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We employ matrix-product state techniques to numerically study the zero-temperature spin transport in a
finite spin- 1

2 XXZ chain coupled to fermionic leads with a spin bias voltage. Current-voltage characteristics are
calculated for parameters corresponding to the gapless XY phase and the gapped Néel phase. In both cases,
the low-bias spin current is strongly suppressed unless the parameters of the model are fine tuned. For the
XY phase, this corresponds to a conducting fixed point where the conductance agrees with the Luttinger-liquid
prediction. In the Néel phase, fine tuning the parameters similarly leads to an unsuppressed spin current with
a linear current-voltage characteristic at low bias voltages. However, with increasing the bias voltage, there
occurs a sharp crossover to a region where the current-voltage characteristic is no longer linear and a smaller
differential conductance is observed. We furthermore show that the parameters maximizing the spin current
minimize the Friedel oscillations at the interface, in agreement with the previous analyses of the charge current
for inhomogeneous Hubbard and spinless fermion chains.
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I. INTRODUCTION

Besides the more usual semiconductor- and metal-based
spintronics, there have been proposals to use magnetic insula-
tors in spin-based devices [1–3]. An advantage of these systems
would be the absence of scattering due to conduction elec-
trons, which may allow spin-current transmission over longer
distances. Experiments have demonstrated the possibility to
electrically induce a magnon spin current at a Pt/Y3Fe5O12

interface by using the spin-Hall effect [1]. More recently, a
spin current has been driven through the spin- 1

2 -chain material
Sr2CuO3 by applying a temperature gradient [3]. This was
interpreted as a spinon spin current induced by the spin-
Seebeck effect.

A lot of research has been reported on the spin transport in
the antiferromagnetic spin- 1

2 XXZ chain, especially concern-
ing the question whether the dynamics are ballistic or diffusive
in the linear-response regime. At zero temperature, it is known
from the exact Bethe-ansatz calculations that the spin transport
is ballistic in the gapless phase and diffusive in the gapped
phase [4]. There is considerable analytical and numerical
evidence that this also holds true at any finite temperature
[5–9]. A possible exception is the SU(2) isotropic point for
which differing results have been obtained.

Here we study the finite-bias spin transport for a specific
setup with fermionic leads at zero temperature. To this end,
we employ the density-matrix renormalization group (DMRG)
[10] and the real-time evolution of matrix-product states (MPS)
via the time-evolving block decimation (TEBD) [11]. The
difference from previous studies of transport in finite spin
chains is our choice of the leads. In Refs. [12–14] boundary
driving modeled by a Lindblad equation was considered, which

allows the direct calculation of the nonequilibrium steady
state with matrix-product-operator techniques. Interestingly,
a negative differential conductance was observed for strong
driving in the gapped phase. Other studies have explored the
transport in inhomogeneous XXZ chains [15] and fermionic
quantum wires coupled to noninteracting leads, which map
to an XXZ chain through a Jordan-Wigner transformation
[16–20].

In setups with leads, the transport may be influenced by
backscattering at the interfaces which, for repulsive interac-
tions, can completely inhibit transport at low voltages and tem-
peratures [21,22]. In general, the strength of the backscattering
will depend in a nontrivial way on the parameters on either side
of the interface. In particular, it has been shown for typical
models of fermionic chains that conducting fixed points with
perfect conductance exist [19,23,24].

The primary concern of this paper is to numerically explore
the possibility of such conducting fixed points for our specific
setup of the junction. We consider both the gapless XY and the
gapped Néel phase of the spin- 1

2 XXZ chain. In the latter case,
the energy gap leads to insulating behavior at zero temperature.
One may then ask how the insulating state breaks down at finite
bias voltage and how the transport depends on the length of
the chain. The charge transport in a similar setup with a Mott-
insulating Hubbard chain has been addressed, e.g., in Ref. [25].
Here we show that conducting fixed points exist not only for
gapless but, in a sense, also for gapped spin chains. However,
beyond a low-bias region with nearly ideal conductance the
current-voltage curves at these fixed points are qualitatively
different in the two regimes, with a smaller conductance in the
gapped phase.
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The rest of this paper is organized as follows. In Sec. II
we introduce the model and describe the numerical method
employed. We then demonstrate in Sec. III the existence of
nontrivial conducting fixed points. To this end, we calculate
steady-state spin currents and Friedel oscillations at the inter-
face. In Sec. IV, current-voltage curves for the gapless and the
gapped regime are examined. Finally, Sec. V summarizes our
main results.

