . . ,K − 1. With this
choice the expansion takes the form

f (xk) = 1

π

√
1 − x2

k

[
μ0 + 2

∞∑
n=1

μn cos

(
πn(k + 1/2)

K

)]
.

(C10)

Since we are expanding in periodic functions, the truncation
of the sums leads to Gibbs oscillations. If we keep the first
M terms in the sum, then to remove these oscillations, we
introduce a kernel of order M ,

KM (x,y) = g0φ0(x)φ0(y) + 2
M−1∑
m=1

gmφm(x)φm(y), (C11)

which we use to define

fKPM(x) =
∫ 1

−1
dy π

√
1 − y2KM (x,y)f (y). (C12)

We can then determine the coefficients gm in the kernel by
demanding that fKPM is as close as possible to the true function
f (x). Closeness can be defined in a number of different ways
each of which lead to different set of coefficients. In our
calculations, we use the Jackson kernel defined by coefficients

gm = 1

M + 1

[
(M − m + 1) cos

(
πm

M + 1

)
+ sin

(
πm

M + 1

)
cot

(
π

M + 1

)]
. (C13)

See Ref. [47] for the derivation of these coefficients and
discussions of other choices of kernel. Kernel coefficients are
then used to modify the moments in our expansion, and we
arrive to an expression

f (xk) ≈ 1

π

√
1 − x2

k

×
[
g0μ0 + 2

M−1∑
m=1

gmμm cos

(
πm(k + 1/2)

K

)]
.

(C14)

2. Calculation of the moments

The moments that appear in our expansion are typically of
the form 〈β|ATn(H )|α〉, where H is the Hamiltonian matrix,
A is a matrix representing an operator and |α〉 and |β〉 are two
states. We need to compute |αn〉 ≡ Tn(H )|α〉, which can be
done using recursion relations

|αn+1〉 = 2H |αn〉 − |αn−1〉, (C15)

with |α0〉 = |α〉 and |α1〉 = H |α〉. If β = α and A = I, we can
use recursion relations for Chebyshev polynomials, specifi-
cally, 2Tm(x)Tn(x) = Tm+n(x) + Tm−n(x), to get

μ2n = 2〈αn|αn〉 − μ0, μ2n+1 = 〈αn+1|αn〉 − μ1, (C16)

which reduces the number of matrix operations by approxi-
mately half.

We also need to compute moments which involve a trace
over states. The latter can be computed efficiently using

Tr[ATn(H )] ≈ 1

R

R−1∑
n=1

〈r|ATn(H )|r〉, (C17)

where D is the size of the matrix H , and R � N is the number
of chosen random vectors. In all of our calculations we take
R = 30. The random vectors |r〉 are defined through random
variables εri ,

|r〉 =
N−1∑
i=0

εri |i〉, (C18)

where |i〉 are the basis vectors with an identity in the ith entry.
The random variables must satisfy the relation

〈〈εri〉〉 = 0, 〈〈εriεr ′j 〉〉 = δrr ′δij , (C19)

that is, they are uncorrelated with zero mean, and have unit
mean for their absolute value.

3. Density of states

As an example of the application of the method, let us
consider the calculation of the density of states, which is
defined as

g(E) = 1

N

N−1∑
k=0

δ(E − Ek). (C20)

The coefficients of the Chebyshev expansion are then given by

μn =
∫ 1

−1
dE ρ(E)Tn(E) = 1

N

N−1∑
k=1

Tn(Ek)

= 1

N

N−1∑
k=1

〈k|Tn(H )|k〉

= 1

N
Tr[Tn(H )], (C21)

which we can compute using the statistical trace and the
expectation values as explained above.

