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We present the theory of thermoelectric transport in metals with long-lived quasiparticles, carefully addressing
the interplay of electron-electron scattering as well as electron-impurity scattering, but neglecting electron-phonon
scattering. In Fermi liquids with a large Fermi surface and weak electron-impurity scattering, we provide universal
and simple formulas for the behavior of the thermoelectric conductivities across the ballistic-to-hydrodynamic
crossover. In this regime, the electrical conductivity is relatively unchanged by hydrodynamic effects. In contrast,
the thermal conductivity can be parametrically smaller than predicted by the Wiedemann-Franz law. A less
severe violation of the Mott law arises. We quantitatively compare the violations of the Wiedemann-Franz law
arising from (i) momentum-conserving electron-electron scattering in the collision integral, (ii) hydrodynamic
modifications of the electron-impurity scattering rate, and (iii) thermal broadening of the Fermi surface,
and show that (i) is generally the largest effect. We present simple formulas for electrical and thermal
magnetoconductivity across the ballistic-to-hydrodynamic limit, along with a more complicated formula for
the thermoelectric magnetoconductivity. In a finite magnetic field, the Lorenz number may be smaller or larger
than predicted by the Wiedemann-Franz law, and the crossover between these behaviors is a clear prediction for
experiments. The arbitrarily strong violation of the Wiedemann-Franz law found in our work arises entirely from
electron-electron interaction effects within the Fermi-liquid paradigm, and does not imply any non-Fermi-liquid
behavior. We predict clear experimental signatures of bulk hydrodynamics in high-mobility two-dimensional
GaAs semiconductor structures, where a spectacular failure of the Wiedemann-Franz law should persist down to
very low temperatures in high-quality and low-density samples.
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I. INTRODUCTION

One of the most important open problems in condensed-
matter physics is a nonperturbative understanding of interac-
tion effects on the electronic transport properties of metals.
The subject is vast and an enormous literature exists, spanning
almost a century. Due to unresolved experimental puzzles such
as the high-temperature linear-in-temperature resistivity of the
normal phase of high-temperature superconductors at optimal
doping [1], the study of interaction-limited transport has taken
on much significance over the last two decades. Typically,
one assumes that strong electron-electron interactions lead to
a breakdown of Fermi-liquid physics and of a quasiparticle
description, such that the resulting metal is a non-Fermi liquid
(NFL) [2–5]. Despite much effort, the understanding of NFLs
is very challenging and remains incomplete.

A common heuristic used in experiments to probe the break-
down of Fermi-liquid phenomenology is the Wiedemann-
Franz (WF) law [6,7], which states that the ratio of thermal
and electrical conductivity is

κ

σT
≈ π2

3

k2
B

e2
. (1)
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The ratio on the left-hand side above is called the Lorenz
number, and the constant on the right-hand side is the ideal
Lorenz number experimentally observed in most normal ele-
mental metals at room temperatures. The WF law arises in a
conventional metal at temperatures T � TF, the Fermi temper-
ature, whenever electron-electron collisions are negligible, and
elastic scattering processes dominate [8]. Transport properties
of normal metals are dominated by electron-phonon scattering,
which is essentially quasielastic at room temperatures. The
theoretical prediction (1) therefore holds very well for most
normal metals [9]. Furthermore, NFLs will usually (but not
always) manifest a Lorenz number much smaller than predicted
by (1) [3]. In some instances, the implication that bad metals
(apparent NFLs with large resistivity [2–4]) violate the WF law
has been “inverted” to conclude that a failure of the WF law by
itself is evidence for the existence of a NFL [10]. Of course,
this conclusion is not logically necessary: it is possible for
Fermi liquids to violate (1) even in the very low-temperature
limit [11]. In particular, (1) is violated whenever the scattering
processes which dominate transport are inelastic.

The purpose of this paper is to—within the Fermi-liquid
paradigm—describe the interplay of electron-electron interac-
tions and impurities. A careful understanding of this interplay
is essential to develop a NFL transport theory. We will see that
some of the thermoelectric transport phenomena that occur
in NFLs also occur in FLs. Our description of “unconven-
tional” FL transport phenomena both provides a “less strange”
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setting in which to understand interaction-limited transport
physics, and sheds light on which transport phenomena rely
on the breakdown of FL theory, and which do not. Both the
hydrodynamic FLs which we consider, and the NFLs outlined
previously, are strongly interacting electron systems. One
main difference is that NFL behavior is commonly believed
to emerge due to a putative nearby quantum critical point.
The WF violation and related “exotic” transport properties
being studied in our current work arise not from any hidden
quantum criticality, but from strong interaction effects within
the metallic Fermi liquid itself. The hidden quantum criticality
which may be responsible for NFL physics will most strongly
manifest itself in specific temperature-dependent corrections
to the effective electron-impurity scattering rate.1 It is an
interesting question, beyond the scope of the current work,
whether an interplay of quantum criticality and hydrodynamic
effects coexist in strongly correlated materials; see recent
discussion in [13,14].

Expanding upon earlier works such as [3,11], we provide a
comprehensive and quantitative theory of the finite temperature
breakdown of the WF law in metals described by Fermi-liquid
theory. In particular, we confirm the results of [11] that the
Lorenz ratio becomes parametrically smaller than (1) in the
hydrodynamic limit [15], where nonumklapp electron-electron
scattering processes occur much faster than electron-impurity
or electron-phonon processes. This effect is universal and does
not rely on any details of the interactions or band structure. Any
metal, if driven to a hydrodynamic regime,2 will necessarily
violate (1). This violation does not necessarily imply NFL
behavior. While we will not study umklapp in this paper; we
also note that the Wiedemann-Franz law can be violated due
to inelastic umklapp scattering, as has been known for a long
time [16,17].

We will also describe the interaction-driven breakdown of
the related Mott law for thermoelectric conductivity:

α = −π2

3

k2
BT

e

∂σ

∂μ
, (2)

with μ = kBTF the chemical potential, or Fermi energy. We
will see that the Mott law holds in the same parameter regimes
as the WF law, however, its breakdown is not as dramatic.

The reason that hydrodynamic breakdowns of the WF and
Mott laws are not observed in typical metals, even at very
low temperatures, is simply a reflection of the fact that most
metals are rather dirty, and exhibit electron-electron scattering
rates which are negligibly small compared to electron-impurity
scattering rates. Elemental three-dimensional (3D) metals
are never in the hydrodynamic regime, even when they are
relatively pure—at low (high) temperatures, electron-impurity
(-phonon) interactions are stronger than the corresponding

1At finite temperatures there is generally simply a crossover (not a
phase transition) between the quantum critical fan and conventional
portions of the phase diagram [12]. The impact of quantum critical
fluctuations is most clearly seen in the unconventional temperature
dependence of scattering rates.

2In the absence of umklapp, this can be done by making the crystal
exceptionally pure so as to drastically reduce the electron-impurity
scattering rate.

electron-electron interaction. However, effectively 2D metals
(e.g., graphene, high-mobility 2D semiconductor layers) can
often be clean enough for the electron-electron scattering
rate to surpass the electron-impurity scattering rate at low to
intermediate temperatures (where electron-phonon scattering
is relatively weak). These systems can be in the hydrody-
namic regime. We urge experiments in high-mobility low-
density modulation-doped 2D GaAs electron and hole systems
[18] in order to verify our predictions of hydrodynamics-
induced breakdowns of the WF and Mott relations arising
from electron-electron interactions. These high-quality GaAs
systems, which are routinely used for studies of the fractional
quantum Hall effect, are exceptionally pure and easily enter
the hydrodynamic regime in a 0.1–10-K temperature range.

In fact, recent experiments on graphene [19,20], PdCoO2

[21], WP2 [22], and GaAs [23] have all observed evidence
for the collective hydrodynamic flow of electrons. Interaction-
limited transport phenomena in low-density oxides such as
SrTiO3 [24,25] may also have a hydrodynamic character.
Our results complement the existing theoretical literature
on hydrodynamic transport [26–32] and contain interesting
hydrodynamic predictions for experiments in the materials
listed above. In graphene, breakdowns of the WF [33] and Mott
[34] laws have been reported and attributed to hydrodynamic
effects. A demonstration of quantitative consistency between
bulk transport phenomena and more direct probes of viscous
effects such as nonlocal resistance will be strong evidence for
the hydrodynamic nature of electron flow in these systems.

Consistent with our goal of understanding the role of
electron-electron interaction in metallic transport (and partic-
ularly, the hydrodynamic regime), we ignore electron-phonon
interaction in our work. This is not because electron-phonon in-
teraction is generically unimportant—as we noted previously,
room-temperature transport in normal metals is dominated by
phonons—but because the role of electron-phonon interac-
tion in metallic transport is well understood [8]. Neglecting
phonons keeps our theory transparent and tractable. It is
straightforward to add electron-phonon scattering effects to
our theory.

