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Gutzwiller projection for exclusion of holes: Application to strongly correlated
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We consider the strongly correlated limit of variants of the Hubbard model in which on parts of the system it
is energetically favorable to project out doublons from the low-energy Hilbert space while on other sites of the
system it is favorable to project out holes while still allowing for doublons. As an effect the low-energy Hilbert
space itself varies with sites of the system. Though the formalism is well developed for the case of doublon
projection in the literature, the case of hole projection has not been explored in detail so far. We derive the basic
framework by defining creation and annihilation operators for electrons in a restricted Hilbert space where holes
are projected out but which still allows for doublons. We generalize the idea of the Gutzwiller approximation for
the case of hole projection, which has been done in the literature for the case of doublon projection. To be specific,
we provide a detailed analysis of the strongly correlated limit of the ionic Hubbard model which has a staggered
potential � on two sublattices of a bipartite lattice and the correlated binary alloys which have binary disorder
±V/2 randomly distributed on sites of the lattice. In both cases, for � ∼ U � t and for V ∼ U � t , where U

is the Hubbard energy cost for having a doublon at a site, there are sites on which doublons are allowed while
holes are the maximum energy states. We do a systematic generalization of similarity transformation for both
these cases and obtain the effective low-energy Hamiltonian. We further derive Gutzwiller approximation factors
which provide renormalization of various terms in the effective low-energy Hamiltonian due to the Gutzwiller
projection operators, excluding holes on some sites and doublons on the remaining sites.
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I. INTRODUCTION

Strongly correlated systems are of immense interest and im-
portance in condensed matter physics. Strong e-e interactions
leads to many interesting phases like high-Tc superconductiv-
ity, antiferromagnetically ordered phases, and Mott insulators.
The Hubbard model is a paradigmatic model in strongly cor-
related electron systems with two simple ingredients, namely,
hopping of electrons (∼t) and on-site Coulomb interaction (∼
U ). In the limit of large U and finite hole doping, doublons are
energetically unfavorable and need to be projected out from the
low-energy Hilbert space. A regular similarity transformation
which projects out double occupancies gives the effective
low-energy Hamiltonian which is known as the t-J model
[1] and captures many aspects of the physics of high-Tc

superconducting cuprates [2].
The t-J model is defined in the projected Hilbert space

and since Wick’s theorem does not work for the fermionic
operators in the projected Hilbert space, standard many-
body physics tools of calculating various order Feynman
diagrams for the self-energy [3] cannot be used to solve
this model. One needs to solve the Schwinger equation of
motion for the Green’s function of projected electrons [4]
and use a systematic perturbation theory in some parameter
that controls double occupancy. Numerically, the t-J model
can be studied using the variational Monte Carlo method [5]
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where one starts with a variational wave function and then
carries out doublon projection from each site explicitly. But
because of the computational complexity, another alternative
analytical tool most commonly used in the community as an
approximate way of implementing the projection of double
occupancies is known as the Gutzwiller approximation. The
Gutzwiller approximation, as first introduced by Gutzwiller
[6], was improved and investigated later by several others [7]
mainly in the context of the hole-doped t-J model. Under
this approximation, the expectation value in the projected
state is related to that in the unprojected state by a classical
statistical weight factor know as the Gutzwiller factor that
accounts for doublon exclusion. As an effect various terms
in the Hamiltonian become renormalized by the Gutzwiller
factors and the renormalized Hamiltonian can be studied in
the unprojected basis.

Though the Gutzwiller projection for exclusion of doublons
has been explored in detail in the literature, the Gutzwiller
projection of holes from the low-energy Hilbert space and its
implementation in renormalizing the couplings in the effective
low-energy Hamiltonian at the level of the Gutzwiller approx-
imation are still completely unexplored. There are models,
like the electron-doped t-J model, where in the low-energy
Hilbert space one has to allow for doublons and holes have to
be excluded. But in this situation it is not really essential to use
the formalism of the Gutzwiller projection for holes as one can
simply do particle-hole transformation and map the model to
the hole-doped t-J model where the low-energy Hilbert space
allows for holes excluding doublons. But there are situations
where the Gutzwiller projection of holes becomes crucial to
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carry out, e.g., in a model where on some of the sites it is
energetically favorable to do hole projection while on some
other sites doublon projection is required. With this motivation,
we provide the basic formalism for the Gutzwiller projection
of holes and calculate the Gutzwiller factors for implementing
this projection approximately by renormalizing the couplings
in the low-energy Hamiltonian for a couple of such models.

In this work we provide a general formalism for study-
ing variants of the strongly correlated Hubbard model with
inhomogeneous on-site potential terms of the same order as
U or larger than that. Due to competing effects of on-site
potential and U , there are sites at which holes are the maximum
energy states (rather than doublons) and should be projected
out from the low-energy Hilbert space. We do a systematic
extension of the similarity transformation in which the sim-
ilarity operator itself varies from bond to bond depending
upon whether both sites of the bond have doublon-projected
low-energy Hilbert space dominated by large-U physics, or
both have hole-projected low-energy Hilbert space, or one of
the sites on the bond has a hole-projected and the other site
has a doublon-projected low-energy Hilbert space. We further
calculate generalized Gutzwiller approximation factors for
various terms in the low-energy effective Hamiltonian which
are also bond dependent. Gutzwiller factors for bonds where
one site requires hole projection and the other has doublon
projection or where both the sites have hole projection have
not been calculated in the literature earlier and in this work we
derive them under the assumption that spin-resolved densities
before and after the projection remain the same.

To be specific, we provide details of the formalism for
two well-studied models, namely, the ionic Hubbard model
(IHM) and correlated binary alloys represented by the Hub-
bard model in the presence of binary disorder. IHM is an
interesting extension of the Hubbard model with a staggered
on-site potential � added onto it. IHM has been studied in
various dimensions with a variety of numerical and analytical
tools. In one dimension [8], it has been shown to have a
spontaneously dimerized phase, in the intermediate-coupling
regime, which separates the weakly coupled band insulator
from the strong-coupling Mott insulator. In higher dimensions
(d > 1), this model has been studied mainly using dynamical
mean field theory (DMFT) [9–16], determinantal quantum
Monte Carlo [17,18], cluster DMFT [19], and the coherent
potential approximation [20]. Though the solution of DMFT
self-consistent equations in the paramagnetic (PM) sector at
half filling at zero temperature shows an intervening metallic
phase [10], in the spin-asymmetric sector, the transition from
paramagnetic band insulator (PM BI) to antiferromagnetic
(AFM) insulator preempts the formation of a parametallic
phase [12,19]. In a recent work coauthored by one of us, it was
shown that upon doping the IHM one gets a broad ferrimagnetic
half-metal phase [13] sandwiched between a PM BI and a PM
metal. IHM has also been realized in optical lattices [21] on
the honeycomb structure.

Most of these earlier works on IHM are in the limit of
weak to intermediate U/t except [14,16] where the strongly
correlated limit of IHM has been studied for � � U within
DMFT. Recently [22] the � ∼ U � t limit of IHM has been
studied using slave-boson mean field theory. The Gutzwiller
approximation method has been used for studying IHM [23]

but in the limit of large U (not extreme correlation limit) where
double occupancies are not fully prohibited. To the best of our
knowledge, the Gutzwiller approximation formalism for this
model has not been developed in the limit � ∼ U � t which
we present in this work. In the limit of large U and � (U ∼ �),
holes are energetically expensive in the sublattice where the
staggered potential is −�/2 (say, sublattice A) and double
occupancies are expensive in the sublattice having potential
�/2 (say, B). Therefore holes are projected out from the A
sublattice and doublons from the B sublattice, which gives us
the low-energy effective Hamiltonian.

The second model for which we provide details of the
formalism is the model of correlated binary alloys described
by the Hubbard model in the presence of the binary disorder
potential. In all correlated electron systems, disorder is almost
inevitable due to various intrinsic and extrinsic sources of
impurities. In high-Tc cuprates, it is the doping of the parent
compound (e.g., with oxygen) which results in the random
on-site potential along with introducing holes [24]. Another
type of common disorder is binary disorder which is for
example realized in disulfides (Co1−xFexS2 and Ni1−xCoxS2)
[25] in which two different transition metal ions are located
at random positions, creating two different atomic levels
for the correlated d electrons. Binary disorder along with
interactions among basic degrees of freedom has also been
realized in optical lattice experiments [26]. Hence it becomes
crucial to study the interplay of disorder and interactions
in order to understand many interesting properties of these
systems.