In the main text, we use the following parameters for the
figures: Fig. 5(a) ← N = 106, M = 1500, K = 2M, R =
30; Fig. 5(b) ← N = 106, M = 7500, K = 3M, R = 30;
Fig. 7(a) ← N = (103)2, M = 1500, K = 2M, R = 30;
Fig. 9(b) ← N = (103)2, M = 2500, K = 2M, R = 30;
where N is the number of sites, M is the number of moments
included in the expansion, K is the number of discretization
points, and R is the number of random states used in the
statistical trace.

APPENDIX D: LOCALIZATION LENGTH:
TRANSFER MATRIX

The application of transfer matrix approach in the cal-
culations of the localization length proceeds by considering
a system which is cut up into slices, with slices connected
via transfer matrices [48]. From these, we can extract the
eigenvalues of a limiting matrix that gives the Lyapunov

245137-16



DYNAMICAL LOCALIZATION IN Z2 LATTICE … PHYSICAL REVIEW B 97, 245137 (2018)

exponents for our system. For instance, consider a 1D chain
with the Hamiltonian

Ĥ = −J
∑

j

(ĉ†j ĉj+1 + H.c.) −
∑

j

hi ĉ
†
j ĉj . (D1)

The action of this Hamiltonian on an eigenstate |ψ〉 =∑
i ψi |i〉, where |i〉 is the state localized on site i gives the

relation

Eψi = −Jψi+1 − Jψi−1 − hiψi, (D2)

where E is the eigenvalue of the state |ψ〉. This equation can
be written in a compact form by introducing a transfer matrix(

ψi+1

ψi

)
=

(− 1
J

(E + hi) −1
1 0

)(
ψi

ψi−1

)
. (D3)

In higher dimensions, these equations have to be modified
slightly, in particular, we get

Eψi = −Jψi+1 − Jψi−1 − Hperpψi, (D4)

where ψi is now a vector of the values of the wave function in
the orthogonal direction at the slice i, and Hperp is the matrix
representation of the Hamiltonian in the same direction. The
transfer matrix equation assumes the form(

ψi+1

ψi

)
=

(− 1
J

(E + Hperp) −1
1 0

)(
ψi

ψi−1

)
. (D5)

Given the transfer matrix, we can compute the product along
a long chain of length L,

QL =
L∏

i=1

Ti, (D6)

where Ti is the transfer matrix for slice i. Oseledec’s theorem
states that there exists a limiting matrix

� = lim
L→∞

(QLQ
†
L)1/2L, (D7)

with eigenvalues exp(γi), where γi are the Lyapunov exponents
of the matrix QL. The smallest Lyapunov exponent describes
the slowest growth of the wave function and corresponds to the
inverse of the localization length λ.

More intuitively, we can consider QL as the transfer matrix
between the extreme ends of the chain:(

ψL+1

ψL

)
= QL

(
ψ2

ψ1

)
, (D8)

so the eigenvalues of QL describe the growth of the wave
function along the length of the system. We can then take the
smallest eigenvalue, q, of the matrix QL, and compute the
localization length via

λ = L

ln(q)
. (D9)

The procedure of computing a matrix product of a large
number of matrices is numerically unstable since the matrix
elements diverge or vanish exponentially. We therefore must
orthonormalize the product of matrices after a few number
steps. The numerical procedure proceeds as follows: we iter-
atively construct the product matrix Q by applying randomly
generated transfer matrices T . After the number of applications
exceeds a predefined limit or the amplitude of the elements
of the matrix exceed a threshold, we store the logarithm of
the eigenvalues and orthonormalize the matrix Q, which can
be done efficiently using QR decomposition. We continue
applying T , storing eigenvalues and orthonormalizing until
we have reached the length of the chain L. See below a
pseudocode of the algorithm for computing the localization
length λ:

Q ← Id

l ← 1
While l � L do

count ← 1
While max(abs(Q)) � theshold or count � limit do

Initialize random T for slice
Q ← T Q

l + +
count + +

end While
b ← eig(Q)
c ← c + ln(b)
Q ← orthonormal(Q)

end While
b ← eig(Q)
c ← c + ln(b)
lambda ← max(L/c).
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