Outline

The rest of the paper is organized as follows. In Sec. II
we summarize some key results and experimental predictions.
Section III outlines the computation of transport coefficients
from kinetic theory. Detailed calculations of transport coeffi-
cients at low temperature in any Fermi liquid with an isotropic
dispersion relation are provided in Sec. IV in the absence of a
background magnetic field, and in Sec. V in a background
magnetic field. We conclude in Sec. VI emphasizing our
key results and pointing out experimental implications. The
Appendixes contain a few technical details of our calculations.

II. MAIN RESULTS

In this paper, we compute the dc thermoelectric transport
coefficients of a metal:(

Ji

Qi

)
=

(
σij T αij

T αij T κ̄ij

)(
Ej

− 1
T
∂jT

)
, (3)
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where Ji is the charge current, Qi is the heat current, Ej is
an externally applied electric field, and ∂jT is an “externally
applied temperature gradient.”3 In experiments, one often
measures the open circuit thermal conductivity, where no
electrical current flows in the system:

κij = κ̄ij − T αikσ
−1
kl αlj . (4)

For much of this paper, we will assume that the conductivity
tensors are isotropic, e.g., σij = σδij .

A number of systems ranging from graphene [33,34] to
more exotic “strange metals” [10,35,36] violate the relations
(1) and (2). Some of these violations could arise from the dom-
inance of inelastic-scattering processes, while others appear to
have a hydrodynamic origin [33]. The purpose of this paper
will be to elucidate and expand upon the breakdown of (1) and
(2) due to hydrodynamic effects. Indeed, it is well understood
why in the hydrodynamic regime (1) and (2) will fail. For
example, a different universal transport relation arises deep in
the hydrodynamic regime: [37–39]

σ = e2n2

T s2
κ̄ = −en

s
α. (5)

Here s is the entropy density, n is the number density of elec-
trons, and −e is the charge of the electron. These ratios emerge
because all thermoelectric transport phenomena become linked
to momentum-relaxing scattering processes. Also observe that
in this hydrodynamic regime, κ � σ because κ̄σ ≈ T α2 [3];
furthermore, κ̄ � κ .

The first main result of this paper is the quantitatively
accurate description of the transition between the conventional
“collisionless” regime (1) and (2), and the hydrodynamic
regime (5), carefully accounting for all hydrodynamic effects.
In metals with large Fermi surfaces and weak disorder, we will
show that

κ

σT
≈ π2

3

�

� + γ
, (6)

where γ denotes the electron-electron scattering rate, and
� denotes the electron-impurity scattering rate. While (6)
was derived previously in [11], our derivation will naturally
generalize to the Mott law, and to more complicated settings.
We will describe the computation of � in some detail below,
including a qualitative discussion of hydrodynamic effects on
� [40,41] in Sec. IV E. We briefly discuss finite-temperature
corrections to (6) in T/TF in Sec. IV D. Equation (6) makes
clear that as observed prior, κ/σT is generally smaller than the
Wiedemann-Franz prediction in an interacting metal at finite
density. Equation (6) also implies the expected FL behavior at
T = 0, where γ = 0. This is in contrast to a NFL, where it is
possible for the WF relation to be violated even at T = 0. It
would be interesting to experimentally study the behavior of
the Lorenz number at very low temperatures in strange metals
(although in some cases, the putative critical point is unstable
to superconductivity, e.g., cuprates, making a low-temperature
measurement impractical). The recovery of the WF law at low
temperatures, or lack thereof, is a simple check on the FL
paradigm.

3A formal discussion of how this can be done may be found in [5].

The second main result of this paper is the generalization
of (6) to magnetotransport. Including a background magnetic
field which leads to cyclotron frequency ωc, we find that when
T � TF:

κxx

σxxT
≈ π2

3e2

� + γ

�

�2 + ω2
c

(� + γ )2 + ω2
c

, (7a)

κxy

σxyT
≈ π2

3e2

�2 + ω2
c

(� + γ )2 + ω2
c

. (7b)

Like (6), the ratio of the Hall thermal to Hall electrical con-
ductivity strictly decreases with increasing electron-electron
interactions. However, the dissipative conductivities exhibit
a richer structure. When � + γ < ωc, enhancing electron-
electron interactions increases the Lorenz number above the
ballistic prediction; only when � + γ > ωc does the Lorenz
number become smaller than (1). This implies that a nonmono-
tonic temperature dependence of the Lorenz number will occur
whenever � < ωc. It is possible, though difficult, to accurately
measure electronic thermal conductivity directly [33,42,43].
Equation (7a) is a key prediction for future experiments and
will provide a quantitative test of both the hydrodynamic
origin of Wiedemann-Franz violations, and the validity of the
Fermi-liquid paradigm.

III. KINETIC THEORY FORMALISM

In this section, we introduce the general formalism to
solve the transport problem. We will start out with rather
minimal assumptions beyond the existence of quasiparticles
with lifetime � h̄/kBT , and as the section continues we will
make more and more specific assumptions. It is (at least
in principle) simple to relax many of these assumptions.
In practice, going beyond some of these assumptions may
necessitate extensive numerical work focusing on specific
materials, which is beyond the scope of our current work.4

A. Linearized Boltzmann equation

In order to compute the thermoelectric conductivity matrix,
we solve the Boltzmann equation for a Fermi liquid of dis-
persion relation ε(p), linearized about thermal equilibrium at
temperature T . We assume that the band structure is inversion
symmetric and time-reversal invariant. We also assume the
presence of an inhomogeneous single-particle potential energy
Vimp(x) caused by random impurities. We ignore the spin of
the electronic quasiparticles, as we are explicitly interested in
spin-independent transport properties, though it is easy to keep
track of spin if necessary.

We denote by f (x,p) the distribution function of (quantum)
kinetic theory. Letting f = feq + δf , where

feq(x,p) = 1

1 + e[ε(p)+Vimp(x)−μ]/kBT
, (8)

4Also, the detailed system parameters for carrying out such numer-
ical calculations for specific strongly correlated materials may not be
known. For such systems it would not yet be useful to perform serious
numerical computations.
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denotes the distribution function in the absence of any external
electric fields or temperature gradients, and δf denotes the
infinitesimal correction arising in infinitesimal electric fields/
temperature gradients, we find that the Boltzmann equation
reduces to

∂t δf + v · ∂δf

∂x
+ Fimp · ∂δf

∂p
+ δFext · ∂feq

∂p
= −δC[δf ] (9)

within linear response. As we are only interested in the dc
transport problem, we may drop the time derivative from now
on. Here

v = ∂ε

∂p
, (10)

Fimp = −∇Vimp are the forces arising from the impurity
potential, and

δFext = −e

(
δE − ε − μ

T
∇δT

)
. (11)

δC[δf ] denotes the collision integral, written only to leading
(first) order in δf . Explicit discussions of the linearized
collision integral may be found in [44]. A solution of the
linearized Boltzmann equation (9) will provide δf . As there
are no charge and heat currents in equilibrium, the charge and
heat currents are given entirely by this perturbation:

Ji(x) = −e

∫
ddp

(2πh̄)d
viδf (x,p), (12a)

Qi(x) =
∫

ddp
(2πh̄)d

(ε + Vimp − μ)viδf (x,p). (12b)

For simplicity in this paper, and without loss of generality,
we will shift ε(p) by a constant such that the Fermi surface is
located at μ = 0, which simplifies a few of the formulas below.

Mathematically, the Boltzmann equation is simply a linear
algebra problem in a high-dimensional vector space. In order to
make analytic progress, we cannot simply invert the linearized
Boltzmann operator—it is far too complicated. We instead
proceed in a number of steps, which may (for the moment)
appear rather cumbersome, but will in the end reduce the calcu-
lation of the conductivities to the inversion of few-dimensional
matrices, in certain limits. The notation and formulations below
follow closely [40,41].

The first step is to define a suitable inner product for the p
indices on our vector space:

〈f |g〉 =
∫

ddp
(2πh̄)d

(
−∂feq

∂ε

)
f (p)g(p), (13)

Writing the distribution function as

f (x,p) = feq(x,p) +
∫

ddk
(2π )d

(
−∂feq

∂ε

)
�(x,p), (14)

with � treated as infinitesimally small, and defining

|Ji〉 =
∫

ddp vi(p)|p〉, (15a)

|Qi〉 =
∫

ddp ε(p)vi(p)|p〉, (15b)

we find that

〈�(x)|Ji〉 = Ji(x), (16a)

〈�(x)|Qi〉 = Qi(x) − Vimp(x)Ji(x). (16b)

The advantage of introducing the inner product (13) is now
clear: the highly singular structure of the Fermi function has
been absorbed into the integration measure in the inner product.
The vectors which we are studying are now smooth functions
of momentum across the Fermi surface. We also emphasize
that the Vimp-dependent correction to the heat current will be
negligible in the limits studied in this paper. We will think of
|Ji〉 as the vector that encodes the charge current, and |Qi〉 as
the vector that encodes the heat current.

