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Interplay of Anderson localization and quench dynamics
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In the context of an isolated three-dimensional noninteracting fermionic lattice system, we study the effects of a
sudden quantum quench between a disorder-free situation and one in which disorder results in a mobility edge and
associated Anderson localization. Salient post-quench features hinge upon the overlap between momentum states
and post-quench eigenstates and whether these latter states are extended or localized. We find that the post-quench
momentum distribution directly reflects these overlaps. For the local density, we show that disorder generically
prevents the equilibration of quantum expectation values to a steady state and that the persistent fluctuations have
a nonmonotonic dependence on the strength of disorder. We identify two distinct types of fluctuations, namely,
temporal fluctuations describing the time-dependent fluctuations of the local density around its time average and
sample-to-sample fluctuations characterizing the variations of these time averages from one realization of disorder
to another. We demonstrate that both of these fluctuations vanish for extremely extended as well as extremely
localized states, peaking at some intermediate value.
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I. INTRODUCTION

Generically, many-body quantum systems have two robust
distinct fates after a quantum quench: thermalization and local-
ization (see Ref. [1] and the references therein). In the former
case, the system effectively serves as a heat bath for small
enough subsystems, resulting in equilibration to a steady state
and the distribution of excess energy (which is deposited into
the system after the quench) in an almost thermal manner. This
behavior stems from the so-called eigenstate thermalization
hypothesis [2–5]. In the latter case, as shown in the seminal
work of Anderson [6], the flow of energy is restricted due to
the presence of disorder, and systems can not act as reservoirs
for themselves. The phenomenology of these nonthermalizing
systems includes two categories: (i) many-body localization,
where interactions play an important role [7–9] and (ii) the
simpler case of single-particle Anderson localization, where
interactions are either absent or unimportant. Signatures of
quantum quench dynamics for both paradigms of thermaliza-
tion and localization are of great interest [10–24].

Historically, the bulk of the studies in the localization
literature have focused on the single-particle case. Despite the
absence of interactions, the physics of Anderson localization
is very rich. In recent years, there has been a surge of interest
in many-body localization, where interactions give rise to
even richer phenomena. Substantial progress in understanding
the nature of the many-body localization has been made
by studying the novel question of the interplay of disorder
and quench dynamics [18,19,21,22,24]. Surprisingly, however,
despite the large body of work on single-particle localization,
this particular aspect, namely, the effects of disorder alone
on the quench dynamics, has remained relatively unexplored
in the literature. Only recently, a few studies have begun to
address this problem. In one spatial dimension, where all
single-particle states are localized even for infinitesimally

small disorder, it was shown that localization can prevent
the emergence of a steady state [25,26]. There have also
been related studies on the effects of quantum dynamics
in systems with quasiperiodic potentials in one-dimensional
models, where either all states are extended or localized
depending on the strength of the quasiperiodic potential [27–
30]. (Although quasiperiodic potentials do not represent an
ensemble of disorder realizations, they are expected to capture
some aspects of the pertinent physics. Other aspects such as
sample-to-sample fluctuations rely on having a true disorder
ensemble.)

Here, we study quench dynamics in the canonical
three-dimensional fermionic model exhibiting the Anderson-
localization transition. Our thrust lies in demonstrating that
Anderson-localization physics and associated features have a
direct effect on the post-quench dynamics, particularly on fluc-
tuation properties of observables. The post-quench behavior of
observables, including their fluctuations, is intimately related
to the nature and the statistics of the disordered wave functions
(see Ref. [31] for a review). In the absence of disorder,
these wave functions are plane waves. At infinite disorder, all
disorder realizations give rise to the same set of onsite localized
eigenfunctions. It is for intermediate strength of disorder that
the salient features of the localization transition and crossover
between these two limits appear. Different realizations of
disorder give rise to an ensemble of quantum eigenstates. Some
states are extended and others are localized. A change between
these two different behaviors involves a phase transition and
an associated diverging localization length. The two phases are
separated by a mobility edge.

Even within the localization regime at higher (but finite)
disorder, there is a wide distribution of localization lengths.
To probe the consequences of these features on dynamics,
we focus on quantum quenches where the system starts in
the ground state of a clean three-dimensional tight-binding

2469-9950/2018/97(24)/245116(11) 245116-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.245116&domain=pdf&date_stamp=2018-06-11
https://doi.org/10.1103/PhysRevB.97.245116


ARMIN RAHMANI AND SMITHA VISHVESHWARA PHYSICAL REVIEW B 97, 245116 (2018)

FIG. 1. Top: schematic of the quench protocol. The system is
initially in the ground state of a clean tight-binding model of spinless
fermions at constant chemical potential μ = 0. A disorder potential
with uniform distribution and strength W (represented by the color
of the lattice sites) is suddenly turned on at t = 0. Bottom: the
nonmonotonic behavior of the post-quench density fluctuations with
the strength of disorder.

Hamiltonian of spinless fermions with translationally invariant
nearest-neighbor hopping at fixed particle number. As shown
in Fig. 1, a disordered chemical potential is then suddenly
turned on. The post-quench time evolution is governed by
the nature of the single-particle eigenfunctions of the final
disordered Hamiltonian (how localized they are, what is the
distribution of the localization lengths, etc.) and in particular
their overlaps with the plane-wave eigenfunctions of the initial
clean system. The more localized the final wave functions are,
the more uniform these overlaps become. The final momentum
distribution (averaged over time and disorder), which, through
time-of-flight measurements, is the most easily accessible
observable in cold-atom experiments (see Ref. [32] and the ref-
erences therein) captures this feature. It monotonically crosses
over from a typical Fermi-Dirac step function for quenches to
small disorder to a uniform distribution for quenches to large
disorder.