In the correlated binary alloy model, the on-site potential
can be ±V/2 at any site of the lattice randomly. The physics
of this model has been explored for the intermediate to strong
coupling regime mainly using DMFT [27–30]. But the limit
of large on-site repulsion as well as strong disorder potential
U ∼ V � t , where holes are projected out from sites having
potential −V/2 (A) sites and double occupancies are projected
out from sites having potential V/2 (B) sites, has not been
explored so far. Though this model has similarity with the
IHM mentioned above, the intrinsic randomness associated
with the binary disorder model makes the effective low-energy
Hamiltonian different from the case of IHM. The interplay of
disorder and interaction in this model may lead to very different
physics like many-body localization [31].

The rest of the paper is structured as follows. First we
provide the basic formalism for hole projection by defin-
ing electron creation and annihilation operators in the hole-
projected Hilbert space. We enlist probabilities of various
allowed configurations in the hole-projected Hilbert space and
calculate the Gutzwiller approximation factors for hopping
processes. In the next section, we have derived the effective
low-energy Hamiltonian for the IHM in the limit of U ∼ � �
t and calculated the corresponding Gutzwiller approximation
factors for various terms in the Hamiltonian. Followed by this
we have described the similarity transformation and Gutzwiller
approximation for correlated binary alloys in the limit of
strong interactions and strong disorder. At the end, we also
touch upon the case of fully random disorder and randomly
distributed attractive impurities in the limit of both interaction
and disorder strength being much larger than the hopping
amplitude.
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FIG. 1. Separation in the energy scales of a hole and other states.

II. BASIC FORMALISM FOR HOLE PROJECTION

Though the formalism of Gutzwiller projection is well
developed for the case of doublon projection in the literature,
case of hole projection has not been explored in detail so far.
In this section we derive the basic framework by defining new
creation and annihilation operators for electrons in a restricted
Hilbert space where holes are projected out but which still
allows for doublons.

For a system of spin-1/2 fermions, at each site there are
four possibilities, namely, | ↑〉,| ↓〉,| ↑↓〉, and |0〉. Consider a
model in which the energy cost of having |0〉 is much more
than the other three states, e.g., shown in Fig. 1. It may also
happen that due to some other constraints, e.g., to achieve
certain density of particles in the system, one has to retain
doublons in the low-energy Hilbert space (though the energy
cost for doublons might be close to that of holes) and exclude
holes. In these situations, the effective creation and annihilation
operators for fermions in the low-energy Hilbert space need to
be modified.

The simplest way to see this is the following. A normal
electron creation operator can be expressed in terms of local
Hubbard operators:

c†σ = Xσ←0 + η(σ )Xd←σ̄ , (1)

where σ can be ↑ or ↓ and d represents a double occupancy
and η(↑) = 1 and η(↓) = −1. Here we have used the local
Hubbard operators defined as Xb←a = |b〉〈a|.

This means one can create a particle either starting from a
hole or by annihilating one particle from a double occupancy.
Since in the present case holes are projected out from the low-
energy subspace, one cannot create a particle starting from
a hole; rather we can create a particle only by annihilating
one particle from a doublon. Therefore, the projected electron
creation operator, which we denote by c̃†σ , is

c̃†σ = η(σ )Xd←σ̄ = c†σ nσ̄ (2)

with η(↑) = 1 and η(↓) = −1. Note that c̃σ does not satisfy
standard Lie algebra of fermions but {c̃σ ,c̃†σ } = nσ̄ . The cor-
responding number operator in this reduced Hilbert space is
ñσ = nσnσ̄ . Various Hubbard operators in terms of a fermionic
operator in hole-projected Hilbert space are given as Xσ←σ =
c̃σ̄ c̃

†
σ̄ , Xσ←σ̄ = −c̃σ̄ c̃σ

†, and Xd←d = c̃
†
↑c̃↑ = c̃

†
↓c̃↓. From the

completeness relation of X operators in hole-projected Hilbert
space we get

X↑←↑ + X↓←↓ + Xd←d = I,

n↑(1 − n↓) + n↓(1 − n↑) + n↑n↓ = I, (3)

n↑n↓ = n − I.

Let us consider hopping of a particle to its nearest neighbor
site in this reduced Hilbert space. In the full Hilbert space,

Unprojected:

i j i j
↓ ↑ −→ ↑↓

↓ ↑↓ −→ ↑↓ ↓

↑ −→ ↑

↑↓ −→ ↑ ↓
Projected:

i j i j
↓ ↑↓ −→ ↑↓ ↓

FIG. 2. Top: Possible nearest neighbor hopping process in full
Hilbert space. Bottom: Allowed hopping process in reduced Hilbert
space from which hole has been projected out.

which does not have the constraint of hole projection, there are
four possible nearest neighbor hopping processes as shown in
the top panel of Fig. 2. But the only allowed hopping processes
in the low-energy Hilbert space of the hole-projected system
are those which do not have a hole in the initial state and in
which no hole is created in the final state as well. This leaves
only one process in which there is a doublon at site j , and a
spin |σ 〉 at site i. Then a σ̄ hops from site j to i resulting in
a single occupancy at site j and a doublon at site i as shown
in the bottom panel of Fig. 2. Thus effectively only hopping
of doublons takes place in the projected space resulting in an
overall suppression of the hopping process.

The corresponding operator for this hopping process is

Hhopp = −t
∑

〈i,j〉,σ
Xd←σ̄

i Xσ̄←d
j + H.c.

= −t
∑

〈i,j〉,σ
c̃
†
iσ c̃jσ + H.c., (4)

which is equivalently written in terms of normal fermionic
operators as

Hhopp = −t
∑

〈i,j〉,σ
c
†
iσ niσ̄ njσ̄ cjσ + H.c.

= −Ph

⎛
⎝t

∑
〈i,j〉,σ

c
†
iσ cjσ + H.c.

⎞
⎠Ph. (5)

Here Ph stands for the Gutzwiller projection operator for hole
projection defined as Ph = ∏

i(1 − (1 − ni↑)(1 − ni↓)). We
now generalize the concept of the Gutzwiller approximation
for hole-projected Hilbert space. The expectation value of the
hopping process in the hole-projected Hilbert space can be
obtained through the Gutzwiller approximation by renormal-
izing the hopping term in the unprojected basis by a Gutzwiller
factor which takes into account of the physics of projection
approximately. The Gutzwiller renormalization factor then is
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TABLE I. Probabilities of different states in terms of electron
densities in unprojected and hole-projected bases.

States Unprojected Projected

|↑〉 n↑(1 − n↓) (1 − n↓)
|↓〉 n↓(1 − n↑) (1 − n↑)
|↑↓〉 n↑n↓ (n − 1)
|0〉 (1 − n↑)(1 − n↓) 0

defined as the ratio of the expectation value of an operator O

in the projected basis to that in the unprojected basis:

g = 〈ψ |PhOPh|ψ〉
〈ψ |O|ψ〉 , (6)

where ψ is the unprojected state.
The Gutzwiller renormalization factors are determined by

the ratios of the probabilities of the corresponding physical
processes in the projected and unprojected bases. Listed in
Table I are the probabilities of states in unprojected and
hole-projected spaces where the spin-resolved unprojected and
projected densities have been taken to be equal. Here nσ is the
electron density with spin σ . Consistently everywhere we use
n for density and n for the corresponding number operator.

The probability of hopping of an ↑-spin electron in the
unprojected basis is (1 − ni↑)nj↑ni↑(1 − nj↑). In the hole-
projected basis, the corresponding probability is (nj − 1)(ni −
1)(1 − ni↑)(1 − nj↑). Therefore, the Gutzwiller factor for the
hopping process comes out to be

gt↑ =
√

(ni − 1)(nj − 1)

ni↑nj↑
. (7)

With this setup for the hole-projected Hilbert space, we
describe the strongly correlated limit of IHM and binary alloys.

