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In the presence of interactions, a closed, homogeneous (disorder-free) many-body system is believed to
generically heat up to an “infinite temperature” ensemble when subjected to a periodic drive: in the spirit of
the ergodicity hypothesis underpinning statistical mechanics, this happens as no energy or other conservation
law prevents this. Here we present an interacting Ising chain driven by a field of time-dependent strength, where
such heating begins only below a threshold value of the drive amplitude, above which the system exhibits
nonergodic behavior. The onset appears at strong, but not fast driving. This in particular puts it beyond the scope
of high-frequency expansions. The onset location shifts, but it is robustly present, across wide variations of the
model Hamiltonian such as driving frequency and protocol, as well as the initial state. The portion of nonergodic
states in the Floquet spectrum, while thermodynamically subdominant, has a finite entropy. We find that the
magnetization as an emergent conserved quantity underpinning the freezing; indeed, the freezing effect is readily
observed, as initially magnetized states remain partially frozen up to infinite time. This result, which resembles the
Kolmogorov-Arnold-Moser theorem for classical dynamical systems, could be a valuable ingredient for extending
Floquet engineering to the interacting realm.
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I. INTRODUCTION

Interacting many-body systems, by the ergodic hypothesis,
generically thermalize, placing them in the purview of sta-
tistical mechanics and equilibrium thermodynamics [1]. Our
understanding of the corresponding situation for nonequilib-
rium systems is still in flux. For perhaps the simplest class of
nonequilibrium systems, namely periodically driven (Floquet)
systems, thermalization physics at first glance looks maximally
simple: removing time translation invariance destroys energy
conservation, hence the concept of temperature—which means
thermalization to a featureless “infinite-temperature” state
[2,3].

Such Floquet systems have been predicted to be capable of
sustaining new forms of spatiotemporal ordering when many-
body localized as a result of strong quenched disorder [4]. The
experimental search for such so-called discrete time crystals
has been qualitatively more successful [5,6] than may have
been anticipated: the collection of systems appearing to exhibit
such order now even includes a dense periodic array of nuclear
spins initialized in a thermal state [7].

All of this focuses the inquiry on settings that permit
long-lived correlations and order to persist despite the presence
of periodic driving even in the absence of quenched disor-
der. In periodically driven noninteracting systems, quantum
heating can be suppressed [8–12] and an extensive number
of periodically conserved quantities identified [13]. In turn, a
prethermalization regime has been identified [14] that resem-
bles a frozen nonthermal state [8], which can be described
by a periodic (generalized) Gibbs’ ensemble [13]. Tuning the
drive parameters, and weakening the interactions, can sub-
stantially enhance the prethermalization period, still expected
to remain finite [15–17]. In fact, for disorder-free systems, a

transient but exponentially long-lived regime exhibiting dis-
crete time-crystalline phenomenology has already been iden-
tified [18]. These constitute lower bounds on the thermalization
timescales. For finite-size systems, an emergent integrability
structure for strong drives has also been proposed as a way to
avoid thermalization [19]. There is further evidence indicating
the absence of heating at high drive frequencies in a variety
of other settings [20–29] and in specially designed models
[30,31].

Here, we address the question of whether there is an
identifiable threshold for the ratio of driving and interaction
strength, below which the system approaches a nontrivial
steady state that depends on the drive and the initial state. We
consider a spin chain subject to strong, but not fast driving,
and we use remanent infinite-time magnetization of an initial
magnetized state as a measure of failure to Floquet-thermalize.
As the driving is increased from low strength, where standard
Floquet thermalization is observed, we find a remarkably
well-defined second regime, in which remanent magnetization
is present even in the infinite-time limit. Its value is given by
the Floquet diagonal ensemble average implied by the initial
state. The location of this threshold moves, but its existence
is stable to variations in state initialization, driving strength,
driving protocol, and driving frequency.