Our main results concern the problem of the fluctuations
of real-space density in our system. With regards to feasibility
of measurement, once again, in cold-atomic systems, new in
situ imaging techniques provide direct experimental access to
the real-space density, giving a complementary picture to the
time-of-flight measurements [33–37]. Fluctuation phenomena
are of particular interest in disordered systems as they stem
from multiple sources. As argued in Ref. [25], the presence of
disorder in the final Hamiltonian can prevent the relaxation of

the system to a steady state in the type of systems considered
here, resulting in persistent temporal fluctuations of various
observables [38]. Here, we perform a quantitative analysis
of the temporal fluctuations of local density and show that
they have a nonmonotnic dependence on the strength of
disorder.1

Having an ensemble of final Hamiltonians (and conse-
quently an ensemble of quenches) is one of the distinctive
attributes of disordered systems. Most studies of quantum
quenches, in which a parameter in the Hamiltonian changes
for a system initially in the ground state, are described by a
unique time-dependent wave function. In the quantum quench
we consider here, the parameter undergoing the quench is a
property of a distribution. Conceptually, this quench can be
regarded as an ensemble of quantum quenches [39]: for each
realization of disorder, the chemical potentials μx

W are sud-
denly turned on and the system undergoes unitary evolution.
Observables of interest are then averaged over the realizations
of disorder. In addition to understanding the time evolution
for individual realizations of disorder, the variations of the
dynamics from one sample to another are therefore important
in the full description of the quench. We thus consider a
second type of fluctuations, namely, the fluctuations of the
time averages of the local density from sample to sample.
We find that these sample-to-sample fluctuations also exhibit
a nonmonotonic dependence on the strength of disorder.

Hence, as shown in Fig. 1, both temporal and sample-
to-sample density fluctuations on a given site have a non-
monotonic dependence on the strength of disorder, peaking at
intermediate values of disorder. Temporal fluctuations capture
the absence of equilibration and persist for stronger disorder
than the fluctuations between samples; the former peaks at
stronger disorder than the latter. A distinguishing feature of
these fluctuations is that they appear to survive in the thermo-
dynamic limit. Although our scaling analysis is done for small
systems, we do not observe strong system-size dependence for
sample-to-sample fluctuations. The temporal fluctuations do
decrease with system size. Extrapolation is suggestive of the
survival of these fluctuations in the thermodynamic limit. In
the one-dimensional case, where numerical studies of much
larger systems are possible, more compelling evidence for
the survival of the temporal fluctuation in the thermodynamic
limit was found in Ref. [25]. In equilibrium mesoscopic
systems, many types of fluctuations generically vanish in the
thermodynamic limit due to self-averaging. A classic example,
where fluctuations are not suppressed by self-averaging, is
conductance fluctuations [40,41].

The outline of this paper is as follows. In Sec. II, we present
the model and discuss some of its important features. In Sec. III,
we focus on the behavior of wave-function overlaps and of the
momentum distribution. In Sec. IV, we present our results on
the temporal and sample-to-sample fluctuations of density. We
close the paper in Sec. V with a brief summary and conclusions.

1Nonmonotonic dependence on the strength of disorder has also
been observed in the noise magnitude of equilibrium disordered
systems [55].
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FIG. 2. Real-space schematic of (a) a plane-wave state, (b) an
extended disordered wave function, and (c) and a localized wave
function.

II. MODEL AND THE QUANTUM QUENCH

In this work, we study the prototypical Anderson model
of localization in three spatial dimensions, which exhibits a
localization-induced metal-insulator transition. The Hamilto-
nian describing the system is given by

HW = −�
∑
〈xy〉

(c†xcy + c†ycx) +
∑

x

μx
Wc†xcx, (1)

where cx is the fermionic annihilation operator on site x
of a three-dimensional (3D) cubic lattice and 〈xy〉 indicates
nearest-neighbor sites x and y. The quantity μx

W represents a
random chemical potential drawn from a uniform distribution
[−W

2 ,+W
2 ], with W representing the strength of disorder.

Hereafter, we set the hopping amplitude to unity � = 1. We
assume the system is an L × L × L cubic lattice having
periodic boundary conditions and that M = L3 is the total
number of lattice sites. As the total number of particles N =∑

x c
†
xcx is conserved, we study the dynamics in sectors with

constant density N/M .
In the clean case (W = 0), the Hamiltonian has translation

invariance and momentum is a good quantum number. We
can then write H0 = ∑

k εkc
†
kck, with dispersion relation

εk = −2(cos kx + cos ky + cos kz), where k = (kx,ky,kz) is
the momentum wave vector. The single-particle wave functions
of the clean system are plane waves, as depicted in Fig. 2(a)
by a one-dimensional schematic:

ψn
0 (x) ≡ 〈

x
∣∣ψn

0

〉 = 1√
M

eikn.x, (2)

where n is an integer that labels the momenta k in the order
of ascending energy εk. Degenerate levels are arranged in an
arbitrary manner. However, we always choose the number of
fermions in such a way that all degenerate levels at a given
energy are either empty or occupied, so the arbitrary choice of
the labeling is immaterial for physical properties.

There is no gap in the single-particle spectrum for W = 0
and the system is a Fermi-liquid metal at any density. When

FIG. 3. Left: the density of states and the mobility edges separat-
ing the dark green and light pink regions for three different strengths
of disorder. Right: the magnitudes of the overlaps between these
disordered states and plane-wave eigenfunctions of the clean system.
Black indicates zero overlap (or no states as the plot contains a factor
of the joint density of states) and larger overlaps are shown in lighter
color. The expansion of the light region upon increasing W indicates
that the overlaps are approaching the uniform distribution of Eq. (11).

we add disorder to the system, the wave functions either (i)
remain extended but acquire a characteristic mean-free path
as shown in Fig. 2(b) (roughly speaking for weak disorder the
plane waves with momentum k are perturbed predominantly
mixing with other plane waves of similar energy εk) or (ii)
become localized as shown in Fig. 2(c), where the wave
function effectively has support in a region of characteristic
length ξ known as the localization length with an exponentially
decaying envelope from a localization center (naturally, this
requires the mixing of many plane waves). At a critical energy
Ec, which demarcates the boundary between localized and
extended states, namely the mobility edge, the localization
length on the localized side diverges as |E − Ec|−ν .