III. STRONGLY CORRELATED LIMIT OF IONIC
HUBBARD MODEL

IHM has tight-binding electrons on a bipartite lattice (sub-
lattices A and B) described by the Hamiltonian

H = −t
∑

i∈A,j∈B,σ

[c†iσ cjσ + H.c.] − �

2

∑
i∈A

ni + �

2

∑
i∈B

ni

+U
∑

i

ni↑ni↓ − μ
∑

i

ni . (8)

Here t is the nearest neighbor hopping, U the Hubbard
repulsion, and � a one-body staggered potential which doubles
the unit cell. The chemical potential is μ = U/2 for the average
occupancy per site to be one, that is, (〈nA〉 + 〈nB〉)/2 = 1,
corresponding to “half filling”.

Let us consider the t = 0 limit of this model in the regime
U ∼ �. On the A sublattice, single occupancies have energy
−( �

2 + U
2 ) ∼ −�, the hole has 0 energy, and the doublon has

energy −�. So, among the four choices of occupancy, a hole
on A is the highest energy state and should be projected out
from the low-energy Hilbert space. On the other hand, on the B
sublattice, single occupancies cost ( �

2 − U
2 ) ∼ 0 energy, holes

also cost 0 energy, while doublons cost energy � ∼ U , and

↓ ↑ H+
t B−→A−−−−−−→ ↑↓ ↑ ↓ H+

t A−→B−−−−−−→ ↑↓
A B A B A B A B

↑↓ H−
t A−→B−−−−−−→ ↓ ↑ ↑↓ H−

t B−→A−−−−−−→ ↑ ↓
A B A B A B A B

↑ H0
t A−→B−−−−−−→ ↑ ↑↓ ↓ H0

t A−→B−−−−−−→ ↓ ↑↓
A B A B A B A B

↑ H0
t B−→A−−−−−−→ ↑ ↓ ↑↓ H0

t B−→A−−−−−−→ ↑↓ ↓
A B A B A B A B

FIG. 3. Nearest neighbor hopping processes for IHM.

therefore on the B sublattice, doublons should be projected out
from the low-energy Hilbert space.

A. Low-energy Hamiltonian in the limit U ∼ � � t

In the presence of a nonzero hopping term, the following
nearest neighbor processes can take place as shown in Fig. 3.
H+

t processes involve an increase in double occupancy and
hole occupancy by one, H−

t processes involve a decrease in
the double occupancy and hole occupancy by one, and H 0

t

processes involve no change in the double occupancy or hole
occupancy. Note that H+

tB→A and H−
tA→B are the only processes

which are confined to the low-energy sector of the Hilbert
space. All other hopping processes mix the high-energy and the
low-energy parts of the Hilbert space. The effective low-energy
Hamiltonian in the limit U ∼ � � t can be obtained by doing
a similarity transformation which eliminates processes which
interconnect the high- and low-energy sectors of the Hilbert
space. The effective Hamiltonian is given by

Heff = eiSHe−iS = H + i[S,H ] + i2

2
[S,[S,H ]] + · · · .

(9)

Here S, the transformation operator, is perturbative in t/� and
t/(U + �) and is given by

iS = 1

U + �
(H+

t A→B
− H−

t B→A
)+ 1

�

(
H 0

t A→B
− H 0

t B→A

)
.

(10)

Higher-order [O(t2/U )] terms that arise from [S,Ht ] and
[S,[S,H0]] and connect the low-energy sector to the high-
energy sector can be eliminated by including a second similar-
ity transformation S

′
such that [S

′
,H0] cancels those terms. The

effective Hamiltonian which does not involve mixing between
low- and high-energy subspaces up to order t2 is

Heff = H0 + H1,low + 1

U + �
[H+

t A→B
,H−

t B→A
]

+ 1

�

[
H 0

t A→B
,H 0

t B→A

] + O(t3/U 2) · · · . (11)

Here, H0 = U
∑

i ni↑ni↓ − �
2

∑
i∈A ni + �

2

∑
i∈B ni and

H1,low = H+
tB→A + H−

tA→B is the hopping process in the
low-energy sector. If we now confine to the low-energy
subspace, 1

U+�
[H+

t A→B
,H−

t B→A
] ∼ − 1

U+�
H−

t B→A
H+

t A→B

because the first term in the commutator demands a doublon at
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site B and a hole at site A which is energetically not favorable.
Similarly, 1

�
[H 0

t A→B
,H 0

t B→A
] ∼ − 1

�
H 0

t B→A
H 0

t A→B

because the first term in the commutator either demands
a doublon at B or a hole at A and thus is not allowed because
they belong to the high-energy sector.

B. Low-energy Hamiltonian in terms of projected fermions

Since holes on the A sublattice and doublons on the B
sublattice belong to the high-energy sector, we have projected
them out from the low-energy Hilbert space and introduced
new projected operators,

c̃
†
Aσ = η(σ )Xd←σ̄

A = c
†
AσnAσ̄ , (12)

˜̃c†Bσ = Xσ←0
B = c

†
Bσ (1 − nBσ̄ ). (13)

Note that { ˜̃cσ , ˜̃c†σ } = 1 − nσ̄ .
While writing in terms of normal fermionic operators in

the projected space, the order of the terms in the projected
basis becomes important for the A and B sublattices. On
the A sublattice, c̃Aσ c̃

†
Aσ = PhcAσ c

†
AσPh, whereas c̃

†
Aσ c̃Aσ �=

Phc
†
Aσ cAσPh. In the former case, both forms of operators count

σ̄ -type single occupancies whereas in the later case c̃
†
Aσ c̃Aσ

count double occupancies while c
†
Aσ cAσ counts both double

occupancies as well as σ -type single occupancies in the hole-
projected space. On the B sublattice, the situation is opposite:
c̃
†
Bσ c̃Bσ = Pdc

†
Bσ cBσPd and c̃Bσ c̃

†
Bσ �= PdcBσ c

†
BσPd . In the

former case, both projected and normal fermionic operators
count σ -type single occupancies whereas in the latter case
the projected space operators count holes while the normal
fermionic representation counts holes as well as σ̄ -type single
occupancies in the doublon-projected space.

In terms of new projected operators, H0 in Eq. (11) can
be written as U

∑
i∈A(ni − 1) − �

2 [
∑

i∈A ni − ∑
i∈B ni]. Here

we have used that on a site i ∈ A, ni↑ni↓ = ni − 1 [see
Eq. (3)]. Since doublons have been projected out from the B
sublattice, in the low-energy effective Hamiltonian there is no
Hubbard term for the B sublattice. The hopping term H1,low

in the projected space does not involve holes on sublattice A
and doublons on sublattice B. The representation in terms of
projected operators is

H1,low = −t
∑
〈ij〉,σ

c̃
†
iAσ

˜̃cjBσ + ˜̃c†jBσ c̃iAσ

= −t
∑
〈ij〉,σ

P[c†iAσ cjBσ + H.c.]P . (14)

Here the projection operator P projects out holes from the
Hilbert space corresponding to sublattice A and doublons from
the Hilbert space on sublattice B.

O(t2/(U + �)) dimer terms. In terms of Hub-
bard operators, the dimer term corresponding to

1
U+�

[H+
t A→B

,H−
t B→A

] ∼ − 1
U+�

H−
t B→A

H+
t A→B

becomes

H 1
dimer = − t2

U + �

∑
i∈A,j∈B,σ

[
Xσ←σ

i Xσ̄←σ̄
j − Xσ̄←σ

i Xσ←σ̄
j

]
.