II. MODEL AND METHOD

We consider the spin transport through a spin-chain material
sandwiched between two conducting leads. The transport is
assumed to occur in the spin-chain direction and all interchain
couplings are neglected. Thereby, we end up with a one-
dimensional Hamiltonian

Ĥ0 = ĤS + ĤL1 + ĤL2 + ĤS−L1 + ĤS−L2 , (1)

with ĤS describing a single spin chain, ĤL1(L2) the left (right)
lead, and ĤS−L1(S−L2) the coupling between the spin chain and
the left (right) lead. From now on, we restrict ourselves to the
spin- 1

2 XXZ case so that

ĤS = J

NS−1∑
j=1

[
1

2
(Ŝ+

j Ŝ−
j+1 + Ŝ−

j Ŝ+
j+1) + �Ŝz

j Ŝ
z
j+1

]
, (2)

where NS is the number of sites of the spin chain, Ŝα
j is the

α (= x,y,z) component of the spin- 1
2 operator at site j , and

Ŝ±
j = Ŝx

j ± iŜ
y

j . The fermionic leads are modeled by semi-
infinite tight-binding chains at half-filling. Thus, the Hamilto-
nian for the left (right) lead is

ĤL1(L2) = −t
∑

σ=↑,↓

∑
j<0

(j>NS)

[ĉ†jσ ĉj+1,σ + ĉ
†
j+1,σ ĉjσ ], (3)

where ĉjσ is the annihilation operator of an electron at
site j with spin σ (=↑ , ↓). For simplicity, the couplings
between the spin chain and the leads are assumed to be
identical to the exchange interaction inside the spin chain.
By defining the spin operators Ŝ+

j = ĉ
†
j↑ĉj↓, Ŝ−

j = ĉ
†
j↓ĉj↑, and

Ŝz
j = 1

2 (ĉ†j↑ĉj↑ − ĉ
†
j↓ĉj↓) at tight-binding site j , the coupling

terms can be written as

ĤS−L1 = J

[
1

2
(Ŝ+

0 Ŝ−
1 + Ŝ−

0 Ŝ+
1 ) + �Ŝz

0Ŝ
z
1

]
(4)

and

ĤS−L2 = J

[
1

2

(
Ŝ+

NS
Ŝ−

NS+1 + Ŝ−
NS

Ŝ+
NS+1

) + �Ŝz
NS

Ŝz
NS+1

]
. (5)

We calculate the steady-state spin current that is generated
by applying a spin bias voltage V . As in Ref. [25], it is assumed
that the potential drops off linearly in the spin chain, which adds
the following term in the Hamiltonian (see also Fig. 1):

ĤV =
∑

j

Vj Ŝ
z
j , (6)

V/2

−V/2

t J J

J J t

FIG. 1. Schematic depiction of the setup defined by the Hamil-
tonian Ĥ0 + ĤV according to Eqs. (1) and (6). Blue (green) circles
indicate the spin chain (left and right leads). The red dashed line
denotes the spin bias potential, which linearly decreases inside the
spin chain.

where

Vj =

⎧⎪⎪⎨
⎪⎪⎩

V
2 , j � 0,

− V
NS+1j + V

2 , 1 � j � NS,

−V
2 , j � NS + 1 .

(7)

The operator of the local spin current is defined as

ĵ z
j =

⎧⎨
⎩

− it
2 ĉ†j σz ĉj+1 + H.c. , j < 0 or j > NS,

iJ
2 Ŝ+

j Ŝ−
j+1 + H.c. , 0 � j � NS,

(8)

where ĉ†j = (ĉ†j↑,ĉ
†
j↓) and σz is the z component of Pauli

matrices [26]. Our transport simulations are carried out in
the zero-temperature limit. Then the system is initially in the
ground state at time τ = 0. More precisely, the time evolution
is started from the ground state of Ĥ0, where the spin chain
and the leads are already coupled, and the spin bias voltage
V is applied at τ = 0. As discussed in Refs. [18,27], other
setups are possible. For example, if one starts with the two
leads decoupled from the spin chain and turns on the coupling,
the transient behavior is different but the same steady-state
properties are obtained. If, instead, the system is in the ground
state with a finite spin bias V and the bias is switched off at τ =
0, different steady-state currents are expected for large V [27].