In the left-hand column of Fig. 3, we show a few examples
of the (disorder-averaged) density of states for the Hamiltonian
of Eq. (1). The extended (localized) states are shown in light
pink (dark green). For any W > 0 (even for arbitrarily small
disorder), localized states appear at the lowest and highest ends
of the spectrum for energies |E| > Ec with mobility edges
at ±Ec. As we increase W , more states become localized.
Finally, at W ≈ 16.5, Ec → 0, the two mobility edges at ±Ec

meet and the full spectrum becomes localized. In a fermionic
system, the many-body ground state is constructed by filling
the lowest-energy eigenstates up to the Fermi energy EF .
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When considering the equilibrium ground-state properties, the
physics is largely dominated by the nature of the eigenfunction
at the Fermi level. If localized, the conductance vanishes and
the system is an insulator and, if extended, it is a metal.
Therefore, the transport properties of the system depend on
where the Fermi energy EF lies in the spectrum with respect
to the mobility edges.

In the quench problem studied here, the system is initially
in the many-body ground state of the Hamiltonian (1) for
W = 0. As N many-body wave functions are filled in this
fermionic system and each has overlaps with all eigenfunctions
of the disordered Hamiltonian [shown in Figs. 2(b) and 2(c)],
direct detection of the transition in the quench dynamics is
challenging. However, the nature and the statistical properties
of these wave functions and the distribution of overlaps with
the plane waves lead to important crossovers in the behavior of
observables after the quench. In particular, as mentioned ear-
lier, fluctuations of density are suppressed for both extremely
localized and extremely extended states but are sensitive to
the transient region, where either both extended and localized
states are present or there is a large distribution of localization
lengths. In what follows, we study this behavior in more depth
and show that it results in the nonmonotonic behavior depicted
in Fig. 1.

III. WAVE-FUNCTION OVERLAPS, OBSERVABLES,
AND MOMENTUM DISTRIBUTION

Here, we present (i) an analysis of wave-function overlaps
between pre- and post-quench eigenstates, (ii) a generic for-
mulation for evaluating observables after the quench, and (iii)
the behavior of the post-quench momentum distribution.

The overlaps of the initial and final wave functions play
a central role in quantum quench dynamics; here, an analysis
of single-particle wave functions provides most of the required
information. The initial state is a Slater determinant of N plane-
wave single-particle wave functions with the lowest energy εk.
The final Hamiltonian for each realization of disorder similarly
has p = 1 . . . L3 eigenfunctions |ψp

W 〉. At the single-particle
level, for any given initial state |ψn

0 〉, the post-quench time-
dependent state is governed by the overlap between this state
and the eigenstates of the final Hamiltonian. Specifically, the
time dependence of the wave function can be written as

ψn
0 (x,t) =

∑
p

〈
ψ

p

W

∣∣ψn
0

〉
e−iε

p

W tψ
p

W (x), (3)

in terms of the overlaps 〈ψp

W |ψn
0 〉 (throughout the paper we

set h̄ = 1). Clearly, if W = 0, this overlap is δpn. For weak
disorder, the nature of the wave functions ψ

p

W (x) is determined
by the scattering of plane waves off of the disorder potential. To
leading order, such scattering mixes plane waves with momenta
that are close in energy. Therefore, although the overlaps
spread from the delta function above, they remain negligible
for states that are far away in energy. As the disorder strength
is increased, the disordered wave functions become localized
starting at the edges of the spectrum. These localized wave
functions are superpositions of a large number of plane waves,
which result in an almost uniform distribution of overlaps.

In the right-hand side of Fig. 3, we show several numerically
computed plots of the average overlaps with plane-wave

eigenstates of the clean system. The horizontal axis shows the
energy E′ of an eigenstate of the clean Hamiltonian, while
the vertical shows E, that of the disordered Hamiltonian.
Black indicates zero overlap, while lighter colors denote
larger overlaps. As expected, for small disorder, only states
close to the diagonal have a large overlap, whereas for large
W we approach the situation where each initial plane-wave
eigenstate has large overlaps with all the eigenstates of the
final Hamiltonian.

Before discussing the momentum distribution, we formu-
late the post-quench dynamics description for generic ob-
servables in terms of associated operators and wave-function
overlaps. The initial and final Hamiltonians can be written
as H0 = 	†H0	 and HW = 	†HW	, respectively, where
	† ≡ (c†1 . . . c

†
M ), and HW is an M × M Hermitian matrix.

For one realization of disorder, the quantum expectation value
of a quadratic operator

O = 	†O	, (4)

where O is an M × M matrix, can then be computed at time t

by writing the Heisenberg operator

O(t) = eiHW tOe−iHW t = 	†(eiHW tOe−iHW t )	. (5)

Both clean (W = 0) and disordered (W > 0) single-particle
Hamiltonians can be diagonalized by a unitary transformation
as

HW = UWDWU
†
W, (6)

where DW = diag(ε1
W . . . εM

W ), where εn
W is an eigenvalue of

HW and the columns of the matrix UW are the corresponding
single-particle eigenfunctions ψn

W (x) of the nth single-particle
level (εn

W ≤ εn+1
W ).