The corresponding process is represented in Fig. 4. In terms
of projected fermionic operators, these dimer terms take the

↑ ↓
A B

↓ ↑ H+
t A→B−−−−−→ ↑↓ H−

t B→A−−−−−→
A B A B

↓ ↑
A B

FIG. 4. Spin exchange and spin preservation dimer terms for IHM.

following form:

= − t2

U + �

∑
i,j,σ

[c̃iAσ̄ c̃
†
iAσ̄

˜̃c†jBσ̄
˜̃cjBσ̄ − c̃iAσ c̃

†
iAσ̄

˜̃c†jBσ
˜̃cjBσ̄ ]

= J1

∑
i,j

P[SiA · SjB − (2 − niA)njB/4]P (15)

with J1 = 2t2

U+�
. Projection operator P projects out hole from

sublattice A and doublons from sublattice B. Note that in
writing the above renormalized form of the Heisenberg part of
the Hamiltonian, we have imposed SU(2) symmetry by hand
[7,32]. Within the simplest approximation of spin-resolved
densities being same in projected and unprojected states, the
Gutzwiller approximation factor for Sz

iASz
jB remains unity

while the Gutzwiller factor for the S+
iAS−

jB + H.c. term is
gs . Since the original Hamiltonian is SU(2) symmetric, the
renormalized Hamiltonian obtained after taking into account
the effect of projection must also be SU(2) symmetric. Hence
we used gs to be the Gutzwiller factor for the Sz

iASz
jB term as

well.
The dimer term corresponding to [H 0

t A→B
,H 0

t B→A
] in-

volves hopping of an electron or a doublon from some site
to its nearest neighbor site and back to the initial site as shown
in Fig. 5. This process is of order t2/� and can be written as

H 2
dimer = − t2

�

∑
σ,〈ij〉

[
Xσ←σ

iA X0←0
jB + Xd←d

iA Xσ̄←σ̄
jB

]
.

In terms of projected operators we get

= − t2

�

∑
σ,〈ij〉

[c̃iAσ̄ c̃
†
iAσ̄

˜̃cjBσ
˜̃c†jBσ + c̃

†
iAσ c̃iAσ

˜̃c†jBσ̄
˜̃cjBσ̄ ]

= − t2

�

∑
〈ij〉,σ

P[(1 − niAσ̄ )(1 − njB ) + (niA − 1)njBσ̄ ]P .

(16)

↑ H0
t A−→B−−−−−−→ ↑ H0

t B−→A−−−−−−→ ↑
A B A B A B

↑↓ ↓ H0
t A−→B−−−−−−→ ↓ ↑↓ H0

t B−→A−−−−−−→ ↑↓ ↓
A B A B A B

FIG. 5. Top: Hopping of a single spin to site B and back to site
A. Bottom: Hopping of a doublon from A to B and back to A.
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A B A A B A A B A

↑↓ ↓ ↓ H0
t A−→B−−−−−−−→←−−−−−−

H0
t B−→A

↓ ↑↓ ↓ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↓ ↓ ↑↓

↑↓ ↓ ↑ H0
t A−→B−−−−−−−→←−−−−−−

H0
t B−→A

↓ ↑↓ ↑ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↓ ↑ ↑↓

FIG. 6. Effective next nearest neighbor hopping of a doublon
within A sublattice.

O(t2/�) trimer terms. Trimer terms involve hopping of
a doublon or a hole from a site to its next nearest neighbor
site. Effectively there is doublon hopping which is intra-A-
sublattice hopping denoted by HAA

hopp whereas the hole hopping
is intra-B-sublattice hopping (HBB

hopp) as shown in Figs. 6 and 7.
In terms of X operators, hopping processes for doublon hop-

ping, which is of O(t2/�), on the A sublattice are represented
as

HAA
hopp = − t2

�

∑
σ,〈ijk〉

Xd←σ̄
kA Xσ̄←σ̄

jB Xσ̄←d
iA

+Xd←σ
kA Xσ←σ̄

jB Xσ̄←d
iA + H.c.

In terms of projected operators, they are represented as

= − t2

�

∑
σ,〈ijk〉

(c̃†kAσ
˜̃c†jBσ̄

˜̃cjBσ̄ c̃iAσ + c̃iAσ̄
˜̃c†jBσ̄

˜̃cjBσ c̃
†
kAσ )

= − t2

�

∑
σ,〈ijk〉

P(c†kAσnjBσ̄ ciAσ + ciAσ̄ c
†
jBσ̄ cjBσ c

†
kAσ )P .

(17)
Similarly the hopping of holes within the B sublattice,

shown in Fig. 7, can be written in terms of X operators as

HBB
hopp = − t2

�

∑
σ,〈jil〉

X0←σ
lB Xσ←σ

iA Xσ←0
jB + X0←σ̄

lB Xσ̄←σ
iA Xσ←0

jB

+ H.c.,
which can be written in terms of projected operators as

= − t2

�

∑
σ,〈jil〉

( ˜̃clBσ c̃iAσ̄ c̃
†
iAσ̄

˜̃c†jBσ + ˜̃c†jBσ c̃iAσ c̃
†
iAσ̄

˜̃clBσ̄ )

= − t2

�

∑
σ,〈jil〉

P{clBσ [(1 − niAσ̄ )c†jBσ + c
†
iAσ ciAσ̄ c

†
jBσ̄ ]}P .

(18)

B A B B A B B A B

↑ ↑ H0
t A−→B−−−−−−−→←−−−−−−

H0
t B−→A

↑ ↑ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↑ ↑

↑ ↓ H0
t A−→B−−−−−−−→←−−−−−−

H0
t B−→A

↑ ↓ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↑ ↓

FIG. 7. Effective next nearest neighbor hopping of hole for IHM.

C. Gutzwiller approximation

The effective low-energy Hamiltonian obtained in the above
section can be written asHeff = PH̃P whereP will project out
holes from the A sublattice and doublons from the B sublattice
for half filling and densities close to half filling. Within the
Gutzwiller approximation, the effect of this projection is taken
approximately by renormalizing various coupling terms in H̃

by corresponding Gutzwiller factors such that eventually the
expectation value of the renormalized Hamiltonian can be
calculated in the normal basis. Further we will calculate the
Gutzwiller approximation factors under the assumption that the
spin-resolved densities before and after the projection remain
the same which will make Gutzwiller factors equal to 1 for
some terms in H̃ . The renormalized Hamiltonian can be written
as

H̃ = H0 − t
∑
σ,〈ij〉

gtσ [c†iAσ cjBσ + H.c.]

− t2

�

∑
〈ij〉,σ

[g1(1 − niAσ̄ )(1 − njB) + g2(niA − 1)njBσ̄ ]

− t2

�

∑
σ,〈ijk〉

(g3σ c
†
kAσnjBσ̄ ciAσ + g4ciAσ̄ c

†
jBσ̄ cjBσ c

†
kAσ )

+ H.c. − t2

�

∑
σ,〈jil〉

[g5σ clBσ (1 − niAσ̄ )c†jBσ

+ g6clBσ c
†
iAσ ciAσ̄ c

†
jBσ̄ ] + H.c.

+ 2t2

U + �

∑
〈i,j〉

[
gsSiA · SjB − 1

4
(2 − niA)njB

]
. (19)

Here gt,σ and gs are Gutzwiller approximation factors for
the nearest neighbor hopping and spin exchange terms.
g1 and g2 are Gutzwiller factors for dimer terms H

1,2
dimer,

respectively. g3σ and g4 are Gutzwiller factors for intra-
sublattice hopping of doublons on the A sublattice and g5,σ

and g6 are Gutzwiller factors for the intra-sublattice hopping
of holes on B sublattice. As we will demonstrate, some of
the Gutzwiller factors are spin symmetric while others might
be spin dependent in a spin-symmetry-broken phase like in
antiferromagnetically ordered phases. Below we evaluate them
one by one for various processes involved in Heff . We have
listed below in Table II the probabilities of different states in
the doublon-projected basis. Probabilities for various states for
the hole-projected sublattice were listed in Table I.

As we mentioned earlier, this analysis holds at half filling
and for densities not far from half filling. Even if the system

TABLE II. Probabilities of different states in terms of electron
densities in unprojected and doublon-projected bases.