Let W denote the linearized collision integral. It is a
symmetric, positive-semidefinite matrix with the assumptions
made above; its null vectors are associated with local conserva-
tion laws of electron-electron collisions. We will assume that
one of these conservation laws is associated with momentum,
because translation invariance is only broken by Vimp. The
linearized Boltzmann equation (9) can then be written in our
vector notation as

〈p|
[

v · ∂

∂x
+ Fimp · ∂

∂p

]
|�〉 = −〈p|W|�〉 + Ei〈p|Ji〉

− ∂iT

T
(〈p|Qi〉 + Vimp〈p|Ji〉).

(17)

The (x,p) dependence in the inner product has been properly
taken into account—the derivatives above only act on �.
Clearly, we may undo the inner product with |p〉, since the
equation is valid for all |p〉.

B. Perturbative limit

We now focus on a perturbative limit where the amplitude
of the smooth impurity potential Vimp is perturbatively weak.
This is a natural limit of interest for the study of hydrodynamic
interaction effects, and helps ensure that electron-electron
interaction effects are stronger than electron-impurity interac-
tions. Note that although Vimp is small, it cannot vanish because
then strict translational invariance is restored and the electrical
conductivity is infinite, in the absence of umklapp (which is
ignored throughout this work). This can be seen by writing
down Newton’s second law:

dPtot

dt
= QtotE, (18)

where Ptot is the total momentum in the theory, and Qtot is the
total charge. In the absence of translation symmetry breaking,
no further terms may be written down on the right-hand side,
and transport properties in the strict dc limit are ill posed.
In a quantum theory, (18) continues to hold: it is the Ward
identity associated with translation symmetry. Therefore, we
work consistently in the limit of small, but finite, Vimp.

As is well known, and we will see explicitly below, all ther-
moelectric conductivities now scale like V −2

imp as a consequence
of the slowness of momentum relaxation [5,15,38,39]. This
means that most—but not all—Vimp dependence in the problem
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can be ignored. To see where we can neglect Vimp, recall that
our goal is to compute

J
avg
i =

∫
ddx
Vd

Ji(x) ≈
∫

ddx
Vd

〈�(x)|Ji〉, (19a)

Q
avg
i =

∫
ddx
Vd

Qi(x) ≈
∫

ddx
Vd

〈�(x)|Qi〉. (19b)

Here Vd denotes the spatial volume—we are simply taking a
spatial average. The latter approximations above come from
the fact that both σ and κ will scale as V −2

imp at leading order. It
will be useful to Fourier transform �:

|�(k)〉 ≡
∫

ddx
Vd

|�(x〉e−ik·x. (20)

Equation (9) can be written as(
W L0

dis

−L0
dis

† W + ik · v + Ldis(k,k′)

)(|�(k = 0)〉
|�(k 	= 0)〉

)

=
(

Ei |Ji〉 − ∂iT

T
|Qi〉

0

)
, (21)

where

Ldis(k,k′) = −i(k − k′)iVimp(k − k′)
−→
∂

∂pi

, (22)

and we have denoted L0
dis = Ldis(0,k). Since Vimp is perturba-

tively small, and ik · v + W has no null vectors in general, we
do not need to worry about the Ldis except in the off-diagonal
blocks in (21).

Combining all of the above together, we conclude that the
thermoelectric conductivity matrix is given by(

σij T αij

T αij T κ̄ij

)
≈

(
〈Ji |W̃−1|Jj 〉 〈Ji |W̃−1|Qj 〉
〈Qi |W̃−1|Jj 〉 〈Qi |W̃−1|Qj 〉

)
, (23)

where we have defined the matrix

W̃ ≈ W +
∫

ddk
(2π )d

kikj |Vimp(k)|2
←−
∂

∂pi

(W + ik · v)−1
−−→
∂

∂pj

+ O
(
V 3

imp

)
. (24)

The first term in W̃ corresponds to electron-electron interac-
tions. The second term corresponds to electron-impurity colli-
sions, which will not conserve momentum. Formally speaking,
we observe that the presence of W in the electron-impurity term
means that the electron-electron interactions can substantially
modify the nature of electron-impurity scattering. This inter-
play of electron-electron and electron-impurity interactions is
described in some detail in [40,41], and in Sec. IV E. However,
for most of this paper, we will focus on a limit where W is
also taken to be perturbatively small: W ∼ V 2

imp. In this limit,
impurity scattering is well described by the single-particle
theory: we may approximate

W̃ ≈ W + Wimp, (25)

where

Wimp =
∫

ddk
(2π )d

kikj |Vimp(k)|2
←−
∂

∂pi

δ(kivi)
−−→
∂

∂pj

. (26)

Equation (25) is reminiscent of Mattheisen’s rule—the
impurity-scattering and electron-scattering diagrams may be
added independently to the (disorder-averaged) collision inte-
gral of kinetic theory. However, we emphasize that in the final
transport coefficients, Mattheisen’s rule for resistivities can be
violated.

C. Rotational invariance and a basis

The final assumption that we will make in this paper is
that the dispersion relation (and disorder distribution) are
rotationally invariant. This is a reasonable assumption for
many correlated Fermi liquids where the hydrodynamic regime
is likely experimentally accessible, including graphene and
GaAs. We further assume that W is rotationally invariant; by
construction in (26), it is clear that (after performing the k
integral) Wimp is rotationally invariant. Thus, W̃ is rotationally
invariant. What this means is that the natural basis of vectors
|p〉 are

|α,m1 . . . md−1〉 =
∫

ddp fα(p)Ym1...md−1 (θ1, . . . ,θd−1)|p〉.
(27)

In the above equation, and henceforth, p = |p|, θ1, . . . ,θd−1

denote the angular coordinates of p, and fα is a set of poly-
nomial functions that we will detail below. Ym1...md−1 denotes a
spherical harmonic in d space dimensions. In this basis,

〈α,m1 . . . md−1|W̃|β,m′
1 . . . m′

d−1〉
= W

m1...md−1
αβ δm1m

′
1
× · · · × δmd−1m

′
d−1

. (28)

Our goal is to compute the thermoelectric conductivity ma-
trix. Both |Ji〉 and |Qi〉 are vectors under spatial rotation, and
without loss of generality, we may compute σ = 〈Jx |W̃−1|Jx〉,
etc. So a natural choice of basis vectors to study corresponds
to

|α〉 ≡
∫

ddp
px

p
fα(p)|p〉, (29)

for a basis of polynomials {fα}. For these basis vectors, we
observe that

〈α|β〉 =
∫

ddp
(2πh̄)d

fα(p)fβ(p)
p2

x

p2

= 1

d

∫
ddp

(2πh̄)d
fα(p)fβ(p). (30)

Up to the overall prefactor of 1/d, we may simply compute the
radial integrals over the Fermi surface.

Another useful simplification in this basis arises when
computing the matrix elements 〈α|Wimp|β〉. Using

ki

∂

∂pi

(
px

p
fα

)
= kx

p
fα +

(
f ′

α − fα

p

)
kipipx

p2
, (31)

and observing that the δ(kivi) in (26) constrains kipi = 0 in an
isotropic theory, we conclude that

〈α|Wimp|β〉 = �d

∫
pd−1dp

(2πh̄)d

(
−∂feq

∂ε

)
×

∫
ddk

(2π )d
k2
x |Vimp(k)|2δ(kivi)

fαfβ

p2
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= �d

∫
pd−1dp

(2πh̄)d

(
−∂feq

∂ε

)
fαfβ

p2v

×
[∫

ddk
(2π )d

k2

d
|Vimp(k)|2δ(kx)

]
= Aimp × �d

∫
pd−1dp

(2πh̄)d

(
−∂feq

∂ε

)
fαfβ

p2v
, (32)

where �d is the area of the unit sphere. Hence, all of the
physics of impurity scattering becomes captured by a single
constantAimp, which is defined as the object in square brackets
in the second line of (32). We caution that there can be
nontrivial temperature dependence in Aimp, in the presence
of temperature-dependent screening of a long-range Coulomb
impurity potential Vimp(k) [45,46], an effect that we ignore in
the present work.

IV. LARGE FERMI SURFACES

To make further progress, we will now work in the limit
where the Fermi surface is large. To be precise, we will
assume that T � pFvF. In this limit, we can further simplify
the evaluation of the conductivity by neglecting all but a few
low-order polynomials fα in the basis (29).