In terms of quasiparticle operators

�
†
W ≡ (

γ
†1
W . . . γ

†M
W

) = 	†UW, (7)

the Hamiltonians can then be written as HW = �
†
WDW�W =∑

p ε
p

Wγ
†p
W γ

p

W . Using Eqs. (6) and (7), we can then write
Eq. (5) as

O(t) = �
†
0

(
U

†
0UWeiDW tU

†
WOUWe−iDW tU

†
WU0

)
�0, (8)

where the subscript 0 indicates W = 0 in Eq. (7), i.e., �
†
0 ≡

(γ †1
0 . . . γ

†M
0 ) = 	†U0, where the matrixU0 contains the plane-

wave eigenfunctions of the clean Hamiltonian [see Eq. (3)].
As we are working in the Heisenberg picture, we need to

take the expectation value of Eq. (8) with the initial many-body
state, which is a Fermi sea of N quasiparticles �0 occupying
the lowest-energy states:

|	(0)〉 =
∏
n≤N

γ
†n
0 |0〉, (9)

where |0〉 is the vacuum. It is easy to observe that only the first
N diagonal elements of the M × M matrix appearing between
�
†
0 and �0 contribute and the quantum expectation value is

given by

〈O(t)〉 =
∑
n≤N

(
U

†
0UWeiDW tU

†
WOUWe−iDW tU

†
WU0

)
nn

. (10)
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The above expression for the quantum expectation value of
a general quadratic operator after the quench, can be used as
a building block (using the Wick’s theorem) for computing
the expectation values of higher-order operators. In this paper,
however, we only discuss quadratic operators.

Now for the operator O = c
†
xcy, which will play a role in

subsequent discussions, the above equation leads to

〈c†x(t)cy(t)〉 =
∑

pq;n≤N

ψ
∗p

W (x)ψq

W (y)
〈
ψn

0

∣∣ψp

W

〉〈
ψ

q

W

∣∣ψn
0

〉
ei(εp

W −ε
q

W )t ,

(11)

where the single-particle overlap is given by 〈ψm|ψn〉 ≡∑
x ψm(x)ψn(x). After some transient time, the expectation

value above settles relatively close to its time average, with
some persistent temporal fluctuations around it. We refer to this
state as a quasi-steady state because the temporal fluctuations
appear to survive even in the thermodynamic limit. In the next
section, focusing on the local density nx = c

†
xcx, we discuss

these fluctuations in more detail.
In evaluating the behavior of any observable O, we have

three possible averages to take into account. As discussed
above, we have the quantum expectation value (denoted by
〈O〉) and we assume that this is always taken as the first
step. We then have the time average (denoted by an overline),
which we take in the long-time limit. For a general time-
dependent object f (t), the time average is defined as f ≡
limT →∞ 1

T

∫ T

0 dt f (t). Finally, we have the disorder average
taken over many samples and we denote this as E(. . . ), where
the dots could be any operator or scalar property of the system
(which may or may not depend on time). We summarize these
conventions in the table below:

Quantum average Time average Disorder average

〈. . . 〉 . . . E(. . . )

We do not expect any spectral degeneracies for a disordered
system (with as many random chemical potentials as the
number of energy levels). Therefore,

ei(εp

W −ε
q

W )t = δpq. (12)

We now consider the time-averaged behavior of the observable
O = c

†
xcy of Eq. (11). The only contributions come from the

diagonal terms p = q. Hence, we can write

〈c†xcy〉 =
∑

p;n≤N

ψ
∗p

W (x)ψp

W (y)
∣∣〈ψn

0

∣∣ψp

W

〉∣∣2
. (13)

Turning to physically motivated situations, the easiest quan-
tity to observe in time-of-flight experiments is the momentum
distribution. Here, to present a direct and simple measure for
capturing our analysis of wave-function overlaps, we discuss
the time and disorder average of the quantum expectation
value of the momentum distribution. In a different scenario,
where the atomic cloud is released from a trap, signatures of
localization in the momentum distribution have been studied in
Refs. [42–45]. Consider the Fourier transform of the fermion

0
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FIG. 4. The long-time-limit disorder-averaged momentum dis-
tribution for various densities and strengths of disorder W (in the
post-quench Hamiltonian) along a line kx = ky = kz in the Brillouin
zone. Upon increasing W , the momentum distribution crosses over
from a Fermi-Dirac step function to a uniform distribution.

annihilation operator

ck = 1√
M

∑
x

e−ik.xcx. (14)

Using the above expression, the occupation of mode ck is then
given by

nk ≡ c
†
kck = 1

M

∑
xy

eik.(x−y)c†xcy. (15)

The above occupation number of Fourier modes ck can be read-
ily measured in time-of-flight experiments. Using Eqs. (15)
and (13), we have numerically computed the time and quan-
tum averaged 〈nk〉 for each realization of disorder. We have
randomly generated enough realization so that the disorder
average E(〈nk〉) of this quantity converges in the number of
realizations.

The results are shown in Fig. 4. As expected for small W ,
the occupation number remains close to the initial Fermi-Dirac
distribution. As the overlaps between the eigenstates of the
clean and the disordered system become more uniform, the
momentum distribution approaches a constant value (equal
to the density N/M) that is independent of k. This can
be seen explicitly in the limit of W → ∞, where we can
neglect all the hopping terms. When the ratio of hopping to
disorder strength approaches �/W → 0, the probability of
|�| � |μx

∞| goes to one [recall that the hopping amplitude
� was set to unity in Eq. (1)]. In this strong disorder limit,
the wave functions are then localized on individual lattice
sites ψ

p
∞(x) = δx,xp

. The index p labels the eigenfunctions.
As each eigenfunction is localized on one lattice site, there
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is a one-to-one correspondence between the lattice sites and
eigenfunctions so we label the sites with the same index p,
i.e., ψ

p
∞(x) is localized on site xp. In this limit, we have

〈ψn
0 |ψp

∞〉 = 1√
M

eikn.xp , which gives

∣∣〈ψn
0

∣∣ψp
∞

〉∣∣2 = 1/M. (16)

Inserting the above expression into Eq. (13) then gives

〈c†xcy〉|W→∞ = N

M

∑
p

ψ
∗p

W (x)ψp

W (y) = N

M
δxy, (17)

where we have used the condition of the unitarity. Using
Eq. (15), we then find 〈nk〉|W→∞ = N/M .

