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Local quantum criticality of a one-dimensional Kondo insulator model
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The continuous quantum phase transition and the nature of the quantum critical point (QCP) in a modified Kondo
lattice model with Ising anisotropic exchange interactions are studied within the density-matrix renormalization
group algorithm. We investigate the effect of quantum fluctuations on critical Kondo destruction QCP by probing
static and dynamic properties of the magnetic order and the Kondo effect. In particular, we identify that local
Kondo physics itself becomes critical at the magnetic phase transition point, providing unbiased evidences for
local quantum criticality between two insulators without involving the Fermi surface.
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I. INTRODUCTION

Quantum criticality describes the collective fluctuations
of matter undergoing a continuous phase transition at zero
temperature [1]. As quantum criticality is central to a broad
understanding of strongly correlated quantum matter, how to
properly describe the physics around quantum critical points
(QCPs) is a subject of intensive research [2]. Experimentally,
the intermetallic heavy-fermion compounds [3–5] serve as
ideal candidates for the study of quantum phase transitions and
criticalities by exhibiting unusual properties, such as heavy
Fermi liquid, magnetic ordering, as well as unconventional
superconductivity [6]. In addition, a continuous suppression of
antiferromagnetic transition temperature has been discovered
in a sizable number of (nearly) stoichiometric heavy-fermion
systems [2].

For QCPs relevant to the heavy-fermion systems, two
major theoretical scenarios have been proposed: One is the
spin-density-wave QCP [7,8] and the other one is critical
Kondo destruction QCP [9–11]. For spin-density-wave QCP,
conduction electrons acquire peculiar dynamics through an
essentially perturbative coupling to the slow critical modes
of magnetic background. While in the latter case the local
Kondo physics itself becomes critical at the magnetic ordering
transition, thus a local QCP is driven by the competition
between local dynamics and long-ranged magnetic fluctua-
tions. So far, despite considerable efforts, debate continues on
the nature of QCP, and several issues remain elusive in the
heavy-fermion systems. First, it is generally believed that the
spin fluctuations in three dimension leads to a Doniach’s QCP
[12,13] with dynamical spin susceptibility satisfying usual
Fermi-liquid form, while two-dimensional spin fluctuations
tend to favor local QCP with spatially extended critical degrees
of freedom coexisting at the critical point [9]. Much less is
known about what kind of QCP in a one-dimensional heavy-
fermion system could follow. Second, a key assumption to
distinguish different scenarios usually resorts to the abrupt
shrink of the Fermi surface when across a local QCP [6].
Although the argument of the Fermi surface in a metallic phase
is natural [14–18], the QCP connecting two insulators without
a Fermi surface has been hardly explored before, raising the

question of whether or not the change of Fermi surface is
associated with the local QCP. Third, all of the previous charac-
terizations of local QCP in heavy-Fermi metals are based on the
extended dynamical mean-field theory (EDMFT) [9,19–24]
or large-N [25,26] approaches. In these approaches, the spatial
and temporal quantum fluctuations are either partially or com-
pletely neglected, which is valid in high dimension. Therefore,
an unbiased and controlled numerical method to capture the full
quantum fluctuations of local moments and itinerant electrons,
which become particularly important in low-dimensional sys-
tems, is highly desired to clarify the nature of QCP.

The aim of this paper is to address the aforementioned prob-
lems and provide compelling numerical evidences for locally
critical phase transitions in a microscopic one-dimensional
Kondo lattice model (KLM). Based on the density-matrix
renormalization group (DMRG) calculations, we are able to
access the low-lying energy excitations, static and dynamical
correlations of local moments, as well as the charge degree of
freedom. We first identify a continuous phase transition be-
tween Kondo insulator and antiferromagnetic (AFM) phases,
signaled by the closing neutral gap and various magnetic order
parameters such as magnetization. We then demonstrate the
evolution of local susceptibility across the magnetic phase
transition. The singular behavior indicates the Kondo screening
being critical at the transition point, serving as the hallmark
of local quantum criticality. These results provide compelling
evidence of local QCP between two insulators without in-
volving the Fermi surface, which indicates that the notion of
local QCP as a general paradigm for novel phase transitions,
is not limited to heavy-fermion metals [6,9]. We hope this
work could stimulate the study of heavy-fermion quantum
criticality in one dimension. The experimental realization of
one-dimensional heavy-Fermi-system CeCo2Ga8 compounds
[27] could provide a platform to test our proposal.