In all cases, however, we are able to identify an emergent
approximately conserved quantity—in the case we discuss
at length, the magnetization itself—which becomes exactly
conserved if the static part of the Hamiltonian is ignored.
Thus, rather than an extensive set of integrals of motion, as is
present in the case of the periodic Gibbs ensemble [13] and the
Floquet many-body localized cases [32–34], all that appears
to be needed to stop the system from heating up indefinitely is
a single, approximately conserved quantity.
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While our numerical investigation on systems up to L = 14
spins naturally limits our capacity to extrapolate these results
to the “thermodynamic” limit, there are indications that this
is not only a finite-size effect. First, in plots of remanent
magnetization versus driving strength, we identify a crossing
point for curves for different L separating the ergodic and the
nonthermal regimes. Second, the set of Floquet eigenstates
exhibiting memory, while accounting only for a vanishing
fraction of the total Hilbert space, extrapolates to have a
finite entropy in the thermodynamic limit. This means that
such states can still be straightforwardly selected by an initial
condition, not unlike initializing a static system in a low-
temperature configuration.

In the following, first we set the notation and provide a
brief introduction to the Floquet concepts we have used. We
then define our model and drive protocol. We characterize the
ergodic and the nonthermal phases and the threshold between
them using various measures, and we demonstrate robustness
to variations of drive patterns and system parameters. We close
with an outlook and suggestions for further investigations. In
particular, the origin and nature of the sharp features in the
memory as a function of driving strength merit further study.

II. FLOQUET BASICS

Let us decompose the time-dependent Hamiltonian H (t)
into a static interacting Hamiltonian H0 and a time-periodic
drive HD(t) with [H0,HD] �= 0:

H (t) = H0 + HD(t). (1)

The time evolution operator evolving a state through a
period from t = ε to t = ε + T (0 � ε < T ) is U (ε). Since
U (ε) is unitary, it can always be expressed in terms of a
Hermitian operator, the “Floquet Hamiltonian” Heff, as

U (ε) = e−iHeff(ε). (2)

Formally,

exp [−iHeff(ε)] = T exp

(
−i

∫ ε+T

ε

dt H (t)

)
, (3)

where T denotes time-ordering. Let |μi〉 denote the ith
“Floquet eigenstate” of Heff corresponding to the “Floquet
eigenvalue” (also known as quasienergy) μi .

A sequence of stroboscopic observations at instants t =
ε,ε + T , . . . ,ε + nT (integer n) is identical to that produced
by the dynamics under the time-independent Hamiltonian Heff.
This applies for every ε, hence we get a continuous family of
stroboscopic series.

In the following, we are interested in long-time asymptotic
behavior, so that temporal variations within a driving period
are of secondary importance. Hence, we arbitrarily pick ε = 0.

A. Infinite-time limit: Diagonal ensemble average

The nature of the asymptotic state under the drive can be
understood as follows. Consider an initial state,

|ψ(0)〉 =
∑

i

ci |μi〉,

and the stroboscopic time series for an observable,

Ô =
∑
i,j

Oij |μi〉〈μj |,

〈ψ(nT + ε)|Ô|ψ(nT + ε)〉 =
∑
i,j

cic
∗
jOij e

−i(μi−μj )(nT +ε).

(4)

As in the case of static Hamiltonians, under quite general
and experimentally relevant conditions (see, e.g., Ref. [35]), at
long times (n → ∞) the off-diagonal (i �= j ) terms “average
to zero” and the state of the system can hence be described
by an effective “diagonal ensemble” (in the absence of syn-
chronization, e.g., for discrete time crystals, this is replaced
by a block diagonal ensemble [36]). This is captured by
the mixed density matrix [37] ρ̂DE = ∑

i |ci |2|μi〉〈μi |. Thus,
the asymptotic properties of a periodically driven system are
effectively given by a classical average (known as the diagonal
ensemble average, or DEA) over the expectation values of the
eigenstates of Heff,

〈Ô〉(DEA) =
∑

i

|ci |2〈μi |Ô|μi〉. (5)

Hence it is sufficient to study the nature of the eigenstates and
eigenvalues of Heff, or equivalently of U (ε), in order to obtain
the long-time behavior.