While the features of the average momentum distribution
reflect localization physics to some degree, we now show that a
full-fledged analysis involving temporal and sample-to-sample
fluctuations brings out richer effects.

IV. TEMPORAL AND SAMPLE-TO-SAMPLE DENSITY
FLUCTUATIONS

A. Formalism and connection with final eigenstates

In this section, we consider the fluctuations of local den-
sity nx = c

†
xcx on a site x. Local observables such as nx

generically exhibit strong quantum fluctuations characterized
by 〈n2

x〉 − 〈nx〉2 = 〈nx〉(1 − 〈nx〉), where we have made use
of the relationship n2

x = nx. As the quantum fluctuations are
simply related to quantum expectation values 〈nx〉, here we
only focus on temporal and sample-to-sample fluctuations of
these quantum averages as discussed below. The treatment for
temporal fluctuations is similar to those of previous works,
which considered fluctuations for the one-dimensional case
[25,26]. However, we present results on the dependence of
these fluctuations on disorder strength in three dimensions.
We also present results on sample-to-sample fluctuations.
Our underlying assumption is that for a given sample (i.e.,
realization of disorder), the quench experiment can be carried
out over and over and, thus, the local density at time t after the
quantum quench can be measured many times, yielding time-
and sample-dependent quantum expectation values 〈nx(t)〉 (see
Fig. 1). Moreover, throughout this paper, we focus on the
quasi-steady states reached after the transient de-phasing time
scales.

Generically, local observables O are expected to equilibrate
at long times, i.e., when t → ∞, 〈O(t)〉 − 〈O〉 → 0. It has
been recently suggested, however, that disordered systems may
not equilibrate in the above sense due to their nonsmooth spec-
tral properties [25,26]. As the standard notion of thermalization
(either to the Gibbs or the generalized Gibbs ensemble) relies
on equilibration (the decay of temporal fluctuations), these
systems do not thermalize. In the absence of equilibration, we
thus have the following hierarchy of fluctuations: (i) quantum
fluctuations in a given sample at a fixed time (not discussed
further in this paper), (ii) temporal fluctuations of the quantum
expectation values around their time average for a typical
sample, and (iii) sample-to-sample fluctuations of the above-
mentioned time averages. In analogy with the various types of
moments used to characterize noise-driven systems [46], we
characterize the fluctuations (ii) and (iii), respectively, by the

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

FIG. 5. The blue circles represent 〈nx(t)〉, the density on site x at
time t after the quench in a system having M = 103, N = 500, and
W = 4 for various realizations of disorder. The temporal fluctuations
around the time averages 〈nx〉 (red solid lines) persist in the limit
of t → ∞ and are characterized by Eq. (18). The sample-to-sample
fluctuations of 〈nx〉 around their average (dashed black line) are
characterized by Eq. (19).

following moments:

Vart [O] ≡ E[〈O〉2 − (〈O〉)2], (18)

Vars[O] ≡ E[(〈O〉)2] − (E[〈O〉])2, (19)

where various averages are denoted in the table in the previous
section. The variation Vart [O] encodes how much the time-
dependent 〈O(t)〉 fluctuates around its time average 〈O〉 for an
average sample, while Vars[O] characterizes the fluctuations
of the time average 〈O〉 from sample to sample.

To visualize the two types of fluctuations above, we consider
the behavior of 〈nx(t)〉 for different samples as shown Fig. 5
(for a system of L = 10 at half-filling after a sudden quench
from W = 0 to 4 as an example). The blue circles represent
〈nx(t)〉 (for a particular site x) as a function of time. Different
data sets correspond to various samples. As seen in the figure,
for each sample, 〈nx(t)〉 keeps fluctuating around its time
average 〈nx〉 and does not relax even in the limit of t → ∞.
We mention that we have observed that this behavior persists
over timescales that are several orders of magnitude larger than
what is shown in the figure. Moreover, the time averages 〈nx〉
(shown in red lines) strongly fluctuate from sample to sample.
In the discussion above, we arbitrarily chose a fixed site x. With
periodic boundary conditions, all sites are equivalent upon
disorder averaging and the choice of the site x is unimportant.
We note in passing that the sample-to-sample fluctuations
are very similar to position-to-position fluctuations in a given
sample in the thermodynamic limit.

Before quantifying the fluctuations (18) and (19), we
present a qualitative discussion of the fluctuations. From
Eq. (11) for x = y, we have

〈nx(t)〉 =
∑

pq;n≤N

ψ
∗p

W (x)ψq

W (x)
〈
ψn

0

∣∣ψp

W

〉〈
ψ

q

W

∣∣ψn
0

〉
ei(εp

W −ε
q

W )t .

(20)

From Eq. (12), it is clear that temporal fluctuations are due
to a contribution of states p and q with different energies in
Eq. (20). If W = 0, there is no quench and everything is sta-
tionary. Mathematically, a nonzero product 〈ψn

0 |ψp

W 〉〈ψq

W |ψn
0 〉
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requires p = q = n, making the temporal fluctuations vanish.
As we increase W , we can see from Fig. 3 that the spreading
of the overlaps 〈ψn

0 |ψp

W 〉 allows for a larger contribution
from states with εp = εq . However, the product ψ

∗p

W (x)ψq

W (x)
has a competing effect that sets in at very large W . As we
showed earlier, ψ∗p

∞ (x) = δx,xp
, so when the localization length

approaches the lattice spacing, the product ψ
∗p

W (x)ψq

W (x)
vanishes for p = q, which obliterates the temporal fluctuations
of Eq. (20).