II. MODEL AND METHOD

We consider a modified Kondo lattice model in one dimen-
sion with an additional Ising-type interaction between the local
spins (Fig. 1), where each unit cell contains a localized spin
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FIG. 1. (Top) One-dimensional Kondo lattice model with an
Ising-type interaction between nearest-neighbor localized spins. Red
dots and blue squares represent the conduction electrons and localized
spins, respectively. (Bottom) The global phase diagram as a function
of Jz and JK by setting t = 0.25 (bandwidth of conduction electron
is 4t = 1). The phase transition is determined to be continuous
(see main text).

and an extended conduction-band electron state:

H = t
∑

〈ij〉,σ
c
†
iσ cjσ + JK

∑

i

Si · si + Jz

∑

〈ij〉
Sz

i S
z
j . (1)

Here c
†
iσ (ciσ ) denotes the creation operator of a conduction

electron with spin σ = ↑, ↓ at site i. The Si is a local-
ized moment with S = 1

2 . Each localized moment interacts
via an exchange coupling JK with the conduction electron,
where the conduction electron density is defined as si =
1
2

∑
σ,σ ′ c

†
iα �σαβciβ . The quantity Jz describes the Ising-type

magnetic exchange interaction between the low moments [28].
We note that the magnetic exchange interaction is usually
generated by the Kondo interaction via the Ruderman-Kittel-
Kasuya-Yosida (RKKY) effect. Here we have treated it as
an independent parameter for two reasons. First, it helps the
purpose of specifying the global phase diagram. Second, in
one dimension, the Heisenberg-type RKKY interaction always
preserves the spin-rotational invariance while the Ising inter-
action could stabilize AFM order [29]. Therefore, the KLM
with Ising-type exchange interaction has the advantage of
ameliorating the double-counting issue arising from an explicit
inclusion of the intrinsic RKKY-based exchange interaction,
the latter requiring a treatment of conduction electrons with
care [30]. Experimentally, the easy-axis anisotropy widely
exists in a number of heavy-fermion systems [31]. Physically,
two important mechanisms compete with each other [12,13]:
An isolated local moment would be screened by the spins of
conduction electrons through the Kondo screening, while the
magnetic exchange interaction tends to induce a long-ranged
magnetic ordering. In the absence of Ising-type interaction,
the ground state of KLM (at half filling) is spin singlet
and the spin gap always exists for any finite exchange JK ,
supported by both semiclassical analysis [32] and finite-size
numerical calculations [33–36]. In the regime where Ising-type
exchange interaction dominate, the AFM phase is expected.
Therefore, we expect a magnetic phase transition from the

FIG. 2. (a) Energy spectrum evolution as a function of Jz, ob-
tained on an L = 8 periodic chain by ED calculations. (b) Energy
gaps (�S , �N , �C defined in main text) as a function of Jz, obtained
on L = 36 open chain by DMRG calculations. Here we set JK = 1.0.

nonmagnetic phase to the AFM phase driven by the Ising
exchange interaction.

In this work, we study the KLM as described by Eq. (1) using
the exact diagonalization (ED) and density-matrix renormal-
ization group (DMRG) method [37]. In DMRG calculations,
we use the finite system algorithm with open boundary condi-
tions for system size up to L = 72. We use two different U (1)
quantum numbers in the DMRG setup. One is the total electron
numbers Ne = n↑ + n↓, including number of spin-↑ n↑ and
spin-↓ n↓ electrons, and the other one is the z component of
total spin I z = (n↑ − n↓)/2 + Sz, where Sz is the z component
of the total local moments. To study the Kondo insulator we
restrict ourselves to half-filling where the total number of con-
duction electrons Ne equals number of sites L, or the average
occupancy is 1 (half filling). The dynamical response functions
are computed within the scheme of dynamical DMRG [38,39].
By keeping up to 640 states, the truncation error is controlled
below <10−9 for static properties and <10−6 for dynamical
susceptibility calculations, respectively.

III. NUMERICAL RESULTS

We first present numerical evidences of Ising-anisotropy-
driven phase transition, based on the low-lying energy spec-
trum from ED calculation. As shown in Fig. 2(a), there exists
a doublet ground-state manifold in the large-Jz regime related
to the AFM ground states in the Ising limit, while the single
ground state in the small-Jz regime corresponds to the ground-
state-enclosing spin singlet between a localized spin and one
conduction electron state on each lattice site. In particular, upon
decreasing Jz, one energy level is continuously gapped out
from the ground-state manifold, signaling a second-order-type
phase transition. Here, the ED energy spectrum presents the
unambiguous evidence of a continuous phase transition from
an AFM ordered phase to a nonmagnetic Kondo insulator phase
by tuning down the Ising exchange interaction Jz, whose nature
will be addressed by DMRG calculations on the system of large
sizes as below.