States Unprojected Projected

|↑〉 n↑(1 − n↓) n↑
|↓〉 n↓(1 − n↑) n↓
|↑↓〉 n↑n↓ 0

|0〉 (1 − n↑)(1 − n↓) (1 − n)
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(a)
Unprojected:

A B A B
↓ ↑ −→ ↑↓

↓ ↑↓ −→ ↑↓ ↓

↑ −→ ↑

↑↓ −→ ↑ ↓
Projected:

A B A B
↓ ↑ −→ ↑↓

(b)
Unprojected:

A B A B
↑ ↓ −→ ↓ ↑

Projected:

A B A B
↑ ↓ −→ ↓ ↑

FIG. 8. (a) Processes involved in the calculation of nearest neighbor hopping renormalization factor, gt,σ . (b) Processes involved in the
calculation of spin exchange renormalization factor gs .

is overall half filled, the individual sublattices are not; the A
sublattice is electron doped whereas the B sublattice is hole
doped. At half filling in the Hubbard model, the Gutzwiller
renormalization factor for hopping is zero because the system
is an antiferromagnetic Mott insulator whereas in the case of
IHM, the density difference between the sublattices results
in finite gt,σ . Here, as we will show, the density difference
between two sublattices plays the role of doping in the case
of the Hubbard model. Also, the trimer terms are present in
the half-filled IHM which results in intra-sublattice hopping
of holes and doublons whereas the half-filled Hubbard model
has no trimer terms.

Below we first give the general expression for gt,σ and
gs at any filling and then evaluate them for the special

case of half filling,
nA + nB

2
= 1. The probability of nearest

neighbor hopping of an ↑ electron in the unprojected space
(shown in Fig. 8) is (1 − nA↑)nB↑nA↑(1 − nB↑) and in the
unprojected space it is (1 − nA↑)nB↑(nA − 1)(1 − nB). Then,
the Gutzwiller renormalization factor

gt↑ =
√

(nA − 1)(1 − nB)

nA↑(1 − nB↑)
. (20)

Let δ = nA − nB

2
be the density difference between two

sublattices. Then at half filling, the density of the A sublattice is
nA = 1 + δ and that of the B sublattice is nB = 1 − δ. Let the
magnetization on the A sublattice mA = nA↑ − nA↓; then at
half filling due to particle-hole symmetry, mA = −mB = m.

One can rewrite gt,σ = 2δ

1 + δ + σm
in an antiferromagneti-

cally ordered phase at half filling. For m = 0, gt takes a form
similar to that known for the doped t-J model with δ, the
density difference in IHM, playing the role of hole doping in
the t-J model.

Now consider the spin exchange process shown in
Fig. 8(b). The probability for this process to take place in

the unprojected basis is nA↑(1 − nA↓)nB↓(1 − nB↑)nA↓(1 −
nA↑)nB↑(1 − nB↓), whereas in the projected basis it is (1 −
nA↓)nB↓(1 − nA↑)nB↑, resulting in the Gutzwiller factor

gs =
√

1

nA↑nA↓(1 − nB↑)(1 − nB↓)
. (21)

Again at half filling in an AFM ordered phase gs = 4/[(1 +
δ)2 − m2] which for m = 0 again maps to the gs factor for the
doped t-J model with δ playing the role of hole doping in that
case.

The Gutzwiller factors g1, g2 are 1 because the dimer terms
H

1,2
dimer are the products of densities. Under the assumption that

the spin-resolved unprojected and projected densities are the
same, the Gutzwiller factors for these terms are 1.

Now we will calculate Gutzwiller factors for various trimer
terms shown in Fig. 6 and Fig. 7. Figure 9(a) shows hopping
of an ↑ electron within the A sublattice with a spin ↓ on the
intermediate B site being preserved. In the unprojected basis,
the probability for this process to happen is n2

A↑(1 − nA↑)2n2
B↓.

It is to be noted that processes with either a down-type particle
or a doublon at the intermediate B site have been considered in
the unprojected space. Likewise, the probability for the process
to happen in the projected basis is (nA − 1)2(1 − nA↑)2n2

B↓.
Therefore, the Gutzwiller factor for this process is

g3↑ = nA − 1

nA↑
= 2δ

1 + δ + m
, (22)

where the expression on the rightmost side holds in the case
of half filling for nonzero staggered magnetization. In general
one gets g3σ = nA−1

nAσ
. Figure 9(b) depicts hopping processes

on the A sublattice in which spin on the intermediate B site
gets flipped. The probability in the unprojected basis for this
process to occur is (1 − nA↑)(1 − nA↓)nA↑nA↓(1 − nB↑)(1 −
nB↓)nB↑nB↓ whereas that in the projected basis is (nA −
1)2(1 − nA↑)(1 − nA↓)nB↑nB↓ resulting in the Gutzwiller
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(a)
Unprojected:

Ai Bj Ak Ai Bj Ak
↑ ↓ ↓ −→ ↓ ↑↓

↑ ↓ −→ ↓ ↑

↑↓ ↓ −→ ↓ ↓ ↑

↑↓ ↓ ↓ −→ ↓ ↓ ↑↓
Projected:

Ai Bj Ak Ai Bj Ak
↑↓ ↓ ↓ −→ ↓ ↓ ↑↓

8

(b)
Unprojected:

Ai Bj Ak Ai Bj Ak
↓ ↑ ↓ −→ ↓ ↑↓

↓ ↑ −→ ↓ ↑

↑↓ ↑ −→ ↑ ↓ ↑

↑↓ ↑ ↓ −→ ↑ ↓ ↑↓
Projected:

Ai Bj Ak Ai Bj Ak
↑↓ ↑ ↓ −→ ↑ ↓ ↑↓

FIG. 9. (a) Processes involved in the calculation of g3. Similar physical processes with doublon at B site in the unprojected basis are
considered in the calculation (but not shown here). (b) Processes involved in the calculation of g4.

factor

g4 = nA − 1√
nA↑nA↓(1 − nB↑)(1 − nB↓)

= 4δ

(1 + δ)2 − m2
.

(23)

Now consider the hopping processes within the B sublattice
depicted in Fig. 7. Figure 10(a) shows hopping of an ↑-
spin particle within the B sublattice such that spin on the
intermediate A site is preserved. Here again it must be noted
that processes with either an up particle or a hole at the
intermediate A site have been considered in the unprojected
basis. In the unprojected basis the probability of this process
is (1 − nA↓)2n2

B↑(1 − nB↑)2 and that in the projected basis is
(1 − nA↓)2n2

B↑(1 − nB)2 leading to the Gutzwiller factor

g5↑ = 1 − nB

1 − nB↑
= 2δ

1 + δ + m
. (24)

In general, g5,σ = (1 − nB)/(1 − nBσ ) is spin dependent.

Another hopping process within the B sublattice is the one
in which spin on the intermediate A site gets flipped. The
probability for this process to occur in the unprojected basis is
(1 − nA↑)(1 − nA↓)nA↑nA↓(1 − nB↑)(1 − nB↓)nB↑nB↓ and in
the projected space it is (1 − nA↑)(1 − nA↓)nB↑nB↓(1 − nB)2.
The Gutzwiller factor is therefore

g6 = 1 − nB√
nA↑nA↓(1 − nB↑)(1 − nB↓)

= 4δ

(1 + δ)2 − m2
.

(25)

D. Results for strongly correlated limit of IHM

In this section we present results for the IHM in the limit
U ∼ � � t at half filling. To be specific, we do mean field
decomposition of the renormalized low-energy Hamiltonian
in Eq. (19) giving nonzero expectation values to the following
mean fields: (i) magnetization on the A sublattice (B sublattice),
mA (mB); (ii) inter-sublattice Fock shift (χAB); (iii) intra-

(a)
Unprojected:

Bj Ai Bl Bj Ai Bl
↑ ↑ −→ ↑ ↑

↑ ↑ ↓ −→ ↑ ↑↓

↑↓ ↑ ↓ −→ ↓ ↑ ↑↓

↑↓ ↑ −→ ↓ ↑ ↑

Projected:

Bj Ai Bl Bj Ai Bl
↑ ↑ −→ ↑ ↑

(b)
Unprojected:

Bj Ai Bl Bj Ai Bl
↑↓ ↓ −→ ↓ ↑ ↓

↑↓ ↓ ↑ −→ ↓ ↑ ↑↓

↑ ↓ ↑ −→ ↑ ↑↓

↑ ↓ −→ ↑ ↓

Projected:

Bj Ai Bl Bj Ai Bl
↑ ↓ −→ ↑ ↓

FIG. 10. (a) Processes involved in the calculation of g5. Similar physical processes with hole at A site in the unprojected basis are considered
in the calculation of g5 (but not shown here). (b) Processes involved in the calculation of g6.
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 1.9

 0  2  4  6  8  10  12  14  16

n A

Δ

MF
ED

FIG. 11. Density on sublattice A as a function of � for U = 10t .
ED results shown are obtained from [33].

sublattice Fock shifts; (iv) Hartree shifts; and (v) the density
difference between the two sublattices (δ). The quadratic
mean field Hamiltonian is solved by appropriate canonical
transformation and mean fields are obtained self-consistently.
Below we first provide a comparison of our approach with the
results obtained from an exact diagonalization (ED) study of
this model for a one-dimensional chain followed up by the
results towards a possible phase diagram of the IHM in the
limit of validity of this approach.