Analogous arguments can be made about the sample-to-
sample fluctuations. As mentioned before, we assume that
there are no accidental degeneracies in the spectrum of the
disordered Hamiltonian and that, therefore, Eqs. (12) and (13)
hold. Now, Eq. (13) immediately leads to

〈nx〉 =
∑

p;n≤N

∣∣ψp

W (x)
∣∣2∣∣〈ψn

0

∣∣ψp

W

〉∣∣2
. (21)

Note that after averaging over disorder, the system must exhibit
translation invariance and E[〈nx〉] = 1

M
E[

∑
x 〈nx〉] = N/M

for all x. We can see this explicitly from Eq. (21) by using the
normalization

∑
x |ψp

W (x)|2 = 1 and the resolution of identity∑
p |ψp

W 〉〈ψp

W | = I.
Clearly, for weak disorder, there is little difference between

different samples. Increasing W from 0 makes the wave
functions for various realizations of disorder different and
can increase the variations of expression (21) from sample to
sample. However, once again, very large disorder suppresses
the fluctuations. For W → ∞ this can be seen from Eq. (17),
where the time average of the density is N/M , independent
of the realization of disorder. We argued that the temporal
fluctuations vanish when all localization lengths approach
the lattice spacing. For sample-to-sample fluctuations, on the
other hand, we will later argue that even for relatively large
localization length, if there is not much variation in ξ , the
fluctuations become suppressed. Therefore, after the initial
increase as a function of W , the sample-to-sample fluctuations
begin to decrease at weaker disorder strength in comparison
with the temporal fluctuations.

We now proceed to calculate the moments (18) and (19) (for
O = nx). To compute the moment (18), we need 〈nx〉2, which
can be found by using the time average [25]

ei(εp

W −ε
q

W +ε
p′
W −ε

q′
W )t = δpqδp′q ′ + δpq ′δp′q − δpqδqp′δp′q ′ . (22)

In obtaining the expression above, we have assumed that
we are working with a finite system of size L in the limit
of long times t → ∞ and then we have taken the limit of
large system size. The time average in the equation above
is nonvanishing only if the oscillatory term is time indepen-
dent, i.e., ε

p

W − ε
q

W + ε
p′
W − ε

q ′
W = 0. For a discrete spectrum

(corresponding to a finite system), without any accidental
degeneracies in energies and energy gaps, this can be achieved
when p = q and p′ = q ′ or p = q ′ and p′ = q, giving rise to
the first two terms on the right-hand side of Eq. (22). The last
term in the equation is added to correct for the overcounting
when p = q = p′ = q ′. If the thermodynamic limit L → ∞
is taken before the limit of t → ∞ (in the definition of the
time average), we do not have a discrete spectrum. For a
continuous spectrum, the time average will be nonzero on
a three-dimensional plane of the four-dimensional (pqp′q ′)

space characterized by ε
p

W − ε
q

W + ε
p′
W − ε

q ′
W = 0, while in the

discrete case, the time average is nonzero on a two-dimensional
subset of this four-dimensional space. In practice, the order of
limits we consider implies that the timescales are much longer
than the inverse level spacing of the system.

We can then write the following expression for one realiza-
tion of disorder:

〈nx〉2 − (〈nx〉
)2 =

∑
p =q;n,n′≤N

∣∣ψp

W (x)
∣∣2∣∣ψq

W (x)
∣∣2〈

ψn
0

∣∣ψp

W

〉

× 〈
ψ

q

W

∣∣ψn
0

〉〈
ψn′

0

∣∣ψq

W

〉〈
ψ

p

W

∣∣ψn′
0

〉
. (23)

Interestingly, Eqs. (21) and (23), which characterize the
asymptotic sample-to-sample and temporal density fluctua-
tions through the moments (18) and (19) (for O = nx), are
independent of the eigenvalues ε

p

W and can be be obtained from
the statistics of eigenfunctions ψ

p

W (x) alone. Such statistics has
been the subject of intensive studies, e.g., using supersymmet-
ric nonlinear sigma models [31,47].

Using the translation invariance of the system (upon dis-
order averaging), we can write both variances Vart,s[nx]
in a form that is explicitly independent of x: Vart,s[nx] =
1
M

∑
x Vart,s[nx], which leads to

Vart [nx]

=
∑
p =q

n,n′≤N

E

[
C

pq

W

M2

〈
ψn

0

∣∣ψp

W

〉〈
ψ

q

W

∣∣ψn
0

〉〈
ψn′

0

∣∣ψq

W

〉〈
ψ

p

W

∣∣ψn′
0

〉]
,

(24)

Vars[nx]

=
∑
p,q

n,n′≤N

E

[
1

M2

(
C

pq

W − 1
)∣∣〈ψn

0 |ψp

W

〉∣∣2∣∣〈ψn′
0

∣∣ψq

W

〉∣∣2
]
,

(25)

where the two-eigenfunction correlator C
pq

W is defined as

C
pq

W ≡ M
∑

x

∣∣ψp

W (x)
∣∣2∣∣ψq

W (x)
∣∣2

. (26)

The statistics of C
pq

W has been studied in the context of the
statistical properties of disordered eigenfunctions. For p = q,
it is related to the inverse participation ratio, whose scaling
with system size is an important diagnostic for distinguishing
localized and extended states. It is easy to observe that for an
extended state p, Cpp

W does not scale with the system size, while
for a localized state it scales with M . The behavior of C

pq

W for
two different eigenstates has also been studied. If at least one of
the eigenstates is extended, Cpq

W ≈ 1. If both of the eigenstates
are localized, C

pq

W vanishes most of the time, except when the
localized wave functions overlap. It was shown in Ref. [48]
that, on average, we have E[Cpq

W ] ≈ 1 in this case as well.
We can further show that the fluctuations are symmetric

under the transformation N → M − N . We first consider
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Vart [nx] with M − N particles:

Vart [nx]|N−M =
∑
p =q

M−N<n,n′

E

[
C

pq

W

M2

〈
ψ

q

W

∣∣(1 − ∣∣ψn
0

〉〈
ψn

0

∣∣)