III. THE DRIVE PROTOCOL AND THE MODEL

In this section, we introduce the notation, model Hamilto-
nian, drive protocol, and observables to be studied. We consider
L spins on a chain. We chose a binary drive protocol, which
switches periodically between a pair of rectangular pulses. The
time-dependent Hamiltonian is

H (t) = H0 + sgn(sin ωt) HD, (6)

with the two components

H0 =−J
∑

i

σ x
i σ x

i+1+κ
∑

i

σ x
i σ x

i+2−hx
0

L∑
i

σ x
i −hz

L∑
i

σ z
i ,

(7)

HD = −hx
D

L∑
i

σ x
i . (8)

The σα are Pauli matrices. For the results in the main text,
we have chosen J = 1, κ = 0.7, hz = 1.2, and hx

0 = 0.02. We
use a periodic boundary condition, but tamper the boundary
slightly by setting JL,1 = 1.2J and κL−1,1 = 1.2κ to break
translational invariance (and hence remove any remaining
block-diagonal structure of the Hamiltonian). Here since we
keep the interaction strengths constant during the drive, we use
the drive amplitude itself as the tuning parameter. We have cho-
sen our drive frequency ω = 0.1 unless stated otherwise
explicitly.

In the presence of the transverse field, the Hamiltonian H0 is
known to be ergodic due to the four-fermionic interaction terms
arising from the next-nearest-neighbor interactions under the
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FIG. 1. Freezing and its onset threshold. Left frame: Stroboscopic time series of magnetization mx(t) for different driving strengths showing
initial-state memory for strong driving. The inset zooms in on the long-time behavior; the black horizontal line denotes the DEA of the
magnetization. Middle frame: Remnant magnetization as a function of driving strength for different system sizes. The high-field regime (top
inset) shows an increase of the remnant magnetization with L. The bottom inset shows the DEA of mx vs drive amplitude for a “generic”
state (see the text for details) whose net initial magnetization is marked with the horizontal line, which remains almost unchanged for very
strong drives. Right frame: Same data as the middle frame on a doubly logarithmic plot for 1 − mx(DEA). The deviation away from almost
complete thermalization gets steeper and moves toward the right with increasing system size. The curves appear to accumulate from the left at
a “threshold point” (T), which itself appears to move little as the system size is increased from L = 11 to 14.

spin to fermion mapping, and also due to the longitudinal field.
We have explicitly verified that H0 is ergodic for our case [38].

We initialize the simulation in the time domain with differ-
ent initial states. Unless otherwise stated, we use the default
choice of the ground state of H (t = 0).

IV. NUMERICAL RESULTS

The central quantity is the longitudinal magnetization

mx(t) = 1

L

L∑
i

〈ψ(t)|σx
i |ψ(t)〉. (9)

We monitor its real-time dynamics in a stroboscopic time
series. We diagnose nonthermalization/freezing via its long-
time asymptotic behavior, the remnant magnetization, which
we study as a function of various model parameters.

A. Onset of Floquet thermalization

In the following, we provide numerical evidence that for
a strong (but not fast) drive, the system fails to Floquet-
thermalize, instead retaining memory of its initially magne-
tized state. We then show that the onset of Floquet thermaliza-
tion occurs at a fairly well-defined threshold driving strength.

The stroboscopic time series for the magnetization mx is
shown in Fig. 1, left frame. Already at short times, three
representative trajectories for different driving strengths show
strikingly different behavior. While for weak driving fields,
the magnetization disappears almost immediately, for stronger
ones the decay slows down. Finally, for hx

D beyond a threshold
value, the decay is arrested: even at the longest times, a remnant
magnetization persists.

This remnant magnetization agrees with the DEA of the
magnetization evaluated for the same system (see the inset).
Note that the nonvanishing DEA is already in itself a signature
of the lack of Floquet thermalization—in general, Floquet-
thermalized eigenstates individually show no nontrivial corre-
lations.