Further evidences of a continuous phase transition can be
obtained by DMRG calculations for larger system sizes. Here
we define two different energy gaps. First, the energy difference
between the ground state and lowest excited state with the
same quantum numbers Ne,I z: �N = E1(Ne = L,I z = 0) −
E0(Ne = L,I z = 0), is defined as the neutral gap. Second,
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FIG. 3. (a) Log-linear plot of neutral gap �N near the critical point
J c

z ≈ 1.825 by setting JK = 1.0. Various system sizes are labeled by
different symbols. (b) Neutral gap �N as a function of JK by setting
Jz = J c

z = 1.825. Inset: Log-linear plot of �N and exponential fitting.

the charge gap is obtained by the energy difference between
the ground state and lowest excited state with different
electron number �C = E0(Ne = L + 2,I z = 0) − E0(Ne =
L,I z = 0). The evolution of energy gaps as a function of Jz

is shown in Fig. 2(b). By tuning up Jz, the neutral gap starts
to monotonically decreases to zero. In the whole process, the
charge gap is always open. The neutral gap continuously goes
to zero, supporting a second-order phase transition driven by
the Ising anisotropy from the Kondo insulator to an Ising AFM
insulating phase.

It is worth mentioning that the neutral gap shows expo-
nential behavior by approaching the critical point, while away
from the critical point the neutral gap is linearly dependent on
Jz. As shown in Fig. 3(a), when Jz approaches the critical
point, the neutral gap is found to behave as exponentially
decayed, for all system sizes. Similarly, by tuning JK , the
neutral gap respectively shows exponential dependence and
linear dependence near the critical point and away from the
critical point. The exponential dependence of the energy scale
near the critical point is a signature of the Kondo physics
becoming critical.

The phase transition can be described by several local order
parameters, as shown in Fig. 4. First, the magnetic order
parameter mAF = 1

L

∑
i |〈Sz

i 〉| develops continuously as Jz

exceeds the critical point J c
z . Importantly, we observe that

the charge degree of freedom shows very similar behavior

FIG. 4. Antiferromagnetic order parameter mAF = 1
L

∑
i |〈Sz

i 〉|
(black triangular) and spin-density-wave order parameter �nSDW =
1
L

∑
i |〈sz

i 〉| (black diamond), and inverse static spin susceptibility
1/χ (Q = π,ω = 0) (red cross) as a function of Jz. Blue dashed line
marks the transition point J c

z ≈ 1.825.

FIG. 5. Frequency dependence of the local spin susceptibility
at various values of Jz around the magnetic transition: (left panel)
imaginary part and (right panel) real part. Here we choose JK = 1.0.

with local moments. Within the numerical uncertainty, the
spin-density wave pattern (�nSDW = 1

L

∑
i |〈sz

i 〉|) always oc-
curs simultaneously with nonzero magnetization mAF . This
excludes the possibility of a spin-density-wave–driven phase
transition. In addition, a magnetic phase transition can also
be probed by lattice static susceptibility at a magnetic wave
vector. The lattice static susceptibility is defined as χ (Q,ω) =
−i

∫
dteiωt 〈[Sz

−Q(t),Sz
Q(0)]〉, where Sz

Q = 1
L

∑
n sin( πn

L+1 )Sz
n

with n being the site index. As shown in Fig. 4, the inverse lat-
tice static susceptibility at the magnetic wave vector χ−1(Q =
π,ω = 0) reaches a minimum at the transition point determined
by mAF and �nSDW. The order parameters, including lattice
static susceptibility, magnetization, and charge density imbal-
ance, point to a continuous phase transition between the Kondo
insulator and the AFM insulator, and determine the magnetic
critical point unambiguously.

To uncover the nature of this phase transition, we further
investigate the local dynamical response function. For this
purpose, we introduce the local spin susceptibility, which is
defined as

χloc(ω) = 〈0|�Sz
j

1

ω − (E0 − H ) + iη
�Sz

j |0〉 (2)

and �Sz
j = Sz

j − 〈Sz
j 〉. (We choose site j in the center of the

chain.) Figure 5 shows the local spin susceptibility around the
quantum critical point. In the Kondo singlet phase Jz < J c

z ,
the peak of 	χloc(ω) stands away from the zero frequency,
consistent with the gapped spin excitations. As Jz increases,
the dominant peak moves towards the low frequency and
reaches zero frequency around Jz ≈ J c

z . Near the critical point

FIG. 6. Semilog plot of the real part of the local spin susceptibility
around the magnetic transition: (a) Jz > J c

z and (b) Jz < J c
z . (c)

Inverse of the real part of the local spin susceptibility 
χ−1(ω = 0)
versus η. Red line shows the polynomial function fitting: 
χ−1(ω =
0) = Aη2 + Bη + C, with nonzero A, B, and C = −0.0013 ± 0.002.
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FIG. 7. (a) Local electron spectrum density as a function of ω for
Jz = 1.65 (blue) and Jz = 1.95 (red). Solid and dotted line represents
spin-down and spin-up component, respectively. (b) In the Ising
AFM phase, the JK dependence of magnetization mAF and charge
polarization �nSDW. The parameter Jz is set to be Jz = JK + 1.