A. An efficient basis

Define q = p − pF. Let the dispersion relation be

ε(q) = vFq + a

2
q2 + b

3
q3 + · · · . (33)

A natural set of basis functions is |qn〉, corresponding to the
polynomials fα = qn. Of great importance to us is that in this
basis,

|Jx〉 = −e(vF|q0〉 + a|q1〉 + b|q2〉 + · · · ), (34a)

|Qx〉 = v2
F|q1〉 + 3

2vFa|q2〉 + · · · . (34b)

Unfortunately, the basis functions |qn〉 are not normalized.
It would be more convenient if we could work with an
orthonormal basis. This can be constructed straightforwardly
by the Gram-Schmidt procedure, and we will denote the
result of this procedure with |n〉. The calculation of |n〉 from
|qn〉 is straightforward but tedious: details are provided in
Appendix A. A useful qualitative fact for the discussion that
follows is that

〈qn|qm〉 ∼
{
T n+m n + m even

T n+m+1 n + m odd
. (35)

In what follows, subleading numerical coefficients in T are
specific to d = 2 spatial dimensions, but the general structure is
unchanged for all dimensions. The first few basis functions are

|0〉 = c00

√
d

ν
|q0〉, (36a)

|1〉 =
√

d

ν

[c11

T
|q1〉 + T c10|q0〉

]
, (36b)

with ν the density of states (we remind the reader of useful ther-
modynamic formulas for a Fermi liquid in the low-temperature

limit in Appendix B), the factor of d arising from (30), and

c00 = 1 − π2T 2

2

(
a2

2v4
F

− a

2pFv
3
F

− b

3v3
F

)
+ O(T 4), (37a)

c11 =
√

3vF

π
+ πT 2

(
2v2

F + 14bvFp
2
F + 15apFvF − 27a2p2

F

)
4
√

3v3
Fp

2
F

+ O(T 4), (37b)

c10 = π (3apF − 2vF)

2
√

3pFv
2
F

+ O(T 2). (37c)

A general basis function is

|n〉 =
√

d

ν

(
vF

T

)n

cnn|qn〉 +
(

vF

T

)n−2

× (cn,n−1|qn−1〉 + cn,n−2|qn−2〉) + · · · . (38)

A key observation is that—up to O(T 2/T 2
F ) corrections—the

orthonormal basis is equivalent to |qn〉, up to a prefactor which
is proportional to T −n. Also observe that |qn〉 can exactly be
expressed as a function of |m〉 with m � n.

B. Approximating the collision integrals

From the form of (34) and (36), it is clear that as long
as components of Wimp are “well-behaved” in the low-T
limit, then we can efficiently compute the thermoelectric
conductivity matrix by focusing only on the first few basis
vectors: |0〉,|1〉, . . .. Indeed, this is the case:

〈m|Wimp|n〉 � T |m−n|. (39)

To show this, we first write

Aimp

p2v(p)
= � + �1q + �2q

2 + · · · . (40)

By definition, qk|qn〉 = |qn+k〉. (We are denoting the linear
operation which multiplies by q as q, in the obvious way.)
Now, assuming that m > n, without loss of generality, observe
that

〈m|qm−n|n〉

∼ 〈m|
[

1

T n
|qm〉 + T 2

T n
|qm−1〉 + T 2

T n
|qm−2〉 + · · ·

]
∼ 〈m|qm〉

T n
∼ T m−n. (41)

In fact, staring at the above expression, we also find that 〈m −
�|qm−n|qn〉 � T m−n for any � � 0. Therefore,

〈m|Wimp|n〉 ∼ �m−nT
m−n + · · · . (42)

The · · · in (42) includes terms proportional to �m−n+2T
m−n+2,

etc., which are all subleading in the low-temperature limit. At
T = 0, there is a residual resistivity:

〈m|Wimp|n〉 = �δmn. (43)

We have not dropped any constant prefactor in the above
formula (43).

We next observe that

〈m|W−1
imp|n〉 � T |m−n|. (44)
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One way to show this result is recursively. From the form of
the T = 0 result (43), we show the base case |n − m| = 0. For
finite |n − m|, we may use block matrix inversion identities.
Without loss of generality, we again take m > n. Let us write

W = (〈k < m| 〈k � m|)
(

W−− W−+
W+− W++

)(|k < m〉
|k � m〉

)
. (45)

Since there are no singular eigenvalues at low temperatures,

〈m|W−1
imp|n〉 ∼

∑
k<m,��m

(W++ − W+−W−1
−−W−+)−1

m�

× (W+−)�k(W−1
−−)kn

�
∑

k<m,��m

T |k−�|+|k−n| � T |m−n|. (46)

Since physical observables such as |Jx〉 and |Qx〉 are
naturally expressed in terms of the |qn〉 basis, as in (34), we
are only interested in evaluating W−1

imp on vectors which take
the form

|Jx〉 =
∑

n

anT
n|n〉, |Qx〉 =

∑
n

bnT
n|n〉, etc. (47)

Observing that∑
mn

amanT
m+n〈m|W−1

imp|n〉 ∼
∑
mn

amanT
m+n+|m−n|

=
∑
mn

amanT
2 max(m,n), (48)

we conclude that to compute a transport coefficient up to
O(T 2k), we only need to keep basis vectors |0〉, . . . ,|k〉. To
leading order, we know from the Wiedemann-Franz law and
Mott law that T κ̄ and T α will both scale as T 2 at low
temperatures. As we show in Sec. IV C, keeping only the |0〉
and |1〉 basis vectors is sufficient to recover these relations in
the noninteracting limit.

Now that we understand the form of the “collisionless”
electron-impurity scattering, let us discuss the form of the
electronic collision integral. Since we are interested in the
hydrodynamic regime of electron flow, we focus on theories
where momentum is conserved in all electron-electron colli-
sions (there is no umklapp). This means that the momentum
vector

|Px〉 = pF|q0〉 + |q1〉 ≈
√

ν

d

[
pF|0〉 + πT√

3
|1〉

]
(49)

is a null vector of W. One simple choice of W that is consistent
with this requirement is

W ≈ γ

(
|1〉 − πT√

3pFvF

|0〉
)(

〈1| − πT√
3pFvF

〈0|
)

+
∞∑

n=2

γ |n〉〈n|. (50)

This choice, which is used extensively in transport theories, is
often called the relaxation time approximation [47]. Note that
the relative decay of longitudinal fluctuations above necessi-
tates inelastic scattering processes. The coefficient γ ∼ τ−1

ee is

associated with the rate at which electron-electron collisions
relax longitudinal fluctuations of the distribution function,
proportional to px :

γ ≡ α̃2 T 2

TF
, (51)

where α̃2, an effective coupling constant in the problem
which we do not specify, is (roughly) proportional to the
interaction constant. In lower dimensions, it is possible for
this scattering time to be enhanced by factors of log(TF/T )
[48–53], and we will not worry about these logarithms in this
paper.

We note that the Fermi-liquid prediction (51) for the
inelastic scattering rate—with suitable logarithms– - has been
verified experimentally (see, e.g., [54] for a direct verifica-
tion in a 2D GaAs system). The T 2 dependence in (51) is
completely consistent with the classic Fermi-liquid paradigm
of well-defined quasiparticles. Indeed, our kinetic picture is
perturbative in interactions and so a NFL does not emerge
in our model in 2D or 3D electron liquids. This statement is
independent of α̃2, although for large enough α̃2 our kinetic
theory is not valid. Normal 3D metals are strongly interacting
in the sense that α̃ (also commonly called “rs” in interacting
Coulomb systems) ∼6. However, because TF ∼ 104 K, γ is
still small relative to kBT/h̄ (the scattering rate below which
a quasiparticle picture does not make sense [5]). In 2D GaAs
hole systems, the interaction coupling constant can be ∼40 in
dilute experimental systems, putting the system deep in the
hydrodynamic regime [55].

C. Strongly interacting limit

We are now finally ready to study transport phenomena
across the ballistic-to-hydrodynamic crossover. To start off,
let us work in a simple limit where

� � α̃2TF. (52)

We will relax this assumption in Sec. IV D. This inequality
can be satisfied in 2D systems experimentally, but not in the
usual metals. Equation (52) implies that γ = � at temperatures
T � TF, where an expansion in low-order basis vectors ought
to be sensible, even in the hydrodynamic regime. Thus, we
will work only to the lowest nontrivial order in T/TF in Wimp,
to capture the effects of interactions. From the form of the
Wiedemann-Franz law (1), Mott relation (2), and the definition
(23), we conclude that it will suffice to keep track of only the
vectors |0〉 and |1〉. This is not equivalent to a Taylor series
expansion in T , as γ itself depends on T via (51). We will
return to this point in Sec. IV D.

Converting the |qn〉 basis to the |n〉 basis, the charge and
heat current vectors are

|Jx〉 ≈ −e

√
ν

d

[
vF|0〉 + aπT√

3vF

|1〉
]
, (53a)

|Qx〉 ≈
√

ν

d

[
π2T 2

3pF
|0〉 + πT vF√

3
|1〉

]
. (53b)
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The net collision integral W̃ is given by

W̃ ≈
(

π2T 2

3p2
Fv

2
F

γ + �

)
|0〉〈0|

+ πT√
3vF

(
�1 − γ

pF

)
(|0〉〈1|

+ |1〉〈0|) + (� + γ )|1〉〈1|. (54)

Computing the thermoelectric conductivity matrices has re-
duced to simply inverting a 2×2 matrix:

W̃−1 ≈ 1

�
|0〉〈0| − πT√

3vF

�1 − γ

pF

�(� + γ )
(|0〉〈1| + |1〉〈0|)

+
π2T 2

3p2
Fv2

F
γ + �

�(� + γ )
|1〉〈1|. (55)

In this step, we have made approximations consistent with the
assumptions stated at the start of this subsection.