For the numerical calculation of the steady-state current, we
mostly follow the MPS-based approach of Refs. [18,25,27].
The DMRG and parallel TEBD are used, respectively, to
calculate the ground state of Ĥ0 and simulate the time evolution
after the spin bias (described by ĤV) is switched on at τ = 0.
We employ a standard Suzuki-Trotter approximation where
the Hamiltonian is decomposed into terms acting on even and
odd bonds. Specifically, a second-order decomposition with
time step δτ = 0.05/t is used. The leads have to be truncated
to finite length NL, which gives rise to a discretization in
the energy spectrum. The error due to this may be reduced
by choosing appropriate boundary conditions with bond-
dependent hopping strength that increase the energy resolution
in the relevant energy region [17,18]. Here, however, we find
the leads with uniform hopping t to be sufficient.

In our calculation of the steady-state current, the accuracy
is mainly limited by the accessible timescale. The finite size of
the leads obviously restricts the simulations to the time until
the current reflected at the open boundaries of the leads returns
to the spin chain. Additionally, the entanglement growth of
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an out-of-equilibrium state requires an increase of the bond
dimension m during the course of the time evolution, which
eventually makes an accurate MPS representation of the state
too costly. In the current setup, the von-Neumann entanglement
entropy of the state after the perturbation grows linearly
with the time [25], which requires an exponential increase of
the bond dimension m for a fixed truncation error. The rate
of the entanglement growth depends strongly on the applied
voltage V . Simulation for large V are typically more expensive.
We fix the truncation error to a maximum discarded weight
10−6, which, in the worst cases, requires bond dimensions as
large as m = 2200.

In principle, an MPS representation with one tensor for
each site j in Eq. (1) could be used for all of our simulations.
However, for small V , where larger lead sizes are necessary to
get accurate results, we find it advantageous to split the tight-
binding leads into two branches with different z component
of the spin and employ a tree-tensor-network description [28]
analogous to Ref. [29]. This algorithm scales as m4 at the
interfaces, instead of m3, but the representation of the tight-
binding leads becomes much more efficient, allowing us to
simulate larger leads. In addition, the worse scaling of the
bond dimension m is softened by the fact that the entanglement
entropy at equilibrium is smallest at the interfaces, as already
observed in Ref. [25].

III. CONDUCTING FIXED POINT

Both the tight-binding chain and the spin- 1
2 XXZ chain

in the gapless regime are ballistic spin conductors at zero
temperature. However, when these systems form a junction
as described in Eq. (1), the transport may be suppressed by
scattering at the interfaces. For different, purely fermionic
junctions a field-theoretical analysis has shown that the relevant
backscattering that leads to insulating behavior at low tem-
peratures vanishes for certain values of the model parameters
[19,23,24]. At these conducting fixed points, the effective
low-energy field theory is an inhomogeneous Luttinger liquid
(LL). One may expect to find similar conducting fixed points
for the spin-chain junction, since the gapless XXZ chain and the
spin sector of the tight-binding leads are separately described
by Luttinger liquids [30]. In this section we numerically
show that such conducting fixed points indeed exist. The LL
description of our model is given in the Appendix. A proper
field-theoretical treatment of the junction between spin-chain
and tight-binding lead is left for a future investigation.

A. Spin current

To search for conducting fixed points, we simulate the spin
transport at finite spin bias for the two-lead setup described in
Eq. (1). Let us first illustrate the procedure used to obtain the
steady-state spin current. Figure 2(a) shows the spin current
profile for different time τ after the spin bias is switched on
at τ = 0. The current starts to flow in the spin chain and
spreads over to the leads, where the wave front moves with
the Fermi velocity 2t . While the spin current in the spin
chain becomes position and time independent in a true steady
state, we find it fluctuating even at the maximum simulated
time. Therefore, here the steady-state value is estimated from

(a)

(b)
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0.1 τt = 10

jz j
(τ

)/
t

J/t = 1.0
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J/t = 3.4
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0.1 τt = 20

jz j
(τ

)/
t

-64 -32 0 32 64
0
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t

0 10 20 30 40
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jz 0
(τ
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t 0 0.005 0.01
0

0.01 J/t=2.4

1/NL

a
1

FIG. 2. Time evolution of the spin current j z
j (τ ) in a junction

composed of an isotropic spin chain (� = 1) of NS = 8 sites (shaded
region) coupled to tight-binding leads of NL = 100 sites for spin bias
V/t = 1 and several values of J/t . (a) Spin current profile at three
different times τ t = 10, 20, and 30. (b) Time dependence of the spin
current j z