J c
z , 	χloc(ω = 0) becomes steeper, which leads to a peak

structure developing at 
χloc(ω = 0). The maximal value of

χloc(ω = 0) defines the critical point J c

z . Since the singular
behavior 
χloc(ω) at around zero frequency is key to the
nature of QCP, we inspect the 
χ (ω) in detail in Fig. 6. We
show the semilogarithmic plot of 
χloc(ω) with a focus on the
low-frequency regime. It is found that, for the Kondo insulator
phase Jz < J c

z , 
χloc(ω → 0) saturates to a finite value in
the low-frequency limit [Fig. 6(b)]; however, around the
critical point Jz ≈ J c

z , 
χloc(ω → 0) shows distinct behavior.
To demonstrate the singular behavior of 
χloc(ω = 0), we
investigate the 
χloc(ω = 0) dependence on η, which is the
imaginary part in the dynamical response function Eq. (2). To
the best fit, we determine that the inverse of 
χloc(ω = 0) has
a polynomial dependence on η [Fig. 6(c)]. In the intrinsic limit
(η → 0), we determine that 
χ−1

loc (ω = 0) is scaled to zero
within the fitting accuracy, and thus 
χloc(ω = 0) becomes
singular. Physically, the divergence of local susceptibility
signals the Kondo screening being critical, which is the
hallmark of local quantum criticality [6,9]. Here we emphasize
that, compared with previous studies [22–24], the advantage
of the current scheme is that we can target the behavior at
zero frequency 
χloc(ω = 0) directly, instead of relying on
extracting the scaling behavior first in the low frequency. An
additional support for critical local physics is provided by a
logarithmically scaling form [9]: 
χloc(ω) ≈ α ln |ω|−1 within
the energy window T ∗

K < ω < T 0
K , where the effective Kondo

scale T ∗
K vanishes logarithmically slowly as approaching the

critical point Jz → J c
z . In Fig. 6(a), we show such scaling

behavior indeed emerges in the vicinity of zero frequency (gray
dashed line).

One more advantage of our method is to treat the spin
and charge degrees of freedom on an equal footing. Here
we show the electron spectrum density ρσ (ω) = 1

L

∑
i ρiσ (ω)

around the phase transition in Fig. 7(a), where ρiσ (ω) =
− 1

π
	〈0|ciσ

1
ω−(E0−Ĥ )+iη

c
†
iσ |0〉. In the Kondo insulator phase

(Jz = 1.65 < Jc
z ), the electron density is uniformly distributed

in real space and the spectrum density is gapped with equal
weight below and above the Fermi energy. In the AFM phase
(Jz = 1.95 > Jc

z ), the spin-density wave pattern is formed in
real space, which results in an imbalance of the spectral weight
of the spin-resolved spectral density in the lower and upper
gap edges. In particular, the gap around the Fermi energy in
the spectrum density remains open as Jz crosses the critical
point, consistent with the charge gap evolution in Fig. 2(b).
This result is in striking contrast to the expectation from the
Gutzwiller variational wave function or other auxiliary mean-
field methods [40–42], even for the one-dimensional systems
where the quasiparticle gap in the conduction electron sector
should be closed at the critical point. To further understand this
observation we expect that advanced methods could be applied
to our model, such as the renormalization group analysis [43].
In addition, we find that in the Ising AFM phase the magnitude
of spin polarization �nSDW strongly depends on JK , while the
local moment magnetization mAF is almost unchanged. These
facts indicate that the spin-density wave in the conduction
electron sector is a “slave” to the local spin AFM order, partially
supporting the local critical picture.

IV. CONCLUSIONS

We have presented a thorough numerical study of a continu-
ous phase transition between the Kondo insulator and the anti-
ferromagnetic phases in a modified Kondo lattice model, which
is of great present interest in connection with heavy-fermion
quantum criticality. Around the magnetic phase transition
point, the magnetic order parameter vanishes continuously
and the static susceptibility at the magnetic ordering wave
vector diverges. A concomitant divergence of the static local
susceptibility signals that the Kondo physics also becomes
critical at the quantum critical point. These results provide
a “proof-of-the-principle” example that the local quantum
criticality [9] can also occur for the transition between two
insulating phases, where the Fermi surface becomes irrelevant.
This indicates that the local quantum criticality is a general
paradigm for novel phase transitions, which is applicable for
both heavy-fermion metals [6,9] and heavy-fermion insulators.
Moreover, this work not only helps us understand the role
of dimensionality in quantum criticality, but also opens a
pathway to study novel quantum criticality in one-dimensional
heavy-fermion systems. Very soon experimental realization of
one-dimensional heavy-Fermi systems [27] could be a test-bed
for our proposal.
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