To locate the onset, the DEA of mx as a function of the drive
amplitude hx

D is plotted in Fig. 1, middle frame. A threshold

for nonzero remnant magnetization is observed, separating the
ergodic (mx

DE ≈ 0) from the nonergodic regime.
The lower inset shows freezing for an initial state with a

reduced polarization in the x direction. The black dotted line
shows the initial value of mx for the state, and the curve shows
that for high enough hx

D , the DEA of mx almost coincides with

it. In detail, this initial state is given as |ψ0〉 = ∑2L

i=1 ci |ix〉,
where |ix〉 is the ith eigenstate of the longitudinal field part
(computational basis states in the x direction, or x-basis states),
by choosing Re[ci] and Im[ci] from a uniform distribution
between −1 and +1, multiplying them by eβmx

i , where β > 0
and mi

x is the longitudinal magnetization of |ix〉, and finally
normalizing the state. This gives a “generic” state with a bias
toward positive longitudinal magnetization. For the plot in
Fig. 1 (middle frame), we have chosen a random instance
corresponding to β = 1.75. The right frame of Fig. 1 shows the
DEA of 1 − mx on a doubly logarithmic log-log plot zoomed
in around the threshold for better visibility.

B. Floquet eigenstates and an emergent conservation law

1. Localization and magnetization

We now turn to the properties of the Floquet eigenstates
obtained by numerically diagonalizing the time evolution
operator U (0), Eq. (2). We consider first their “localization” in
Hilbert space, followed by their magnetization content.

To investigate the localization properties of the Floquet
states in the x basis {|ix〉}, we calculate the inverse par-
ticipation ratio (IPR) in said basis defined as IPR(|μj 〉) =∑2L

i=1 |〈ix |μj 〉|4. The left frame of Fig. 2 shows the IPR
thus obtained, arranged in decreasing order. Indefinite heating
corresponds to the states being delocalized in the eigenbasis of
any local operator, which implies a uniformly small IPR given
by the inverse dimension of Hilbert space, 1/DH . This is indeed
what is observed for small drive fields. By contrast, for large
drive fields, states appear that have an IPR close to 1, which
indicates the presence of well-localized states, and hence the
absence of Floquet thermalization for the corresponding part
of the spectrum.
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FIG. 2. Emergent conservation law for strong drives, as reflected in the Floquet eigenstates |μi〉. Left frame: Values of the IPR in the x

basis, arranged in decreasing order. Unbounded heating requires these states to be delocalized in the eigenbasis of any local operator. This is
the case for the drive with amplitude below the threshold (hx

D = 10,) but not above (hx
D = 18,40,60). The inset shows a decreasing IPR for

different system-sizes for hx
D = 40 due to the emergent conservation law evidenced in the middle frame: mx for the Floquet eigenstates arranged

in decreasing order, for different values of hx
D . Black dotted lines (hx

D = ∞) show the values of mx of the x-basis states (multiplied by a factor
of 1.4 for visibility). For hx

D = 40, clear steplike structures appear, indistinguishable from the steps of mx for x-basis states for both system
sizes L = 10,14 (see [38] for finer details of the L dependence of this matching). For a lower drive value hx

D = 18, close to the threshold, the
curve smoothes out, indicating weakening of the quasiconservation, yet highly polarized Floquet states are still substantial in number. For still
lower values (e.g., hx

D = 10), the curve finally flattens. The pronounced asymmetry in the Floquet magnetizations for lower values of hx
D is due

to the small asymmetry in the drive. Right frame: The log of the number Nc of Floquet eigenstates with polarization above a given value mc

is shown to grow approximately exponentially with system size, corresponding to (a vanishing fraction of states but with a) finite entropy. For
large hx

D (hx
D = 40), the numerical data points fall almost exactly on the analytically calculated results (black dotted lines) corresponding to

hx
D = ∞ (see the matching of the steplike structures in the middle frame). For a lower value hx

D = 18, a linear fit is done for the numerical data
points.

Complementary information can be gleaned by considering
the correlations encoded in the nonergodic states. The middle
frame of Fig. 2 shows the magnetization of different Floquet
eigenstates, mx

i , ordered according to their size. In the ergodic
regime, these curves are featureless and mx

i is uniformly
tiny, showing a tendency to increase with increasing drive
strength. Deep into the nonergodic regime, large values of mx

i

appear, which together form plateaus. For the largest drives
hx

D , the plateaus correspond to essentially an integer number
of spin flips, which indicates that the new basis is close to the
computational basis in the x direction mentioned above. As the
drive is decreased, the plateaus give way to a smooth curve,
which, however, still makes a large excursion toward mx = ±1
before assuming the featureless shape of the ergodic regime.