0 (τ ) between the spin chain and the left lead (solid lines) and
estimated steady-state value (dashed lines). The result for J/t = 2.4
with a larger size of the leads NL = 500 is indicated by the green line.
In the inset, the amplitude a1 of the current oscillations [see Eq. (9)]
is shown for several different lead sizes NL. The solid line is a fit to
a1 ∝ 1/NL.

the time dependence of the spin current jz
0 (τ ) between the

spin chain and the lead, as demonstrated in Fig. 2(b) for the
isotropic chain. After a transient time of τ t ≈ 10, the spin
current oscillates around its steady-state value with a period
of approximately 4π/V . This kind of oscillation has been
explained as a Josephson current that arises because of the
finite size of the leads and the corresponding gap between the
single-particle energy levels [18]. We calculate the steady-state
value of the spin current either by simply averaging jz

0 (τ ) over
multiple periods of the oscillation or by adapting it to

jz
0 (τ ) = a0 + a1 cos(τV/2 + a2), (9)

where a0, a1, and a2 are fit parameters [18].
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J/t
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/t
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FIG. 3. Steady-state current j z as a function of J/t for four
different values of �. Other parameters are NS = 8, NL = 500, and
V/t = 0.2. The dashed line shows the current V/(4π ) expected for a
Luttinger liquid with smooth interfaces.

The spin current generally depends on both the anisotropy
� and the ratio J/t of the exchange interaction in the spin
chain and the hopping amplitude in the leads. For most of the
parameter space, the spin current is expected to be strongly
suppressed because of the backscattering at the interfaces. As
we will show, however, the system can be tuned to a conducting
fixed point for each � by varying J/t . In the isotropic chain
(� = 1) considered in Fig. 2, for example, the corresponding
value is (J/t)c ≈ 2.4. The current there is much larger than
for the other values shown, J/t = 1 and J/t = 3.4, which lie
away from the conducting fixed point.

The ratio J/t affects not only the steady-state value of the
spin current but also the oscillation of the current as a function
of time τ . For a fixed size of the leads with NL = 100, the
current oscillation at the interface is strongest at J/t = (J/t)c

where it appears nearly undamped [see Fig. 2(b)]. For either
larger or smaller value of J/t , on the other hand, the oscillation
decays relatively quickly with increasing τ . By using the
tree-tensor-network method, we also consider a junction with
much larger leads of NL = 500 sites. In this case, the current
oscillation at the conducting fixed point becomes significantly
smaller, as shown in Fig. 2(b), which confirms that it is mostly
caused by the discretization of the single-particle energy levels
in the leads. It is expected that the amplitude of the oscillations
is proportional to the gap between single particle levels and
thereby inverse proportional to NL [18]. As shown in the inset
of Fig. 2, this agrees with our results for NL � 400, while
deviations are seen for smaller leads. The steady-state values
of the spin current estimated from the simulations are the same
for each NL.

Figure 3 shows the dependence of the steady-state spin
current jz on the ratio J/t at the fixed spin bias voltage V/t =
0.2 for several values of �. In each case, a clear maximum of
the spin current appears. We first address the gapless phase for
� = 1, 0, and −0.5 where the LL description is applicable.
For parameters in this regime, the maximum current obtained
is close to V/(4π ), which, as discussed in the Appendix, is
the current for a LL with adiabatic contacts. This indicates

that a conducting fixed point with ideal linear conductance
exists at the ratio (J/t)c which maximizes the current. As �

is decreased, (J/t)c becomes larger. In addition, the current
peak as a function of J/t broadens, which suggests that the
backscattering becomes less relevant. A current maximum
remains, however, even for negative �.

Figure 3 also shows the results for � = 2 in the gapped
phase. While a sharp peak is still observed, the maximum value
of the spin current does not reach the ideal value in this case.
The vanishing of the Friedel oscillations (see Sec. III B) for
the parameters at the current peak indicates that the relevant
backscattering at the interfaces can still be tuned to zero.
Therefore, the deviation from the ideal conductance appears to
be caused by different reasons, most likely related to properties
in the bulk of the spin chain, which for � > 1 is no longer
described by a LL model. How the spin transport differs in
the gapped and gapless phases of the antiferromagnetic XXZ
chain will be analyzed in Sec. IV.