First, let us study the limit γ = 0, which corresponds to the
T → 0 limit. After some algebra we obtain

σ ≈ νe2v2
F

d�
, (56a)

κ ≈ κ̄ ≈ π2T

3

νv2
F

d�
≡ κnonint, (56b)

α ≈ −e
π2T ν

3d

[
−vF�1

�2
+ a

�
+ vF

pF�

]
≡ αnonint. (56c)

In each case, we have only written down the leading-order
terms in the T → 0 limit (where, by definition, we should
recover the standard Fermi-liquid WF law since interaction-
induced scattering vanishes at the Fermi surface). It is clear that
we recover the Wiedemann-Franz law (1). The Mott relation
(2) is also obeyed, because

∂σ

∂μ
= 1

dvF

∂σ

∂pF
= �d

(2πh̄)ddvF

∂

∂pF

pFvF

�

= �d

(2πh̄)ddvF

[
vF

�
− pFvF�1

�2
+ pFa

�

]
= −νvF�1

d�2
+ ν

a

d�
+ ν

vF

dpF�
. (57)

Having confirmed that our theory correctly reproduces
the noninteracting “collisionless” limit of electron-impurity
scattering, let us crank up the electron-electron collision rate
γ . The first thing we observe is that

σ ≈ νe2v2
F

d�
+ O(T 2,T 2γ ). (58)

This is an important result: interactions affect the electrical
conductivity only weakly (i.e., at higher-order terms) through
hydrodynamic corrections. By contrast, as we show below,
interaction does affect the thermal conductivity and the ther-
moelectric conductivity. The electrical conductivity is, in this
approximation, essentially independent of electron-electron
scattering.

Next, let us discuss the thermal conductivity κ̄ . In this case,
we obtain

κ̄ = νπ2v2
FT

3d�

⎡⎣ π2T 2

3p2
Fv2

F
γ + � − 2 π2T 2

3pFv2
F

(
�1 − γ

pF

)
� + γ

+ π2T 2

3p2
Fv

2
F

⎤⎦
≈ κnon−int

�

� + γ
+ κ̄int

γ

� + γ
, (59)

with

κ̄int = 4π4T 3ν

9dp2
F�

. (60)

The thermoelectric conductivity is given by

α ≈ −e
νπ2T v2

F

3d

�+γ

pFvF
− 1

vF

(
�1 − γ

pF

) + a

v2
F

(
π2T 2

3p2
Fv2

F
γ + �

)
�(� + γ )

≈ αnon−int
�

� + γ
+ αint

γ

� + γ
, (61)

where

αint = −e
2π2T νvF

3dpF�
. (62)

Both κ̄ and α admit an elegant interpretation in this limit:
they are a weighted average of the “collisionless” transport
coefficient and an “interaction-limited” transport coefficient.
The weights in front of each term correspond to the fraction
of the total scattering rate that is in the electron-impurity vs
electron-electron channel.

We can go further. In the interaction-dominated limit, we
expect that the thermoelectric conductivity matrix is limited
entirely by momentum relaxation [5,15,37–39]. Writing down
the momentum conservation equation, we obtain

−enE − s∇T = �∗v, (63)

with v the velocity of the interacting fluid, and �∗ a coefficient
related to weak momentum relaxation. The left-hand side
corresponds to the momentum added to the system by the
external drives; the right-hand side corresponds to the system’s
internal momentum dissipation. Approximating the charge
current as J ≈ nv and the heat current as Q ≈ T sv, we arrive
at the formulas(

σ T α

T α T κ̄

)
≈ 1

�∗

(
e2n2 −eT sn

−eT sn (T s)2

)
. (64)

Using the thermodynamic relations of a low-temperature Fermi
liquid given in Appendix B, we find that in our toy model above,

�∗ = M�, (65)

where M is the momentum-momentum susceptibility (analo-
gous to a mass density). Since � is the momentum relaxation
rate, this agrees with the predictions of the memory matrix
formalism [38,39]. Using (60) and (62) with these thermody-
namic identities, we can confirm that αint and κ̄int take the form
demanded by (64), relative to σ . Note also the identity

σ κ̄int = T α2
int, (66)

which is tied to the fact that one process—momentum
relaxation—limits all transport coefficients in the hydrody-
namic regime.
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Now, let us return to the fate of the Wiedemann-Franz law.
Conventionally one compares not κ̄ to σ , but κ to σ . As a
consequence, using the identity (66), we obtain

κ ≈ �

� + γ
κnonint + γ�

(� + γ )2

(
κ̄int − 2T αintαnonint

σ

)
≈ �

� + γ
κnonint ≈ π2T νv2

F

3d(� + γ )
. (67)

As before, we are neglecting contributions that are subleading
in T , at each order in γ . The Wiedemann-Franz law will be
violated, “strongly interacting” limit, in the particularly elegant
manner given in (6). In this simple model, the amount of
violation of the Wiedemann-Franz law corresponds directly to
the fraction of scattering processes which are momentum con-
serving. This interpretation fails to hold if T/TF is not so small,
and/or if the disorder strength is comparable to the interaction
strength (Sec. IV D). Earlier discussions emphasizing that the
Wiedemann-Franz law will be violated in the hydrodynamic
limit of a finite density metal, because κ/σT is very small, can
be found in [3,11,56]. In the hydrodynamic limit, the value
of κ matches the dissipative hydrodynamic coefficient κQ, at
leading order in T/TF; see Appendix D.

The fate of the Mott relation is less dramatic. In the limit
T � TF, both αnonint and αint are linear in T . The collisionless-
to-hydrodynamic crossover will simply correspond to a grad-
ual change in the slope of α(T ). We note that this crossover
can be more dramatic near charge neutrality (T � TF). Some
experimental evidence for this effect in graphene, and further
discussion, can be found in [34,57].

D. Weakly interacting limit

In this section, we will consider the limit where (52) is
not obeyed. This corresponds to metals with relatively low
Fermi temperature (where the WF law is affected by thermal
smearing of the Fermi function even without any interaction
effects), and/or relatively small interaction coupling α̃. Indeed,
smearing of the Fermi surface leads to comparable O(T 2)
corrections, similar to (but distinct from) electron-electron
interactions.

To correctly compute the thermal conductivity, we must
compute T κ̄ to O(T 4), and so we must keep the basis vector
|2〉 in our expansion. For simplicity, we will take the dispersion
relation ε(p) to be exactly quadratic. This means that in (33),
b = 0, apF = vF, and pFvF = 2TF. We will also treat electron-
electron collisions within a relaxation time approximation (50),
but at next-to-leading order this does not change the form of the
answer. The forms of |Jx〉, |Qx〉, and Wimp are written explicitly
in Appendix C. We then explicitly compute

σ = ν

2

v2
F

�

(
1 + π2T 2

3T 2
F

)
+ O(T 4), (68a)

κ = ν

2

π2T

3e2

v2
F

�

(
1 − 17π2T 2

30T 2
F

− α̃2T 2

�TF

)
+ O(T 5). (68b)

The Lorenz number

κ

σT
= π2

3e2

[
1 − 9π2T 2

10T 2
F

− α̃2T 2

�TF

]
+ · · · (69)

is thus decreased both by thermal smearing of the Fermi
surface and by electron-electron interactions. When disorder
is very weak, the dominant effect will be that of electron-
electron interactions. Also observe that even the first sub-
leading temperature-dependent correction to σ arises only
from thermal smearing of the Fermi surface, and not from
electron-electron scattering.

Thus, �, γ , and TF are all relevant parameters deter-
mining the effective Lorenz number as a function of T .
Remembering that TF ∼ n2/d , where n is the electron density
of the d-dimensional electron liquid,5 and that γ ∼ T 2/TF,
we conclude that lowering electron density may enhance
both the effect of interaction and the effect of Fermi sur-
face thermal smearing depending on the temperature of the
system. If the effective impurity disorder Gamma itself has
a temperature dependence through electronic screening (as
it does in 2D systems [58]), the situation gets much more
complicated. Disentangling all of these effects quantitatively
will require materials-specific computations beyond the scope
of the present paper.