× ∣∣ψp

W

〉〈
ψ

p

W

∣∣(1 − ∣∣ψn′
0

〉〈
ψn′

0

∣∣)∣∣ψq

W

〉]
, (27)

where we have used the resolution of identity. Now, since
〈ψp

W |I|ψq

W 〉 = δpq and the sum is over p = q, we find that
Vart [nz]|N−M is given by the same expression as Vart [nz]|N
except the sums over n and n′ are over the N highest-energy
wave functions as opposed to the N lowest-energy ones.
Noting that the sums over p and q are over all levels and
the overlaps 〈ψn

0 |ψp

W 〉 on average have a symmetric structure
under E → −E (see Fig. 3), we conclude that the fluctuations
must be symmetric around half-filling. We can give a similar
argument for the sample-to-sample fluctuations again by using
the resolution of identity to relate the sum over M − N low-
lying states to a sum over the N highest-energy states. Here,
we need to show that

∑
p,q

M−N<n,n′

E

[
1

M2

(
C

pq

W − 1
)〈
ψ

p

W

∣∣I∣∣ψp

W

〉〈
ψ

q

W

∣∣I∣∣ψq

W

〉] = 0,

(28)

which follows from 〈ψp

W |I|ψp

W 〉 = 〈ψq

W |I|ψq

W 〉 = 1 and∑
p (Cpq

W − 1) = 0 [see Eq. (26)].

B. Numerical results and analysis

Having obtained tractable forms for the temporal and
sample-to-sample fluctuations in terms of the eigenstates of
the final Hamiltonian, in this section, we discuss the behavior
of these moments using numerical simulations and corrobo-
rating analysis. We first compute the moments (24) and (25)
associated with these two fluctuations by direct numerical
computation. The behavior of these moments as a function
of the density N/M is shown in Fig. 6 for a system size
of L = 8 for quenches terminating in a series of different
disorder strengths W . We have obtained good convergence
in the disorder-averaged moments by averaging over 1000
samples. For a given disorder strength, we see that both
fluctuations increase as a function of density, naturally doing
so as more sites become filled. They reach a peak around
half-filling, and then decrease again as the density increases
towards unity, thus allowing fewer and fewer empty sites for
fluctuations. The trend holds for all quench disorder strengths.
The unique feature that emerges from an interplay between
quench dynamics, wave-function overlaps, and localization
physics, as discussed in previous sections and what follows,
is that both fluctuations show nonmonotonic behavior as a
function of disorder strength.

In Fig. 7, we plot the moments at a fixed density (near
half-filling for which the maximum occurs) as a function of
W , which shows a peak at finite W . We clearly see the non-
monotonic behavior. In addition to the nonmonotonic behavior
itself, an important observation is that the peak for temporal
fluctuations appears at a much higher W . Figure 7 summarizes

0 0.2 0.4 0.6 0.8 1
0
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0.03

0.04
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0.5

1

1.5

2

2.5 10-3

FIG. 6. Moments (18) and (19) of the local density nx as a function
of the average density N/M for various W for L = 8. The increasing
(decreasing) maximum fluctuations as a function of W are indicated
by a dashed (solid) line. The apparent imperfect symmetry of the
sample-to-sample fluctuations around half-filling is an artifact of
using a finite number of realizations in averaging over disorder.

the main findings of this work. We provided arguments in
Sec. IV A for the nonmonotonic behavior of both temporal and
sample-to-sample fluctuations. To reiterate the salient points,
first, by construction, both moments Vart,s[nx] ≥ 0. We then
consider the two extreme cases of extended (W = 0) and
localized (W → ∞) states. As argued in the previous section,

Vart,s[nx]|W=0 = Vart,s[nx]|W→∞ = 0. (29)

0 20 40 60 80
0

0.02

0.04

0

1

2

3
10-3

FIG. 7. The dependence of the sample-to-sample and temporal
fluctuations on W for a fixed density N/M = 0.434 for L = 8. Both
fluctuations exhibit a nonmonotonic dependence on W , first ascending
and then descending. However, the temporal fluctuations peak at a
much higher W as they rely on reaching localization lengths of the
order of the lattice spacing.
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The above extreme-value calculations immediately imply a
nonmonotonic behavior for both moments (unless they identi-
cally vanish for all W ).

To elucidate, considerations of the previous section show
that for the sample-to-sample fluctuations, Eq. (17) immedi-
ately implies that all time-averaged densities are equal to N/M

independent of the sample and therefore Vars[nx]|W→∞ = 0.
(It is obvious that for W = 0 all samples are the same and there
can not be any sample-to-sample fluctuations.) As a check, we
find that (25) agrees with the above: For W = 0, we have plane
waves (2) with |ψp

0 (x)|2 = 1/M and, therefore, Cpq

0 = 1 so all
the terms in sum (25) vanish individually. For W → ∞, on the
other hand, we have ψ

p
∞(x) = δx,xp

[state p with wave function
ψ

p
∞(x) is localized on site xp] and it follows from Eq. (26) that

Cpq
∞ ≡ lim

W→∞
C

pq

W = Mδpq. (30)

This leads to

lim
W→∞

Vars[nz] = N2

M4

∑
pq

(Mδpq − 1) = 0. (31)

Similar considerations can be applied to the temporal fluc-
tuations. In particular, for W = 0, the overlaps in (24) give
δnpδqnδn′pδqn′ , which vanishes for p = q (notice that the sum is
over p = q). For W → ∞, again C

pq
∞ = Mδpq , which makes

the sum over p = q vanish in Eq. (24).
In analyzing the nonmonotonicity, the simple argument

above does not explain why the peak for the temporal fluctu-
ations appears at a much larger W . As mentioned previously,
the decreasing sample-to-sample fluctuation relies on the
localization lengths becoming uniform (rather than small as
in the case of temporal fluctuations) and therefore sets in at
smaller W . For large enough disorder, we can assume roughly
that the overlaps appearing in the two expressions (24) and
(25) are uniform and can be factored out of the sum. This is
of course a rough approximation but gets better for larger and
larger W . We can now observe the key difference between the
two types of moments. If we assume that the states are localized
with a localization ξ , Cpq