B. Friedel oscillations

Besides its effect on the transport, the backscattering at
inhomogeneities is known to induce characteristic Friedel
oscillations of the local density or magnetization with twice
the Fermi wave number kF [31]. The Friedel oscillations at
the interface vanish, however, if the backscattering amplitude
is tuned to zero. The calculation of the magnetization profile
therefore constitutes a different, perhaps a more efficient way
to search a conducting fixed point [19]. As a consistency check
for the results of the spin-transport simulations above, we now
investigate the dependence of the Friedel oscillations on J/t

for fixed � with no spin bias applied. Since the magnetization
is uniform in the spin-flip symmetric case, we examine the local
susceptibility [19] instead by adding a small uniform magnetic
field described by δĤ = h

∑
j Ŝz

j . For these calculations, we
consider a single interface between the tight-binding lead and
the spin chain because the Friedel oscillations typically decay
over a distance longer than the spin-chain length accessible
in our transport simulations. Furthermore, we consider finite
temperatures by using the grand-canonical purification method
[32], which avoids problems in the convergence of the DMRG
ground-state calculations. The purification method allows
us to keep track of the growth of the Friedel oscillations
starting from the interface and the open ends of the system
as the temperature is lowered successively. We terminate the
simulations when the finite system size begins to affect the
results. The finite-temperature calculations also allow us to
study the gapped phase of the spin chain where the ground
state is antiferromagnetically long-range ordered.

Figure 4 shows the magnetization profile around the inter-
face for the magnetic field strength h/J = 0.05. Here we fix
h/J instead of h/t because for the values of the anisotropy
� considered, the Friedel oscillations are much stronger in
the spin chain than in the lead. Since the spin chain without
magnetic field corresponds to a half-filled chain of fermions,
the local magnetization oscillates with wave number 2kF = π .
As expected, the effect is larger at low temperatures. For
the fixed exchange anisotropy, the strength of the Friedel
oscillations has a minimum as a function of J/t . This behavior
can be observed in both the gapless and gapped regimes. For
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(f)

j

FIG. 4. Magnetization profile 〈Ŝz
j 〉 around the interface for an

applied magnetic field h/J = 0.05. The dashed line indicates the
interface between the tight-binding lead (j � 0) and the spin chain
(j > 0). The systems sizes are NL = 400 and NS = 400 for � = 1
and NL = 400 and NS = 800 for � = 2. The inset in (f) is a magnified
view of the region close to the interface, highlighting the Friedel
oscillations with wave number π . Solid black lines in (a) and (c) are
fits of the data in the form of Eq. (10). The results are obtained by
finite temperature calculations at the inverse temperature β.

the former case, we have attempted a fit to the oscillation profile

χ (j + ã0) = ã1T
K̄−1j (−1)j

[
v

T
sinh

(
2πTj

v

)]−K

×P−K̄ [coth(2πTj/v)] (10)

derived for the susceptibility of a chain of spinless fermions
with an abrupt jump of the parameters [19,23]. Here Pl(z) is
the Legendre function, K and v are the LL parameter and the
spin velocity, respectively, and K̄ is determined by the LL
parameters on both sides of the interface (see the Appendix).
Free parameters of the fit are a position offset ã0 and the
amplitude ã1. The fits for the even and odd sites separately
are shown in Figs. 4(a) and 4(c) for the oscillations in the spin
chain with � = 1, where K = 1/2 and v = Jπ/2, and we set
K̄ = 1/2, corresponding to an isotropic spin chain with a jump
in the exchange parameter. Very good agreement is found with
our numerical data, suggesting that Eq. (10) or a similar relation
is also applicable to the junction with the fermionic lead.

To measure the overall strength of the Friedel oscillations,
we introduce a quantity

OF =
N ′∑

j=1

∣∣〈Ŝz
j+1 − Ŝz

j

〉∣∣, (11)

0

0.5

1

O
F

βJ = 15
βJ = 20
βJ = 25

Δ = 1

1 1.4 1.8 2.2 2.6 3 3.4
0

0.5

1

J/t

O
F

βJ = 6
βJ = 8
βJ = 10

Δ = 2

FIG. 5. Strength of the Friedel oscillations OF defined in Eq. (11)
around the interface inside the spin chain at the inverse temperature
β. The system sizes are the same as in Fig. 4.

where N ′ is chosen so that the Friedel oscillations due to the
open boundary at the end of the spin chain are excluded. By
calculating OF, we search for a value of J/t that minimizes
the Friedel oscillations for a fixed anisotropy �.