E. Hydrodynamic fluctuations and impurities

In this section, we will qualitatively describe the interplay
of electron-electron interactions with the impurity potential.
Mathematically, this is done by keeping track of the full W
matrix when performing the matrix inverse in (24). For the
purposes of this section, we will keep the discussion qualitative,
since the quantitative details depend on far too many unknown
material-specific parameters and the precise nature of the
disorder [40,41]. After a microscopic calculation, what one
finds is that Wimp is no longer approximately a single-scattering
rate �, times the identity matrix. Instead, the eigenvalues of
Wimp will sensitively depend on the nature of disorder, and on
the modes |α〉 which are being sourced.

We assume that the inhomogeneous potential Vimp(x) varies
on the length scale ξ . Let θ � 1 denote the typical deflection
angle of a quasiparticle after it moves a distance ∼ξ through the
potential landscape. A typical degree of freedom |α〉 will obey

� ∼ 〈α|Wimp|α〉 ∼ θ2 vF�ee

ξ (ξ + �ee)
, (70)

where

�ee ≡ vF

γ
. (71)

This will hold, at least qualitatively, for all modes |0〉, |1〉, |2〉,
etc., in the isotropic Fermi liquid with potential disorder [40].
In these theories, � decreases as electron-electron interactions
increase [40]:

� ≈ θ2 vF

ξ

[
1 − ξγ

vF
+ · · ·

]
≈ θ2 vF

ξ
− θ2γ + O(γ 2). (72)

We conclude from (6) that the Wiedemann-Franz law is
violated even more strongly when hydrodynamic corrections
to impurity scattering are accounted for, since the effective

5This relation changes for systems with nonparabolic dispersion
relations, such as monolayer graphene.
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disorder strength � is suppressed by interactions. From (72),
we also estimate that the hydrodynamic corrections to impurity
scattering are relatively weak compared to intrinsic electron-
electron scattering in the collision integral by a factor θ2. This
arises from the inherent difference between elastic (impurity)
and inelastic (electron-electron) scattering processes.

However, in some cases it is possible for hydrodynamic
corrections to impurity scattering to behave rather differently.
In particular, in the presence of “magnetic” disorder, one
obtains [41]

〈0|Wimp|0〉 ≈ θ2vF

(
1

ξ
+ 1

�ee

)
= θ2 vF

ξ
+ θ2γ ≡ �∗, (73)

|1〉, |2〉, etc., will have the same decay rate as before. The origin
of the peculiar behavior of the decay rate of the |0〉 mode is
related to the fact that the “magnetic” disorder exerts large
shear stresses which in turn create large local velocity fields in
the electronic fluid. We must now recompute σ and κ in a fluid
where

Wimp = �∗|0〉〈0| + �|1〉〈1|. (74)

Following the procedure of Sec. IV C, we obtain

σ ≈ ν

d

e2v2
F

�∗
, (75a)

κ ≈ ν

d

π2T

3

v2
F

� + γ
. (75b)

We therefore find that for this fluid,

θ2 � 3e2

π2

κ

σT
� 1. (76)

The Wiedemann-Franz law is still violated, but not as strongly
as before. Furthermore, the Lorenz ratio will no longer become
arbitrarily small as the sample becomes more pure. This
scenario is analogous to the presence of electron-electron
umklapp (momentum-relaxing) scattering at rate θ2γ .

Finally, another well-known [58] example of an interaction-
suppressing effect of disorder is the screening of long-range
Coulomb impurities by the electrons themselves, which leads
to a strongly temperature-dependent effective disorder in 2D
systems, manifesting a first-order positive thermal correction
to the resistivity which is linear in T/TF in two dimensions
(but not in three dimensions). This effect, which is beyond
the scope of the current hydrodynamic theory as it arises from
the singular nature of the 2D polarizability function at 2kF

[59,60], tends to increase �, and therefore the Lorenz number,
with increasing temperature. As this effect will increase the
Lorenz number it does not provide an alternate explanation for
reduced Lorenz numbers in an interaction-limited regime.

V. MAGNETOTRANSPORT

In this section, we will discuss magnetotransport phe-
nomena in the presence of a weak magnetic field, focusing
specifically on the experimentally relevant case of a two-
dimensional electron fluid. When the cyclotron radius is very
large compared to λF, the magnetic field can be treated within
our classical kinetic description. If the cyclotron radius is large
compared to the size of the impurity potential, then we can

neglect magnetic field corrections to Wimp. We will make both
of these assumptions to simplify the calculations below.

Accounting for the magnetic field amounts to modifying W̃
to W̃ = W + Wimp + Wmag, with

Wmag = −eBεij vi

∂

∂pj

(77)

and εxy = −εyx = 1 the antisymmetric Levi-Civita tensor. In
a rotationally invariant Fermi liquid, we can further simplify
this. Generalizing (29) to

|αi〉 ≡ pi

p
fα(p), (78)

and generalizing the bases discussed in Sec. IV A, we obtain
that

Wmag|αi〉 = eεij

pj

p

Bv(p)

p
fα(p); (79)

hence, Wmag will mix x and y vectors (under spatial rotation),
but will not couple vectors to higher/lower rank tensors.

Strongly interacting limit

For simplicity, let us now focus on the strongly interacting
limit described in Sec. IV C. As before, we will (up to the
T dependence of γ ) only be interested in the leading-order
temperature dependence of all conductivities, which will allow
us to neglect all basis vectors but |0x,y〉 and |1x,y〉. We may write

W̃ = (W + Wimp) ⊗ δij + W̃mag ⊗ εij , (80)

where

W̃mag = eBvF

pF
(|0〉〈0| + |1〉〈1|)

+πT eB(apF − vF)√
3vFp

2
F

(|0〉〈1| + |1〉〈0|). (81)

Using (23), we can invert the 4×4 matrix W̃ to compute all
conductivities of interest. Taking the same limit as Sec. IV C,
we find that the electrical conductivity is given by

σxx = σyy = ν

d

e2v2
F�

�2 + ω2
c

, (82a)

σxy = −σyx = ν

d

e2v2
Fωc

�2 + ω2
c

, (82b)

where we have defined the cyclotron frequency

ωc ≡ eBvF

pF
. (83)

As before, we observe that σij is independent of electron-
electron interactions, within this simple model. Furthermore,
the form of σij is completely consistent with the Drude model
of magnetotransport; see, e.g., [15]. The resistivity tensor
ρij = σ−1

ij exhibits no classical magnetoresistance, follow-
ing the conventional lore. When � = 0, we obtain the Hall
conductivity

σxy = ν

2

e2v2
F

ωc
= en

B
. (84)
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Since −en is the charge density, we find the classical Hall
conductivity. In fact, using quantum Ward identities, this
relation can be derived for any translation invariant quantum
system (in the absence of Berry curvature); see, e.g., [5]. The
open-circuit thermal conductivities are given by

κxx = κyy = ν

d

π2T

3

v2
F(� + γ )

(� + γ )2 + ω2
c

, (85a)

κxy = −κyx = −ν

d

π2T

3

v2
Fωc

(� + γ )2 + ω2
c

, (85b)

while the closed-circuit thermal conductivity is

κ̄xx = κ̄yy≈κxx + ν

d

4π4T 3�γ 2

p2
F

(
�2 + ω2

c

)[
(� + γ )2 + ω2

c

] , (86a)

κ̄xy = −κ̄yx≈κxy−ν

d

4π4T 3ωcγ
2

p2
F

(
�2 + ω2

c

)[
(� + γ )2 + ω2

c

] . (86b)

The thermoelectric conductivity is given by

αxx = αyy = −eν

d

π2T

3

�(� + γ )[apF� + vF(� − �1pF + 2γ )] + ω2
c (3�vF + �1pFvF − a�pF)

pF
(
�2 + ω2

c

)[
(� + γ )2 + ω2

c

] , (87a)

αxy = αyx = eν

d

π2T

3

pF(a� − �1vF)(2� + γ ) + vF
(
2γ 2 + 2ω2

c + 3�γ
)

pF
(
�2 + ω2

c

)[
(� + γ )2 + ω2

c

] . (87b)

We now unpack the thermal and thermoelectric conductiv-
ities. We first focus on the noninteracting limit γ = 0. The
Wiedemann-Franz law is obeyed componentwise:

κ̄ij ≈ κij ≈ π2T

3e2
σij , (88)

as is the Mott relation:

αij = −π2T

3e

∂σij

∂μ
. (89)

This relation can be checked using methods analogous to (57).
In the limit of large γ , we find that

(
σxx T αxx

T αxx T κ̄xx

)
= 1

M

(
e2n2 −eT sn

−eT sn (T s)2

)
�

�2 + ω2
c

=
(

e2n2 −eT sn

−eT sn (T s)2

) M�

(M�)2 + (enB)2
,

(90a)(
σxy T αxy

T αxy T κ̄xy

)
= 1

M

(
e2n2 −eT sn

−eT sn (T s)2

) −ωc

�2 + ω2
c

=
(

e2n2 −eT sn

−eT sn (T s)2

) −enB

(M�)2 + (enB)2
.

(90b)

These latter equations are consistent with the predictions of the
memory matrix formalism at weak disorder and weak magnetic
field strength [39].