W goes as M/ξ 3 with probability ξ 3/M

and vanishes otherwise. This indicates that E(Cpq

W − 1), which
appears in Eq. (25), is not sensitive to the value of ξ and
vanishes to leading order. On the other hand, E(Cpq

W ) itself,
which appears in Eq. (24), does not vanish. The temporal
fluctuations become significantly suppressed only when C

pq

W

approaches the W → ∞ result due to the exclusion of p = q

terms in the sum.
Finally, a comment is in order regarding the finite-size

effects in the above results. It was shown in Ref. [25] that
the temporal fluctuations in one dimension eventually saturate
to finite values as L → ∞. Here, we study this finite-size
dependence in the three-dimensional case both for temporal
and sample-to-sample fluctuations. In Fig. 8, we show the two
moments for W = 19 and various system sizes from L = 6
to 14. The sample-to-sample fluctuations actually increase
slightly with system size but quickly saturate the same value.
We found that L = 12 and 14 have very close values of
fluctuations for the same density and noise strength. The tem-
poral fluctuations, on the other hand, decrease with increasing
system size.

0

0.5

1

1.5
10 -3

0 0.2 0.4 0.6 0.8 1
0

0.005
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0.015

0.02

FIG. 8. Moments (18) and (19) of the local density nx as a
function of global average density N/M for various L for W = 19.
The sample-to-sample fluctuations exhibit very weak system-size
dependence. The temporal fluctuations slowly decay with system size.
Despite small system sizes, extrapolation toL → ∞ suggests survival
of these fluctuation in the thermodynamic limit.

A similar behavior was observed in Ref. [25], where much
larger systems can be studied, but it was found that the temporal
fluctuations saturated to finite values. In our three-dimensional
system, it is not easy to reach the saturation regime for the
temporal fluctuations. As shown in Fig. 9, the maximum of
Vart [nx] (occurring at half-filling) for fixed W fits very well
to a quadratic polynomial of 1/L. The extrapolation based on
this quadratic fit is strongly suggestive of the survival of the
temporal fluctuations even in the thermodynamic limit.

The rise and fall of the two different types of density
fluctuations as a function of disorder strength as well as
the separation of energy scales for the peak in the temporal
and sample-to-sample fluctuations are the key results of this
paper. These behaviors are in contrast to quantum quenches
in clean systems. They emerge as a subtle interplay between

0 0.05 0.1 0.15
0

0.5

1

10 -3

FIG. 9. Extrapolation of the maximum value of Vart [nx] (at half-
filling) to the thermodynamic limit using a fit to a quadratic function
of 1/L, supporting the survival of these fluctuation for L → ∞.
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quench dynamics, wave-function overlaps, and localization
physics, and capture the manner in which features of the
Anderson-localization transition are encoded in the nature of
the eigenfunctions and their statistical ensemble. The reduction
of temporal fluctuations for strong disorder leads to the ob-
servation that increasing disorder could help with observable
equilibration.

V. CONCLUSIONS

In summary, in a tight-binding model exhibiting Ander-
son localization, we analyzed a quantum quench consisting
of suddenly switching on a disordered potential. While the
Anderson transition does not lead to a sharp transition in
the resultant post-quench dynamics due to the contribution of
many single-particle fermionic levels, the salient features of the
transition, namely, the nature and the statistics of the disordered
eigenfunctions, give rise to important crossover behaviors.
The crossover in the behavior of the overlaps between the
final (disordered) and initial (clean) eigenfunctions plays a
central role. We demonstrated that as a consequence of the
uniform overlaps between localized and extended states, upon
increasing the strength of disorder, the momentum distribution
at long times after the quench crosses over from the Fermi-
Dirac distribution to a constant distribution.

We then turned to the fluctuations of the local density,
which constitute the main results of this paper. The persistent
temporal fluctuations are a signature of the absence of equi-
libration in these systems. Interestingly, they survive even in
the limit of infinite time and large system sizes. In addition to
temporal fluctuations, there are other sources of fluctuations
and, in particular, the variations of time averages from sample
to sample. Neither of these two types of fluctuations monoton-
ically increases with increasing the strength of disorder. For
large disorder strength, they both decrease after some value of
disorder strength that depends on the density.

While both fluctuations vanish in the limit of infinite
disorder, the temporal fluctuations begin to decrease at a much

larger disorder. This is because the reduction in temporal
fluctuations relies on reaching regimes where all states are
localized with a localization length of the order of the lattice
spacing, whereas for the sample-to-sample fluctuations, many
extended states and localized states having relatively uniform
localization lengths do not contribute to the fluctuations at
high enough disorder (where the overlaps between clean and
disordered eigenfunctions are roughly uniform).

Our results provide a systematic study of a relatively
unexplored problem of the interplay of a system with an
Anderson transition and its quench dynamics. They reveal
intimate relations between the statistics of the disordered
eigenfunctions and post-quench behavior of observables and
in particular their fluctuations (which are unique to disordered
systems).

The problem of unitary evolution in disordered systems
is especially interesting in light of the recent experimental
progress on realizing disordered landscapes and Anderson
localization in cold-atomic gases [49–54]. The predictions
made here would be potentially testable in and highly relevant
to such cold-atomic settings. For example, the momentum
distribution is directly probed by time-of-flight experiments.
Our results on the sample-to-sample and temporal fluctuations
of the local density can also be observed through in situ imaging
of the real-space density [33–37]. These systems would thus
provide an ideal playground for investigating the Anderson-
localization physics based on quench dynamics explored in
this work.
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