While the fraction of Floquet states with a magnetization
above a certain value is thermodynamically vanishing, their en-
tropy is nonetheless finite (see Fig. 2, middle and right frames).
This is analogous to the case of a finite-temperature ensemble
of a magnet in a field, where a nonzero magnetization arises as
a thermodynamically vanishing fraction of magnetized states is
preferentially populated, with their energy gain compensating
for the entropy loss involved in concentrating the probability
density on them. Here, the selection of the magnetized Floquet
states arises via the state initialization. It is interesting to note
that in this 1D system there would be no magnetization at any
finite temperature: the observation of a finite magnetization at
finite energy density is purely a nonequilibrium effect.

2. Emergence of mx as a local quasiconserved quantity

We next address what we believe is the central feature
underpinning the nonthermalization, namely the existence of
a conserved quantity in the drive Hamiltonian in isolation. In

our example, this is the magnetization in the x direction, mx ,
which persists as a quasiconserved quantity even when the ratio
of drive to static components of the Hamiltonian is finite.

The middle frame of Fig. 2 shows the value of mx for
the different Floquet eigenstates arranged by their size. For
the strongest drives, the steps in this quantity are identical
to the ones of the computational basis states in the x basis,
i.e., the steps simply reflect the number of spins flipped.

The static part of the Hamiltonian then mixes the states
with the same value of mx , which is reflected in the nontrivial
distribution of the IPR of the Floquet states (left frame of
Fig. 2). The growth of the size of each mx sector (except for
the fully polarized one) is in turn reflected in a decrease of
the IPR.

For lower driving strengths, hx
D = 18, the steps get washed

out, but the range of mx continues to span practically the
full range in the interval between −1 and 1. This feature
disappears below the threshold, hx

D = 10, where the curve
flattens substantially.

While the fraction of Floquet states with a nonzero mag-
netization density vanishes with system size, these states
nonetheless have nonzero entropy (Fig. 2, right panel), as is
the case for magnetized states of a paramagnet generally.

The emergent quasiconserved nature of mx , along with
the straightforward possibility of initializing the system in a
magnetized state, account for the main features of the results
discussed in this work.

C. Robustness against variation of model
and protocol parameters

We first address the existence of the onset for variants of the
above model. We note that so far, no fine-tuning was necessary.
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FIG. 3. Remnant magnetization in various settings. Top left: Dependence of a DC transverse field hz that does not commute with the other,
mutually commuting, terms of the model. hz enhances thermalization (upper inset). The response approximately scales with hx

D/hz (main
panel); in particular, the estimated threshold hx

D
∗ is approximately proportional to hz (lower inset). Top right: Robustness of freezing with

respect to the addition of a DC field hx
0 . Bottom left: Freezing for uneven division of the total drive period. For 0 � t < rT , hx

D = +40 while for
rT � t < T , hx

D = −40, where r = 1/(golden ratio). Deep freezing minima persist to high driving strengths but show little size dependence.
Bottom right: Behavior for the initial state chosen as the ground state of the nonintegrable undriven part H0, with hz and hx

0 chosen to created
an initial state with a small positive polarization mx(0) ≈ 0.373 90. For large hx

D , freezing increases somewhat with L.

The central demand was for the drive amplitude hx
D to be the

largest scale, while the other parameters of the Hamiltonian
were chosen all to be in the same ballpark.

1. Role of the noncommuting term

First, the location of the thermalization threshold can be
moved by varying the strength of the term in the static
Hamiltonian H0, which does not commute with the driving
Hamiltonian HD . Indeed, the top left frame of Fig. 3 shows
that the threshold driving field is approximately proportional
to the static transverse field strength hz.

2. Drive shape and initial state

Also, we ask whether the “symmetry” of having a vanishing
mean drive of zero for symmetric pulse shapes about zero is an
important ingredient. Figure 3, top right frame, shows that the
freezing is quite robust to the addition of a dc field of strength
hx

0 . Indeed, the freezing actually grows with hx
0 .