The results for � = 1 and � = 2 are shown in Fig. 5. In
all cases studied, including the gapped regime, we find a clear
minimum of the Friedel oscillation strength, where approxi-
mately OF = 0, which suggests that the relevant backscattering
vanishes. When the temperature is lowered, the position of the
minimum moves to smaller J/t . The temperature dependence
seems to be stronger for small �. By identifying the position
of the minimum for T → 0 as the conducting fixed point, we
obtain (J/t)c ≈ 2.4 for � = 1. This value agrees with the
results of the spin-transport simulations for NS = 8, despite
the fact that we now consider the limit of a large spin chain.
Identifying (J/t)c similarly in the gapped phase, we obtain
(J/t)c ≈ 1.7 for � = 2, which also coincides with the value of
J/t where the spin current becomes maximum in Fig. 3. When
calculating (J/t)c as a function of the anisotropy �, we find
no qualitative difference across the phase boundary at � = 1.

IV. CURRENT-VOLTAGE CHARACTERISTICS

Having established the existence of conducting fixed points
with a finite linear conductance in the previous section, we
now turn our attention to the spin-bias dependence of the spin
current. To examine how the current-voltage curve is modified
by the backscattering at the interfaces and the presence of a
finite energy gap, the system parameters at and away from
the line of conducting fixed points are considered for both
the gapless and gapped phases of the antiferromagnetic spin- 1

2
XXZ chain.

A. Gapless regime

First, we study the gapless XY phase where the spin
chain can be described by a LL model. As mentioned in the
Appendix, a spin conductance G = 1/(4π ) is expected unless
the transport is hindered by the backscattering at the interfaces.
We have already confirmed that this ideal value can be obtained
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0 0.4 0.8 1.2 1.6 2
0

0.05

0.1

0.15

V/t

jz
/t

Δ J/t Ns

0 3.4 8
1 1.0 8
1 2.4 8
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FIG. 6. Current-voltage curve in the two-lead setup described in
Eq. (1) for different parameters in the gapless phase. The dashed
line is the conductance G = 1/(4π ) of a Luttinger liquid smoothly
connected to noninteracting leads.

approximately at low spin bias V/t = 0.2 by tuning J/t to
a conducting fixed point (J/t)c for a given anisotropy �.
By calculating the current-voltage curve, we can determine
at what energy scale the LL description becomes invalid and
the linear behavior breaks down. Figure 6 shows the results
for the isotropic spin chain (� = 1) and the XX spin chain
(� = 0) where the conducting fixed points are (J/t)c ≈ 2.4
and (J/t)c ≈ 3.4, respectively (see Figs. 3 and 5). In both
cases, the current-voltage curve for J/t ≈ (J/t)c shows good
agreement with the LL prediction up to at least V/t = 1,
despite the strong inhomogeneity at the interfaces. For � = 1,
increasing the length of the spin chain to NS = 32 leads to
stronger deviations at large V while the currents for V/t � 0.4
remain nearly unchanged. Possible length-dependent correc-
tions to the conductance have been considered, for example,
in Refs. [33,34].

Away from the conducting fixed points, the low-bias con-
ductance is strongly reduced by backscattering. This is demon-
strated in Fig. 6 for an isotropic chain and values J/t = 1 and
3.4 that are significantly smaller or larger than (J/t)c ≈ 2.4. In
a LL with an impurity, the differential conductance eventually
approaches the ideal value 1/(4π ) with a power law as the bias
is increased [35]. This is consistent with our results for J/t =
3.4 where an approximately linear current-voltage relation is
restored for V/t � 1.2. For J/t = 1, on the other hand, the
differential conductance drops off again at V/t ≈ 1, likely
because the bias voltage considered is already comparable or
larger than the exchange constant J . In any case, the current
should vanish in the large-V limit for the chosen setup because
of the finite bandwidth of the leads. This does not apply,
however, to the setup where the spin voltage V is present
initially and then turned off at τ = 0 [18,27].

B. Gapped regime

In Sec. III it was shown that the finite-temperature Friedel
oscillations around the interfaces can be tuned to zero by
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0.025
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jz
/t

Δ J/t Ns

2 1.0 8
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2 2.4 8

FIG. 7. Current-voltage curve for a spin chain with NS = 8,
anisotropy � = 2, and different values of J/t . The dashed line
corresponds to the ideal conductance G = 1/(4π ) obtained in the
Luttinger-liquid regime.

varying J/t even in the gapped phase. Therefore, a fixed point
(J/t)c with vanishing relevant backscattering seems to exist in
this regime as well. One may then ask how the current-voltage
curve there differs from that at a conducting fixed point in
the gapless phase. In the following, we examine this for the
anisotropy parameter � = 2 where the Friedel oscillations
disappear at J/t ≈ 1.7.