When �, γ , and ωc are all comparable, we conclude from
(85) and (87) that the Wiedemann-Franz and Mott relations
are no longer valid. The thermal conductivity depends rather
simply on interactions: to leading order in T/TF, we may
simply replace � → � + γ , as in Sec. IV C. However, the
thermoelectric conductivity αij is far more complicated, and
we do not see a simple way to disentangle the effects of finite
magnetic field, disorder, and interaction strength.

VI. DISCUSSION AND CONCLUSIONS

The WF and Mott laws are strongly affected by electron-
electron interactions in the hydrodynamic regime entirely
within the Fermi-liquid paradigm. Even an arbitrary suppres-
sion of the WF ratio well below the ideal Lorenz number
does not necessarily signify any NFL, but may only indicate
strong interaction effects in the hydrodynamic regime [11].
The fact that most normal 3D metals manifest the ideal WF
behavior is a consequence of the fact that � � γ by virtue
of the large TF ∼ 104–105 K, and also the relative strength of
electron-phonon scattering. This is in spite of 3D normal metals
being “strongly interacting” in the sense of having a large
dimensionless coupling constant rs ∼ 6. At low temperatures,
where electron-phonon interaction is negligible compared with
electron-electron interaction, the electron-impurity scattering
is stronger than electron-electron interaction. We do not see any
obvious theoretical obstruction to a 3D metal where electronic
hydrodynamics occurs so long as the condition γ > � exists;
a recent experiment suggests such 3D systems exist [22].

We expect that at least some of the experimentally ob-
served strange metals are in a hydrodynamic regime. Earlier
discussion of this point may also be found in [13,14]. Is it
also possible that this hydrodynamic regime is reasonably
described by the Fermi-liquid approach detailed in this paper?
Answering this question requires careful material-specific
considerations of each system to investigate (i) whether γ � �

is satisfied, and (ii) if the failure of the WF law is happening
in a temperature range consistent with our Eq. (6). Such an
investigation is well beyond the scope of the current work,
but is worth future consideration. Perhaps (at least in some
portions of an often complicated phase diagram) strange metals
are “strange” only in the sense of being hydrodynamic metals.
Indeed, most strange metals have rather low TF ∼ 103 K, so
strong interaction effects could easily drive the system into the
hydrodynamic regime.

In many strange metals, the large T -linear resistivity, vio-
lating the Mott-Ioffe-Regel “bound” [61], is used as additional
evidence for NFL physics [1,4]. The validity of our kinetic
approach is suspect in this limit. Nevertheless, building upon
[14], we propose a more careful study of thermal and electrical
transport in the Fermi-liquid regime of strange metals, where
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“conventional” T 2 resistivity is observed just outside of the
“critical fan” of T -linear resistivity, and where the kinetic
theory of transport should apply. It is reasonable to assume that
disorder has the same origin in both strange and conventional
portions of the phase diagram [14], so we expect that a clear
understanding of the roles of umklapp, phonon scattering, and
hydrodynamic effects in this regime will shed light on the
origin of T -linear resistivity.

All solid-state materials have (at least) three distinct
scattering mechanisms affecting transport: electron-impurity
scattering (controlling low-temperature transport), electron-
phonon scattering (controlling high-temperature transport),
and electron-electron scattering (controlling the ballistic to
hydrodynamic crossover, in the absence of umklapp). Hy-
drodynamics can only be observed if γ ∼ T 2/TF is the
dominant of these three scattering mechanisms.6 This rules
out hydrodynamic observations at high temperatures, since
electron-phonon scattering rates (not considered in our work)
scaling as ∼T/TD (for T > TD), where TD (∼102–103 K) is the
typical phonon energy scale in most materials, is the dominant
resistive scattering mechanism in all electronic materials at
higher temperatures. At low temperatures, the requirement
γ � � necessitates both a very pure system so that the impurity
disorder strength is weak and also a Fermi temperature low
enough for γ not to be too small. For a Coulomb-interacting
Fermi liquid with parabolic band dispersion with an effective
mass m, the requirement for hydrodynamics becomes m/n2/d

being very large, where n is the carrier density and d the spatial
dimension. In addition, the “low-temperature” condition T �
TD must be satisfied in order for phonon scattering to be
unimportant. It turns out, as emphasized already, this quantity
is rather small in 3D metals by virtue of n being too large.
However, in 2D GaAs systems, the hydrodynamic condition
can easily be satisfied, both because the carrier density can be
made very low and the impurity disorder can be made very
small by utilizing modulation doping.

Indeed, the systems where we believe that our hydrody-
namic predictions are most likely going to be verified are
low-disorder, high-mobility 2D systems such as modulation-
doped 2D GaAs systems and high-quality graphene layers.
Converting the available experimental 2D mobility values
and theoretical (but experimentally verified) electron-electron
scattering strengths to effective scattering times, we find that
the condition γ � � is obeyed in 2D GaAs structures (both
n-doped and p-doped) down to 1 K or below in dilute systems
of density ∼1011 cm−2 [62,63]. At these low temperatures,
phonon effects are completely negligible, and therefore, our
approximations should apply uncritically with the dilute 2D
GaAs system being deep in the hydrodynamic regime. We
predict a strong failure of the WF law in these systems,
and our prediction of (6) can be directly verified by varying
the temperature. To be specific, in the 2D n-GaAs system
(assuming a mobility of 107 cm2/V · s), the electron-electron
and the electron-impurity scattering times at T = 3 K and
n= 3×1011 cm−2 are respectively τee = 1/γ = 20 ps and

6We cannot formally rule out momentum-conserving electron-
phonon scattering as playing an important role, but this seems unlikely
in most materials.

τei = 1/� = 400 ps, making γ ∼ 20�, thus placing the system
deep into the hydrodynamic regime. Lowering T to 100 mK
in the same sample hardly modifies the mobility (i.e., �),
but τee increases to 25 000 ps, driving the system to γ � �.
Since TF = 125 K for n = 3×1011 cm−2, the low-temperature
condition necessary for the applicability of our Eq. (6) remains
valid throughout. Thus, changing temperature from 3 K to 100
mK in a high mobility 2D n-GaAs system would be an ideal
experiment for the verification of our theory of the failure of the
WF law. The same is even more true for 2D p-GaAs holes also,
since the hole mass is larger than the electron mass in GaAs,
thus making γ effectively larger at the same temperature since
TF1/m. In both cases, electron-phonon interaction is at least
an order of magnitude weaker than even the electron-impurity
interaction at these cryogenic temperatures, making the high-
mobility 2D GaAs structures the ideal systems for studying
hydrodynamic transport effects.

Unfortunately, we find that the other well-known 2D
semiconductor system, namely Si metal-oxide-semiconductor
field-effect transistors [64], does not satisfy the hydrodynamic
condition (it comes close, but falls below the minimal
requirement ofγ � �) in any accessible density or temperature
range. Even the purest 2D Si system is simply not pure enough,
at present.

In graphene, one has to go rather close to the Dirac point
(n ∼ 109 cm−2) to achieve the hydrodynamic constraint at
T ∼ 50 K. Here phonon effects are weak, but not negli-
gible. One therefore requires extremely clean samples so
that impurity-induced puddle effects do not overwhelm the
hydrodynamic effects at such low densities. Such experiments
have been performed and interpreted based on hydrodynamic
theories recently [29,33], but more work should be done to
directly verify our predictions. Recently, the relevance of clean
bilayer graphene in the context of 2D hydrodynamic transport
has been pointed out [65].

In this paper, we have focused on the limit T � TF.
Assuming reasonable forms for the electron-electron inter-
actions, in this limit we rigorously reduced the calculation
of thermoelectric conductivities to a finite-dimensional linear
algebra problem. We emphasize, however, that the techniques
described in this paper immediately and straightforwardly
generalize to T ∼ TF (so long as long-lived quasiparticles
exist), and to systems without rotational invariance. In these
more complicated settings, it is likely that the evaluation of the
thermoelectric conductivity matrix must be done numerically,
following the theoretical formalism described in this work.
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APPENDIX A: LOW TEMPERATURE EXPANSION

In this Appendix, we describe more explicit details about
the low-temperature expansion of inner products in the |qn〉
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and |n〉 bases in Sec. IV. We employ the integral∫ ∞

−∞

dx

(1 + ex)n
e(m+1)x = �(1 + m)�(n − m − 1)

�(n)
≡ F(m,n).

(A1)

Ignoring the singularity at the origin of momentum space only
leads to exponentially small corrections (e−TF/T ) in our theory.
We then define

G(m,n,p) ≡ ∂pF(m,n)

∂mp
=

∫ ∞

−∞

dx

(1 + ex)n
e(m+1)xxp. (A2)

Having defined G(m,n,p), all integrals over momentum space
in the inner products can be analytically evaluated. But, the
process is a little bit subtle. In particular, observe that the
derivative of the Fermi function must be carefully expanded:

eε(q)/T

T (1 + eε(q)/T )2

= evFq/T

(1 + evFq/T )2

[
1 − (evFq/T − 1)

(1 + evFq/T )

(
ap2

2
+ bp3

3

)

+ − (e2vFq/T − 4evFq/T + 1)

2(1 + evFq/T )2

(
ap2

2
+ bp3

3

)2
]

+ · · · .