Next, we consider a deviation of the drive protocol away
from a time-symmetric switch in the sign of the driving
term to one where more time is spent for one sign than the
other (Fig. 3, bottom left frame). While the latter case has

considerably more structure at high drives, in particular an
apparently regular suppression of the remnant magnetization
even above the onset threshold, the former curve basically acts
as a high-magnetization envelope of the latter.

Further, we consider an initial state prepared as the ground
state of a many-body problem (rather than a more simply
prepared polarized state). This displays (Fig. 3, bottom right
frame) all the salient features observed with the simply polar-
ized ground state in Fig. 1, right frame.

3. Drive frequency

What is particularly worth emphasizing is that the noner-
godic behavior is not a high-frequency phenomenon. While
such freezing also exists in the limit of a driving frequency in
excess of the many-body bandwidth of the finite-size system,
it is not even the case that the nonergodicity necessarily grows
with frequency. This is illustrated in Fig. 4, where the remnant
magnetization is, if anything, more robust at small driving
frequencies.

This is intriguing since at lower drive frequencies, Magnus-
type high-frequency expansions are divergent. Hence, this is
an example of the breakdown of a Magnus expansion which is
not associated with unbounded heating.
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D. Finite-size behavior

Our results indicate that an absence of thermalization in this
driven interacting system might persist even in the infinite-size
limit. While there are some dips of the freezing strength in
the nonergodic regime complicating a sharp identification of
a threshold, the onset nonetheless appears to sharpen with
increasing system size. A closer view of the nonergodic regime
(Fig. 1, middle frame, top inset) shows the smooth behavior
of the remnant magnetization for the largest fields; this in
fact grows with increasing system size. By contrast, for weak
drives, the remnant magnetization tends to decrease with
system size. This results in a crossing point as the curves
for different system sizes of the deviation of the remnant
magnetization from its initial value (Fig. 1, right frame) thus
approximately cross at the threshold point. While it is hard
entirely to rule out a slow drift to higher fields of the threshold
with increasing system size, these observations suggest the
possibility of a sharp transition at a finite threshold field in the
thermodynamic limit.

Next, and most importantly, the step structures in the mx

of the Floquet states are almost indistinguishable from that of
the x-basis states for all system sizes we investigated (Fig. 2,
middle frame). This absence of a system-size dependence
indicates that at large values of hx

D , the drive does not mix the
x-basis states of different mx values. A decrease in the fraction
of Floquet states with mx > mc with system size is not because
in larger systems the Floquet states are more delocalized
between different magnetization sectors, but merely because
the number of x-basis states in a given magnetization sector
changes with the system size. Delocalization between different
magnetization sectors is suppressed strongly for all system
sizes at hand for hx

D above the threshold. This is in keeping

with the observations that on different types of initial states,
Figs. 1 and 3, the freezing at the highest frequencies does not
decrease with system size, and it gives a further indication that
our results are not merely finite-size effects.

1. Ergodicity with and without driving

Though our results from various directions point toward
the absence of thermalization in the thermodynamic limit, a
limited many-body quantum finite-size numerical study cannot
guarantee that. In this context, it is interesting to note that
there has been a series of studies on ergodicity breaking
in quantum systems in the context of quenches by Rigol
and collaborators [39–41]. In these studies, rather than a
time-dependent system, the properties of the eigenstates of
a static local Hamiltonian are investigated as a function of
integrability breaking parameters. These studies illustrate the
importance of going to large system sizes in order to see ergodic
behavior emerge. By contrast, in our case the static part of the
Hamiltonian, H0 [Eq. (8)], is already ergodic for the system
sizes studied [38].

A question that arises naturally, therefore, is whether it is
possible to induce nonergodic behavior by driving an ergodic
system. This is indeed possible, as exhibited by the famous
problem of a periodically driven quantum kicked rotator (see,
e.g., [42] and references therein), where energy absorption is
bounded by quantum interference even where the static system
is chaotic (ergodic). Analogous phenomenology cannot be
ruled out in a many-body system in principle, and indeed it
is that question that has partly motivated this work [43].