1. Comparison with ED results

Below we first benchmark our approach of hole and doublon
projection, implemented at the level of the renormalized low-
energy Hamiltonian via the Gutzwiller approximation, by
comparing our results for a 1d chain with those obtained from
exact diagonalization by Anusooya-Pati et al. [33]. Since the
formalism we have developed in this paper is valid for the
regime of both U and � being much larger than the hopping
amplitude t we compare our results for the largest value of U

for which results are shown in [33]. Figure 11 shows the density
on sublattice A as a function of � for U = 10t for a 1d chain.
The ED result, obtained by digitizing the plot from the work
of Anusooya-Pati et al. [33], is an extrapolation of finite-size
chains in the thermodynamic limit. For smaller values of �

our formalism does not hold and hence the comparison has
been shown for � � 7t . The qualitative trend in both the
calculations is the same and as � increases better quantitative
consistency is observed between the two calculations. Note that
there is an overall factor of 2 difference in the ionic potential
term in our Hamiltonian and the one used in Anusooya-Pati
et al. After this checks to validate our formalism, we provide
below the details of the phase diagram of IHM in the limit
under consideration.

2. Phase diagram of IHM for U ∼ � � t

The phase diagram of IHM in the limit U ∼ � � t has
not been explored in detail so far. There are a few numerical
results available [16,33] but a complete understanding has been
lacking mainly because no perturbative calculation has been

 0
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 0.75
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 1.25
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 1.75
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ρ

(a)Δ=17

ρA↑
ρA↓

ρB↑
ρB↓
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 0.25

 0.5

 0.75
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(b)Δ=19

ρA↑
ρA↓

ρB↑
ρB↓
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 0.25
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ω

(c)Δ=20

ρA↑
ρA↓

ρB↑
ρB↓

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

-3 -2 -1  0  1  2  3
ω

(d)Δ=22

ρA↑
ρA↓

ρB↑
ρB↓

FIG. 12. Single-particle DOS for U = 20t for a few values of �.
For � < U , the system has spin asymmetry with ρα↑(ω) �= ρα↓(ω).
Also the gap in the DOS is larger for the down-spin channel. As
� increases towards U , both the gaps decrease eventually giving a
metallic phase for � ∼ U . As � increases further again the system
becomes an insulator which has spin symmetry.

developed in this limit so far. One of the reasons is that the
formalism for hole projection, which is essential in this limit,
was missing so far in the literature. Below we provide details of
various physical quantities based on the mean field analysis of
our renormalized Hamiltonian for a 1d chain and also discuss
possible phases in higher-dimensional cases.

Single-particle density of states. In this section we dis-
cuss the single-particle density of states (DOS) ρασ (ω) ≡
−∑

k Im Ĝασ (k,ω+)/π . Here α represents the sublattice A,B

and σ is the spin. In the Gutzwiller approximation, we
must rescale the Green’s function Gασ (k,ω) with the correct
Gutzwiller factor [32] just like we did for hopping, spin
exchange, and trimer terms in the Hamiltonian. Thus the
renormalized Gασ (k,ω) = gt,σG0

ασ (k,ω) where G0
ασ (k,ω) is

the Green’s functions calculated in the unprojected ground
state of the Hamiltonian in Eq. (19). The corresponding spectral
function which is the imaginary part of the Green’s function
also satisfies the relation Aασ (k,ω) = gtσA0

ασ (k,ω) resulting
in the same relation for the single-particle density of states
ρασ (ω). Figure 12 shows the renormalized single-particle DOS
in the projected Hilbert space for the IHM for U = 20t and
a few values of � ∼ U . For � < �c, the system has spin
asymmetry as seen in the top two panels of Fig. 12. There is a
gap in the DOS for both the up- and the down-spin channels,
with gap in the up-spin channel being smaller than that for the
down-spin channel. Both the gaps reduce with increase in �

as shown in panels (b) and (c) of Fig. 12 eventually becoming
vanishingly small for a range of�values close to� = U where
the system is metallic. On further increasing �, the gap in the
DOS opens up again but now the system is spin symmetric
with both the gaps being equal. Figure 13 shows the behavior
of gapσ as a function of � for U = 20t .

The existence of a metallic phase intervening between the
two insulating phases of the IHM has been a debatable issue
in the literature. Though the solution of DMFT self-consistent
equations in the paramagnetic (PM) sector at half filling at
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FIG. 13. The gap in the single-particle density of states vs � for
U = 20. For � < U , gap↓ > gap↑ and both decrease with increase
in � eventually becoming zero for � ∼ U . As � increases further,
the gap opens up again but the gaps in the up and down channels are
equal in this phase.

zero temperature shows an intervening metallic phase [10], in
the spin-asymmetric sector, the transition from paramagnetic
band insulator (PM BI) to antiferromagnetic (AFM) insulator
preempts the formation of a parametallic phase [12,19]. But
determinantal quantum Monte Carlo results demonstrated the
presence of a metallic phase even in the spin-asymmetric
solution [17,18]. Exact diagonalization for 1d chains [33] has
also shown signatures of the presence of a metallic phase
via calculation of the charge stiffness. In all the cases, where
an intervening metallic phase has been demonstrated, it was
also shown that the width of the metallic phase shrinks with
increase in U and �. A very narrow metallic regime observed
in our approach for the IHM at half filling for U ∼ � � t is
completely consistent with these studies.

The renormalized momentum distribution function
nασ (k) = ∫

dωAασ (k,ω) = gtσ n0
ασ (k), where n0

ασ (k) is the
momentum distribution function in the unprojected Hilbert
space. Thus the quasiparticle weight, which is the jump in
the momentum distribution function at the Fermi momentum,
is Z = gtσ . Figure 14 shows gtσ vs � for U = 20t . In the
metallic regime, that is, for � ∼ 20t , gt↑ = gt↓ � 1 which
indicates that we actually have a bad metal, with very heavy
quasiparticles, intervening between the two insulators. Note
that in the insulating regime gtσ does not carry the meaning
of quasiparticle weight.

Magnetization and staggered density. The staggered mag-
netization m, defined as m = (mA − mB)/2, calculated within
the renormalized mean field theory is shown in Fig. 15. For a
given U � t , m = 0 for � > U but as � approaches U , the
antiferromagnetic order sets in with a jump in m at �c. As
� decreases further, m increases approaching the saturation
value. Note that for very small values of � where m might
tend to unity, our approach does not work.

The staggered density difference δ = (nA − nB)/2 is shown
in the green curve in Fig. 15 as a function of �. As expected for
� > U , δ is large close to its saturation value and with decrease
in �, δ reduces monotonically for � > �c. At �c, there occurs
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FIG. 14. Plot of gtσ vs � for U = 20. In the metallic phase gtσ

provides the quasiparticle weight.

a change in slope ∂δ
∂�

. Note that within our approach the system
can never attain the saturation values m = 1 and δ = 0 at which
the Gutzwiller factor for the spin exchange term gs diverges
and the perturbation theory fails.