(A3)

This means that

〈qn|qm〉 ≈ ν

d

∫ ∞

−∞
dq

(
1 + q

pF

)d−1
eε(q)/T

T (1 + eε(q)/T )2
qm+n

(A4)

is not straightforwardly given by something proportional to
G(0,2,m + n). In d = 2, for example, we find the complicated
Taylor series

〈qn|qm〉 ≈,
ν

d

(
T

vF

)m+n[
G(0,2,m + n)

− aT

2v2
F

[G(1,3,m + n + 2) − G(0,3,m + n + 2)]

−bT 2

3v3
F

[G(1,3,m + n + 3) − G(0,3,m + n + 3)]

+a2T 2

8v4
F

[G(2,4,m + n + 4)

−4G(1,4,m + n + 4) + G(0,4,m + n + 4)]

+ T

vFpF

(
G(0,2,m + n + 1)

− aT

2v2
F

[G(1,3,m + n + 3)− G(0,3,m + n + 3)]

)]
+ O(T 3). (A5)

The expansion of the inner product to O(T 2), as above, will
be adequate for the purposes of this paper.

APPENDIX B: THERMODYNAMIC IDENTITIES

In this Appendix, we describe the relationship between
entropy, charge, and the inner products in our kinetic theory.

First we rederive an identity observed in [40]:

〈Jx |Px〉 =
∫

ddp

(2πh̄)d

(
−∂feq

∂ε

)
vxpx

=
∫

ddp

(2πh̄)d

(
−∂feq

∂px

)
px=

∫
ddp

(2πh̄)d
feq = n. (B1)

Observe that the zero-temperature charge density is given by

n0 = pd
F

d(2πh̄)d
�d, (B2)

where �d denotes the volume of the unit sphere in d spatial
dimensions. Second, the density of states is given by

ν = ∂n0

∂μ
= 1

vF

∂n0

∂pF
= �d

pd−1
F

vF(2πh̄)d
. (B3)

In the large Fermi-surface limit, in d = 2, we have

n ≈ νvFpF

2
. (B4)

Next, we find

〈Qx |Px〉 =
∫

ddp

(2πh̄)d

(
−∂feq

∂ε

)
vxεpx

=
∫

ddp

(2πh̄)d

(
−∂feq

∂px

)
pxε

=
∫

ddp

(2πh̄)d
feq(ε + pxvx). (B5)

The pressure is given by

P =
∫

ddp

(2πh̄)d
T ln(1 + e−(ε−μ)/T ) (B6)

and we find (using the same integration by parts tricks as
before)∫

ddp

(2πh̄)d
feqpxvx =

∫
ddp

(2πh̄)d
T ln(1 + e−ε/T ). (B7)

We conclude that

〈Qx |Px〉 = 〈ε〉 + P = T s, (B8)

where s is the entropy density. In the last step, we have used the
Gibbs-Duhem identity together with the fact that we have fixed
μ = 0 by our conventions. In a Fermi liquid, we also have

s =
(

∂P

∂T

)
μ

≈ π2T

3
ν. (B9)

Finally, the momentum-momentum susceptibility is given
by

M = lim
vx→0

1

vx

∫
ddp

(2πh̄)d
pxfeq(ε − pxvx)

=
∫

ddp
(2πh̄)d

p2

d

(
−∂feq

∂ε

)
≈ νp2

F

d
. (B10)

Note that (in d = 2, at least)
n

M = vF

pF
. (B11)

This identity allows one to show (90).
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APPENDIX C: FIRST THREE BASIS VECTORS

We must keep track of |0〉, |1〉, and |2〉, as well as keep track
of O(T 2) corrections to Wimp, in order to correctly compute
(68). We have the vectors

|Jx〉 ≈
(

vF − π2T 2

6p2
Fv

3
F

)
|0〉 + πT√

3pF

|1〉, (C1a)

|Qx〉 ≈
(

π2T 2

3pF
+21π4T 4

8p3
Fv

2
F

)
|0〉+

(
πT vF√

3
− 31π3T 3

15
√

3p2
FvF

)
|1〉

+
(

2π2T 2

√
5pF

+ 149π4T 4

15
√

5p3
Fv

2
F

)
|2〉. (C1b)

We have included the first nontrivial subleading corrections
in T , which will be necessary to compute the first nontrivial
subleading corrections to conductivity. As noted in Sec. IV D,
we have assumed a quadratic dispersion relation; hence 2TF =
pFvF, and apF = vF. Using (40) and the fact from (32) that
Aimp is a constant, we obtain

�1

�
= − 2

pF
, (C2a)

�2

�
= 3

p2
F

. (C2b)

Finally,

Wimp ≈ �

(
1 + 5π2T 2

8T 2
F

)
|0〉〈0| −

√
3π�T

2TF
(|1〉〈0| + |0〉〈1|)

+ �

(
1 + 137π2T 2

40T 2
F

)
|1〉〈1|

+ 2π2�T 2

√
5T 2

F

(|2〉〈0| + |0〉〈2|)

−
√

12

5

π�T

TF
(|2〉〈1| + |1〉〈2|)

+ �

(
1 + 2523π2T 2

280T 2
F

)
|2〉〈2|. (C3)

Employing (23), we find (68).
Finally, let us justify that the relaxation time approximation

for electron-electron collisions does not change the form of
(68). Using (C1b), the electron-electron contribution to T κ̄ is

T κ̄ ≈ π2T 2v2
F

3
〈1|W̃−1|1〉

= π2T 2v2
F

3�

[
1 − 1

�
〈1|(W̃ − �)|1〉 + · · ·

]
= π2T 2v2

F

3�

[
1 − 〈1|W|1〉

�
+ · · ·

]
. (C4)

As 〈1|W|1〉 is O(T 2), we conclude that so long as α2T 2/TF ≡
〈1|W|1〉, (68) is unchanged for arbitrary collision integrals.

APPENDIX D: THERMAL CONDUCTIVITY
IN THE HYDRODYNAMIC LIMIT

In this Appendix we explicitly compute the hydrodynamic
dissipative coefficient κQ. In a Galilean-invariant fluid, the heat

current is given by

Q = T svhydro − κQ∇T . (D1)

To see how this arises within kinetic theory, consider the
following component of the time-independent Boltzmann in
a translation-invariant fluid:

vj∂j |Qi〉 ≈ −γ

(
|Qi〉 − 〈Qi |Pj 〉

〈P|P〉 |Pj 〉
)

. (D2)

In a hydrodynamic limit, vj∂j |Qi〉 is dominated by any vector
associated with a conserved quantity—since these gradients
are long-lived modes. Assume for simplicity that charge,
energy, and momentum are the only conserved quantities; the
first two are given by

|n〉 =
∫

ddp |p〉, (D3a)

|e〉 =
∫

ddp ε(p)|p〉. (D3b)

Note the identities

〈n|n〉 =
∫

ddp
(2πh̄)d

(
−∂feq

∂ε

)
= ∂n

∂μ
≡ χ, (D4a)

〈e|e〉 =
∫

ddp
(2πh̄)d

(
−∂feq

∂ε

)
ε2 ≈ π2T 2ν

3
, (D4b)

〈n|e〉 ∼ T 2 (D4c)

with χ the charge compressibility; note χ ∼ T 0. Since

〈n|vj |Qi〉 = δij

d

∫
ddp

(2πh̄)d

(
−∂feq

∂ε

)
v2ε ∼ T 2, (D5a)

〈e|vj |Qi〉 = δij

d

∫
ddp

(2πh̄)d

(
−∂feq

∂ε

)
v2ε2 ≈ 〈e|e〉v

2
F

d
δij

(D5b)

using (B8), we conclude that

|Qi〉 − T s
|Pi〉

〈P|P〉 = − v2
F

dγ
∂i |e〉 + O(T 2∂i |n〉). (D6)

In order to relate fluctuations in temperature δT to |e〉,
observe that

feq(T + δT ) − feq(T ) =
( ε

T
δT

)(
−∂feq

∂ε

)
, (D7)

which implies that

〈e|�〉 = δT × 〈e|e〉
T

= δT × π2T ν

3
. (D8)

Taking the inner product of (D6) with a generic distribution
function |�〉, and noting that the approximate low-temperature
identity J = nvhydro implies that 〈�|Pi〉 = 〈P|P〉vhydro,i , we
conclude that (D1) holds with

κQ = π2νT v2
F

3dγ
. (D9)

This expression precisely agrees with the open-circuit thermal
conductivity (67) in the hydrodynamic limit γ � �.
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