Figure 7 displays the current-voltage curve of a spin chain
with NS = 8 sites for J/t = 1.7 as well as for smaller and
larger values of J/t . For J/t = 1.7, the conductance appears
to approach 1/(4π ) as the voltage V is decreased to zero,
indicating that almost ideal spin transport can be achieved at
low energy. At larger voltage, on the other hand, the differential
conductance drops off sharply, which is not observed in the
LL phase. This crossover occurs approximately at V/t ≈ 0.4.
As in the LL regime, the spin current at small bias voltage is
strongly reduced away from (J/t)c. Since the XXZ spin chain
with � > 1 is a spin insulator, the spin transport at fixed V

should become more and more suppressed with increasing the
system size NS. The effect of NS on the current-voltage curve
for J/t = 1.7 is shown in Fig. 8. As expected, the spin current
becomes noticeably smaller when going to larger system sizes
NS. There is still a crossover below which the perfect spin
conductance seems to be approached. However, this crossover
is shifted to very small bias voltage V with increasing NS.

Similar behavior, i.e., unsuppressed current for small sys-
tems at low energy, occurs in the charge transport through
Hubbard chains with an odd number of sites [36]. Perhaps
more relevant to our model, such effect has been predicted for
one-dimensional charge-density-wave insulators adiabatically
contacted to noninteracting leads, by using field theoretical
methods [20]. This model may be interpreted as a XXZ spin
chain with the anisotropy � set to zero outside a finite region
with � > 1 that corresponds to the charge-density-wave part.
In contrast to our results, a negative differential conductance
was obtained. However, this may be related to the different
choice of the leads.
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FIG. 8. Same as in Fig. 7 but for a spin chain with J/t = 1.7 and
various chain lengths.

For sufficiently long spin chains, we observe an upturn of
the spin current at large spin bias. A setup analogous to ours has
been considered in the calculation of the charge current through
a Mott-insulating Hubbard chain connected to noninteracting
leads [25]. It was shown that the current-voltage curve can be
described by a function j (V ) = aV e−Vc/V , where a and Vc

are constants. In particular, Vc is approximately proportional
to the square of the charge gap of the disconnected Hubbard
chain. This relation was previously obtained for the current
in a periodic chain and explained in terms of a Landau-Zener
mechanism [37]. The upturn observed for NS = 16 in Fig. 8
suggests that a similar activated behavior occurs in our model
for long enough chains where the low-voltage transport is
suppressed. However, our available data are not sufficient to
check the specific functional form and the dependence on the
spin gap of the isolated spin chain.

V. CONCLUSION

We have numerically studied the finite-bias spin transport
in a spin- 1

2 XXZ chain connected to half-filled tight-binding
leads at zero temperature, focusing on the effect of scattering
at the interfaces. By calculating the steady-state spin current
and the Friedel oscillations, it was shown that in the Luttinger-
liquid regime, conducting fixed points with the ideal linear
conductance exist, similarly as in related models for inhomo-
geneous quantum wires. Our results furthermore indicate that
conducting fixed points also appear in the gapped phase. There,
the nearly ideal spin transport can only be observed in a small
bias voltage region, which shrinks when the length of the spin
chain is increased.

Our interpretation of the numerical data is partially based
on the field-theoretical description which has been derived
for a different type of junction consisting only of fermionic
chains. It would be interesting to find the effective low-energy
field theory for the specific junction considered here, including
explicit expressions for the scattering at the interfaces, and
determine whether there are qualitative differences with the
previously studied models.

More difficult to treat numerically, but closer to actual
experiments, is the finite temperature case. For the finite-
temperature simulations, one could employ a similar TEBD
method where the MPS describes a purification of the density
matrix instead of a pure state. With the approach in Ref. [38],
it may also be possible to study a setup where a spin current
is driven by a temperature gradient, mimicking the experiment
in Ref. [3].