Possible superconductivity in higher dimensions. Based on
the renormalized Hamiltonian in Eq. (19) one can see that even
at half filling for the overall lattice, there is a finite hopping
between A and B sublattices in the projected space as long
as the density difference δ is nonzero. This effectively gives
a doped t-J model for each sublattice even at half filling.
Further there are finite next nearest neighbor hopping terms
within each sublattice which appear through trimer terms in
the Hamiltonian in Eq. (19). In this renormalized Hamiltonian
there is a possibility that the metallic phase mentioned above
can turn into a d-wave superconducting phase or d + is pairing
superconducting phase in higher-dimensional systems. The
superconducting phase might survive for a larger range of U -�
space compared to the metallic phase with support of trimer
terms. This will be explored in future work.

 0
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FIG. 15. Staggered magnetization m and staggered density δ vs
� for U = 20t . At �c ∼ 19.8t , m drops to zero with a discontinuity.
At the same point a discontinuity is seen in the slope ∂δ

∂�
.
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Possible half-metal phase. Depending upon the dimension-
ality of the problem and the lattice structure, it might be
easier to frustrate the antiferromagnetic order with the help of
trimer terms of Hamiltonian in Eq. (19). The overall strength
of the coefficient of various trimer terms is a nonmonotonic
function of �. In the regime � ∼ U where the staggered
density difference is finite, effective next nearest neighbor
hopping obtained from Fock shift decomposition of these terms
might become significant and start competing with the nearest
neighbor hopping term. In this case even at half filling the
effective low-energy Hamiltonian does not have particle-hole
symmetry and mA �= −mB . Rather than having just nonzero
staggered magnetization m = (mA − mB)/2, there might be a
nonzero uniform magnetization mF = (mA + mB)/2 as well
resulting in the ferrimagnetic order for � ∼ U . Further due to
different gaps in the single-particle DOS for up- and down-spin
channels, there is a possibility that the half-metallic phase
appears as a precursor to the metallic phase mentioned above.
A similar mechanism for half metal has been seen in the
doped IHM [13] for weak to intermediate strength of U and �

where particle-hole symmetry is broken explicitly by adding
holes into the system while in the extremely correlated limit
presented in this work, trimer terms can break the particle-hole
symmetry spontaneously.

Nonmonotonic behavior of Néel temperature with �. The
renormalized Hamiltonian in Eq. (19) is illuminating enough to
predict the behavior of the Néel temperature for the AFM order
in the IHM in the large U and � regime at half filling. For U �
t but � ∼ t , the IHM maps to the modified t-J model with
an additional ionic potential term and with the spin-exchange
term given by J̃ = 4t2U/(U 2 − �2) [16]. Note that in this
limit doublons are projected out from the low-energy Hilbert
space from all sites. In this case the Néel temperature of the
AFM order should obey J̃ and hence increase as � increases.
In fact this was observed in DMFT+CTQMC calculation for
the IHM at half filling [16] where it was shown that for U as
high as 16t , up to � little less than U , TN ∼ J̃ /4 [34]. But for
� � U a sudden drop in TN was observed which could not be
explained based on the spin exchange coupling J̃ .

Our current renormalized Hamiltonian sheds light on this
nonmonotonic behavior of TN since it is valid for the U ∼ �

as well as for the � > U regime. In this regime the coefficient
of spin exchange term is ˜̃J = 2t2/(U + �) which decreases
with increase in �. Hence for U � t , for small values of
� � U, TN follows J̃ and hence TN increases with �. As
� increases further TN starts to follow the new coupling ˜̃J and
starts decreasing with increase in �.

To summarize, in the strongly correlated limit of the ionic
Hubbard model, the interplay of U and � promises a rich phase
diagram, and our formalism of the renormalized Hamiltonian
obtained by Gutzwiller projection of holes on one sublattice
and doublons on another sublattice, further implemented by
the Gutzwiller approximation, is illuminating enough to give
insight into this exotic physics.

IV. STRONGLY CORRELATED BINARY ALLOYS

In this section we will discuss the physics of hole projection
in the context of the strongly correlated limit of binary alloys,

modeled with the Hubbard model in the presence of a binary
disorder. The Hamiltonian for this system is

H = −t
∑
〈ij〉

c
†
iσ cjσ + U

∑
i

ni↑ni↓ −
∑

i

(μ − εi)ni, (26)

where εi is the random on-site energy drawn from the proba-
bility distribution function

pε(εi) = xδ

(
εi + V

2

)
+ (1 − x)δ

(
εi − V

2

)
. (27)

Here, x and 1 − x are the fractions of the lattice sites with
energies −V

2 and V
2 , respectively. We label sites with ε(i) =

−V/2 as A sites and sites with ε(i) = V/2 as B sites. At half
filling, the above Hamiltonian is particle-hole symmetric only
if the percentages of A and B sites are equal.

Most of the earlier studies have solved this model using
variants of DMFT in the weak to intermediate limit of U/t

[27–30]. Using DMFT+QMC, this model has also been solved
at finite temperature in the limit of sufficiently large U and
V [29]. We are interested in the strongly correlated, strongly
disordered limit of this model, that is, U ∼ V � t . The single-
site energetics is similar to IHM; that is, holes are projected
out from Hilbert space at A sites and doublons are projected
out from Hilbert space at B sites. The difference here is that the
hole-projected sites and doublon-projected sites are randomly
distributed on the lattice in each disorder configuration. This
makes all three types of nearest neighbor bonds possible: AA,
BB, and AB. Also in three-site processes, as we will show later,
there are many more hopping processes possible which do not
occur for IHM. Every disorder configuration has a different
combination of two-site and three-site hopping terms due to
different environment of a site in each configuration.

A. Similarity transformation

The nearest neighbor hopping processes between two sites
can be classified as follows depending upon which sites are
involved in the hopping—AA sites, BB sites, or AB sites—and
whether the hopping process changes the number of doublons
or not:

Ht
AA = H+

t A→A
+ H−

t A→A
+ H 0

t A→A
,

Ht
BB = H+

t B→B
+ H−

t B→B
+ H 0

t B→B
, (28)

Ht
AB = H+

t A→B
+ H+

t B→A
+ H−

t A→B
+ H−

t B→A

+H 0
t A→B

+ H 0
t B→A

.

Since an A-type site has doublons allowed in the low-energy
sectors and holes should be projected out while on B-type sites
the reverse happens, one needs to do different similarity trans-
formations on the local Hamiltonian depending on whether the
bond is AA type, BB type, or AB type:

iSAA = 1

U
(H+

t A→A
− H−

t A→A
),

iSBB = 1

U
(H+

t B→B
− H−

t B→B
),

(29)

iSAB = 1

U + V
(H+

t A→B
− H−

t B→A
)

+ 1

V

(
H 0

t A→B
− H 0

t B→A

)
.
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Note that SAA and SBB are perturbative in t/U while SAB has
terms which are perturbative in t/(U + V ) or t/V .

If we consider the commutators of the type [Sαβ,H
αβ
t ]

and [Sαβ,[Sαβ,H
αβ

0 ]], we get terms connecting the low-energy
sector to the high-energy sector which must be removed
through suitable similarity transformation. The terms that do
not interconnect the low-energy sector and the high-energy
sector constitute the effective Hamiltonian. The effective
Hamiltonian itself is a function of disorder configuration. In a
disorder configuration, dimer terms in Heff depend on whether
bonds are AA, BB, or AB type:

Heff = H0 + H 0
t A→A

+ H 0
t B→B

+ H+
t B→A

+ H−
t A→B

+ 1

U
[H+

t A→A
,H−

t A→A
] + 1

U
[H+

t B→B
,H−

t B→B
]

+ 1

U + V
[H+

t A→B
,H−

t B→A
]+ 1

V

[
H 0

t A→B
,H 0

t B→A

]
+ 1

2

(
1

U
+ 1

V

)[
H+

t A→A
+ H−

t B→B
,H 0

t B→A

]

− 1

2

(
1

U
+ 1

V

)[
H−

t A→A
+ H−

t B→B
,H 0

t A→B

]
.