V. DISCUSSION

We have studied the onset of Floquet thermalization in a
driven interacting spin chain. We have found a fairly sharp
threshold for the drive strength, above which Floquet ther-
malization does not take place. The threshold value varies in
different manners with parameters such as pulse shape, drive
frequency, or the (noncommuting) transverse field strength, but
the freezing persists robustly under all these variations. The
question of the existence of such a threshold is of fundamental
importance, with a related issue appearing for classical dynam-
ical systems, where the Kolmogorov-Arnold-Moser theorem
deals with the onset of chaotic behavior upon breaking of
integrability.

An open question concerns the origin, and in particular the L

dependence, of the dips in the frozen component even beyond
the threshold in the mx versus hx

D plots: the dips touching
the x axis correspond to points of thermalization. While their
occurrence for certain discrete values of hx

D has no significant
consequence, if their number diverges with L, this may lead
to a destruction of the frozen regime. For drives with pulse
durations evenly placed about T/2, the dips disappear rapidly
with increasing hx

D . Such dips are, however, observed to persist
even for very strong amplitudes for the case of drive with
uneven division of the drive period (Fig. 3, bottom left). In
this case, the total drive period is divided into two parts, T/GR
and T (1 − 1/GR), where GR is the Golden ratio. While the
depth of the dips seems to increase with L, their number and
locations remain surprisingly independent of L, which points
against their proliferation. Regarding an extrapolation to the

245122-6



ONSET OF FLOQUET THERMALIZATION PHYSICAL REVIEW B 97, 245122 (2018)

thermodynamic limit, we refer to our discussion at the end of
the previous section.

Comparison of the magnetization and IPR of the Floquet
states in the frozen regime allows one to conclude that the
magnetization itself plays the role of a quasiconserved quantity,
which becomes exactly conserved in the limit of infinitely
strong driving. However, the emergence of only a single
conserved quantity does not rule out nontrivial steady states, as
can be gleaned from the structure of Floquet eigenstates in the
frozen regime: these states have definite mx values, yet they
are not fully localized in the x basis. It is also interesting to
note that a single local conserved quantity such as mx does
not preclude a nonlocal Heff, yet it is sufficient to result in a
nonthermal Floquet spectrum.

While our driving term in isolation is integrable, it appears
that the existence of a conserved quantity is all that is required
for the existence of the frozen regime. A study of a noninte-
grable drive with an emergent conservation law is therefore an
obvious item for future work.

This nonergodicity is not a high-frequency phenomenon.
Instead, it is particularly well-developed at lower driving
frequencies, which a priori renders attempts to construct a
Magnus-type high-frequency expansion problematic. Instead,
nonergodicity is primarily associated with strong driving.
Note that for the driving term in isolation, the instantaneous
eigenvectors of the Hamiltonian are time-independent, while
the instantaneous eigenvalues change; this suggests the devel-
opment of a perturbation theory controlled by the instantaneous
gap, rather than a high frequency. It would also be interesting
to investigate the connections of this problem to the case of
weakly driven interacting systems with approximate conser-
vation laws [44].

The role of emergent conservation laws may in particular
be important for experimental studies of driven many-body

systems. Indeed, a first sighting of the physics we have
analyzed here has occurred in the context of an experiment
of Floquet many-body localization [26], where the possibility
of a finite threshold for delocalization was also noted for the
low-disorder limit. The main ingredient we have identified,
namely an emergent conservation law, turns out also to have
been present in that situation. Analogously, for the searches
of time crystals taking place at present, it will be interesting
to investigate if emergent conservation laws do, or can, play a
role there as well.

Finally, while periodic driving is expected to heat a system
and hence delocalize it, drive-induced destructive quantum
interference can produce just the opposite effect. A competition
of these might result in unexpected freezing behavior, as has
been observed in a quantum counterpart of classically chaotic
systems, namely in the kicked rotators (see, e.g., [42]). Such
a suppression of heating [43] might not be impossible in
a quantum many-body system in which interactions lead to
ergodicity. An absence of unbounded heating under periodic
driving could be a step in that direction, and the availability of
emergent approximate conservation laws may turn out to be a
useful ingredient for many-body Floquet engineering.
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