In this paper we have only considered junctions composed
of spin- 1

2 chains. A possible extension would be to study
analogous systems for spin ladders or chains with higher local
spin. The spin-1 Heisenberg chain, for example, might be
interesting since it is experimentally realizable and differs from
the spin- 1

2 chain in several aspects: Its elementary excitations
are magnons instead of spinons, it is nonintegrable, and it
exhibits symmetry-protected edge states at open boundaries.
For a setup with leads, the question then arises how the contact
is affected by these edge states. This will addressed in a
forthcoming study.
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APPENDIX: LUTTINGER LIQUID DESCRIPTION

The low-energy physics of the spin- 1
2 XXZ chain in the

XY phase (−1 � � � 1) are described by the Luttinger-liquid
(LL) model [30]

ĤS = 1

2

∫
dx

[ v

K
(∂xφ)2 + vK(∂xθ )2

]
, (A1)

where the bosonic fields obey the commutation rela-
tions [φ(x),∂x ′θ (x ′)] = iδ(x − x ′) and the LL parame-
ter K = π/[2 arccos(−�)] and the spin velocity v =
Jπ

√
1 − �2/[2 arccos(�)] are known from the Bethe-ansatz

solution [40]. In this representation, the long-wavelength part
of the magnetization is related to the fields by

Ŝz(x) � − 1√
π

∂xφ. (A2)

The charge transport in a system of spinless fermions with a
nearest-neighbor interaction corresponds directly to the spin
transport in the spin- 1

2 XXZ chain since the models are
related by a Jordan-Wigner transformation. For an infinite
homogeneous chain, the spin conductance G is given by [22]

G = K

2π
. (A3)

In general, however, this expression is no longer valid when
leads are taken into account. The effective low-energy Hamil-
tonian of the tight-binding leads in our setup described by
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Eq. (1) consists of two components of the form of Eq. (A1)
for the charge and spin sectors. Requiring the representation
of the leads to be consistent with Eqs. (A2) and (A3) fixes the
spin LL parameter to K = 1/2. This is also the value for the
spin chain at the SU(2) symmetric point � = 1.

A single junction between spin chain and lead has some
similarity with the single-channel Kondo model, except that the
impurity site is now also coupled to a spin chain. We assume
that, analogously to the Kondo model, the charge and spin
sectors are decoupled in the low-energy theory [41]. Focusing
only on the spin part and ignoring any possible boundary
terms, the naive field-theoretical description of our system
becomes an inhomogeneous LL with the position-dependent
LL parameter K(x) and spin velocity v(x). It has been shown
that the conductance of such a system is obtained by replacing
the LL parameter in Eq. (A3) with its asymptotic value in
the leads K(x → ±∞) [42,43]. For the noninteracting leads,
the spin conductance therefore is G = 1/(4π ), independent of
the parameters in the spin chain.

By using an inhomogeneous LL model to describe a one-
dimensional junction one assumes that backscattering at the
interfaces can be neglected. This is justified for adiabatic
contacts but not for the abrupt transition between the spin
chain and the lead described in Eq. (1). For a chain of
spinless fermions with uniform LL parameter K , the effect of
backscattering at an inhomogeneity on the linear conductance
G is well known [21,22]: At zero temperature, G vanishes
if the interactions are repulsive (i.e., K < 1), while G is not
reduced for attractive interactions (i.e., K > 1). An abrupt
change in the system parameters of a quantum wire has a
similar impact on the conductance, as has been studied for both

spinless [19,23] and spinful [24] fermions using bosonization
and quantum Monte Carlo methods. In those cases, whether the
transport is suppressed at low temperatures depends on the LL
parameters on each side of the interface. For the spinless model,
the zero-temperature conductance vanishes for K̄ < 1, where
K̄ = 2( 1

K1
+ 1

K2
)−1, and K1 and K2 are the LL parameters on

the left and right sides of the interface [19]. However, it was
also shown that, even for abrupt junctions, conducting fixed
points may be obtained by tuning certain system parameters
such as the hopping and interaction strengths [19,24]. At
these conducting fixed points, the amplitude of the relevant
backscattering becomes zero and thus the ideal conductance
determined by the LL parameters of the leads is recovered at
zero temperature. Note that there is still irrelevant scattering
at the interfaces, which can affect the conductance at finite
temperatures.

In the spin-chain junction described in Eq. (1), the couplings
between the subsystems are different than in the previously
studied fermionic models. Therefore, it is not clear that the
field-theoretical results in the previous studies apply similarly
in our system. However, we demonstrate in the main text for
several values of � that conducting fixed points with ideal
spin transport exist. Since these fixed points are obtained by
varying a single model parameter, there appears to be only one
relevant perturbation at the interfaces, similarly as in the purely
fermionic chains. For � = 1, this may be expected by noticing
that the spin-chain junction corresponds to a strong-coupling
limit of the inhomogeneous half-filled Hubbard chain for
which conducting fixed points have been reported in Ref. [24].
By analogy with the fermionic models, we refer to the relevant
perturbation at the interfaces as “backscattering.”
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