(30)

B. Effective low-energy Hamiltonian in terms
of projected fermions

Now we represent the effective low-energy Hamiltonian of
Eq. (30) in terms of projected fermionic operators on A and
B sites as defined in Eqs. (12) and (13). Let us first consider
the O(t) hopping terms which are confined in the low-energy
Hilbert space and are represented as

H
Ai,Aj

1,low = H 0
tA→A(i,j ) = −t

∑
σ

[c̃†iAσ c̃jAσ + H.c.],

H
Bi,Bj

1,low = H 0
tB→B(i,j ) = −t

∑
σ

[ ˜̃c†iBσ
˜̃cjBσ + H.c.]. (31)

Here, H 0
t A→A

involves hopping of a doublon while H 0
t B→B

involves hopping of a hole:

H
Ai,Bj

1,low = H−
tA→B(i,j ) + H+

tB→A(i,j )

= −t
∑

σ

[c̃†iAσ
˜̃cjBσ + H.c.]. (32)

O(t2/U ) dimer terms. Now we consider O(t2/U ) dimer
terms obtained from 1

U
[H+

t α→α
,H−

t α→α
] terms with α =

A,B. Let us first look at the AA term. 1
U

[H+
t A→A

,H−
t A→A

] ∼
− 1

U
H−

t A→A
H+

t A→A
since the first term in the commutator

requires a hole to start with which lies in the high-energy
sector for A-type sites. The dimer term corresponding to this
commutator is

H
Ai,Aj

dimer = − t2

U

∑
σ

[
XiA

σ←σXjA
σ̄←σ̄

−XiA
σ←σ̄XjA

σ̄←σ + j ↔ i
]
. (33)

This in terms of projected operators can be expressed as

J

2

∑
σ

[c̃iAσ̄ c̃
†
iAσ c̃jAσ c̃

†
jAσ̄ − c̃iAσ̄ c̃

†
iAσ̄ c̃jAσ c̃

†
jAσ ]

= JPh

(
SiA · SjA − (2 − niA)(2 − njA)

4

)
Ph (34)

with J = 4t2/U . A factor of 4 = 2 × 2 comes from spin
summation and from hoppings from i to j site first or vice
versa. A similar analysis can be extended in the case of B
sites. 1

U
[H+

t B→B
,H−

t B→B
] ∼ − 1

U
H−

t B→B
H+

t B→B
since the

first term in the commutator requires a doublon to start with
which lies in the high-energy sector for B-type sites. The dimer
term corresponding to this commutator is

H
Bi,Bj

dimer = − t2

U

∑
〈ij〉,σ

[
XiB

σ←σXjB
σ̄←σ̄

−XiB
σ←σ̄XjB

σ̄←σ + j ↔ i
]
. (35)

Again, in terms of projected operators it is

−J

2

∑
σ

[ ˜̃c†iBσ
˜̃ciBσ

˜̃c†jBσ̄
˜̃cjBσ̄ − ˜̃c†iBσ

˜̃ciBσ̄
˜̃c†jBσ̄

˜̃cjBσ ]

= JPd

(
SiB · SjB − niBnjB

4

)
Pd . (36)

There are also t2/(U + V ) order terms obtained from
hopping of a spin-1/2 from site A to B and back. In Heff the
corresponding term for this process is 1

U+V
[H+

t A→B
,H−

t B→A
]

which, as explained in the section on IHM, can be expressed
as

H
Ai,Bj

dimer = J1[SiA · SjB − (2 − n̂iA)n̂jB/4] (37)

with J2 = 2t2

U+V
. Note that all the above expressions are defined

in projected Hilbert space.
The dimer term corresponding to [H 0

t A→B
,H 0

t B→A
] in-

volves hopping of a particle or a doublon from one site to
the nearest neighbor site and back to the initial site as shown
in Fig. 5. This process is of order t2/V and the corresponding
expression is given in Eq. (16).

O(t2/U ) trimer terms. Since on each site there is possibility
of having an A-type site or B-type site, in total there are 8
trimer terms possible arising from various commutators in Heff .
Trimer terms from the commutator involving only A-type sites
1
U

[H+
t A→A

,H−
t A→A

] involve hopping of a particle from the
intermediate site resulting in the formation of a doublon in
the nearest neighbor site and the other doublon unpairs in two
ways: one in the spin-preserving way, the other in the spin-flip
way, as shown in Fig. 16. Eventually we get HAAA

trimer(i,j,k) as

− t2

U

∑
σ

[
Xσ←0

jA Xσ̄←d
kA Xd←σ̄

iA X0←σ
jA + H.c.

]

+ t2

U

∑
σ

[
Xσ←0

jA Xσ̄←d
kA Xd←σ

iA X0←σ̄
jA + H.c.

]

= t2

U

∑
σ

[c̃†iAσ c̃jAσ̄ c̃
†
jAσ̄ c̃kAσ − c̃

†
iAσ̄ c̃jAσ̄ c̃

†
jAσ c̃kAσ ] + H.c.
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Ai Aj Ak Ai Aj Ak Ai Aj Ak

↓ ↑ ↑↓ H+
t A−→A−−−−−−−→←−−−−−−

H−
t A−→A

↑↓ ↑↓ H−
t A−→A−−−−−−−→←−−−−−−

H+
t A−→A

↑↓ ↑ ↓

↓ ↑ ↑↓ H+
t A−→A−−−−−−−→←−−−−−−

H−
t A−→A

↑↓ ↑↓ H−
t A−→A−−−−−−−→←−−−−−−

H+
t A−→A

↑↓ ↓ ↑

FIG. 16. Trimer term on AAA sites for correlated binary alloy
model.

= t2

U

∑
σ

Ph[c†iAσ (1 − n̂jAσ̄ )ckAσ

+ c
†
iAσ̄ c

†
jAσ cjAσ̄ ckAσ + H.c.]Ph. (38)

A similar trimer term on BBB sites is obtained from
1
U

[H+
t B→B

,H−
t B→B

]. In the BBB trimer terms, the effective
next nearest neighbor hopping of hole takes place, just as in
AAA terms it is the effective next nearest neighbor hopping of
a doublon which takes place. The corresponding trimer term
can be expressed as

HBBB
trimer = − t2

U

∑
σ

[
Xσ←0

iB Xσ̄←d
jB Xd←σ̄

jB X0←σ
kB + H.c.

]

+ t2

U

∑
σ

[
Xσ̄←0

iB Xσ←d
jB Xd←σ̄

jB X0←σ
kB + H.c.

]

= − t2

U

∑
σ

[ ˜̃c†iBσ
˜̃c†jBσ̄

˜̃cjBσ̄
˜̃ckBσ − ˜̃c†iBσ̄

˜̃c†jBσ
˜̃cjBσ̄

˜̃ckBσ ]

= − t2

U

∑
σ

Pd (c†iBσ njBσ̄ ckBσ − c
†
iBσ̄ c

†
jBσ cjBσ̄ ckBσ

+ H.c.)Pd . (39)

Then there are ABA- and BAB-type trimer terms, which
are of order t2/V . Note that similar terms also appeared in IHM
and are represented in Fig. 6 and Fig. 7. Below we summarize
their forms for the case of the binary alloy model:

H
Ai,Bj,Ak

trimer = − t2

V

∑
σ

P(c†kAσ [njBσ̄ ciAσ

− ciAσ̄ c
†
jBσ̄ cjBσ ])P, (40)

H
Bi,Aj,Bk

trimer = − t2

V

∑
σ

P{ckBσ [(1 − niAσ̄ )c†jBσ

+ c
†
iAσ ciAσ̄ c

†
jBσ̄ ]}P . (41)

AAB and BBA trimer terms. Next we consider the remaining
trimer terms, namely, AAB (or BAA) and BBA (or ABB) type
terms. We would like to emphasize that these terms never
appear in strongly correlated limit of IHM presented in earlier
section and are characteristic of random arrangement of A- and
B-type sites in the binary alloy model.

The AAB trimer terms, shown in Fig. 17, arise
from the commutator t2(U+V )

2UV
[H+

t A→A
,H 0

t B→A
] ∼

A A B A A B A A B

↓ ↑ ↑ H+
t A−→A−−−−−−−→←−−−−−−

H−
t A−→A

↑↓ ↑ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↑↓ ↑

↓ ↑ ↓ H+
t A−→A−−−−−−−→←−−−−−−

H−
t A−→A

↑↓ ↓ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↑↓ ↓

FIG. 17. AAB trimer processes for correlated binary alloy model.

−K
t2 H

0
t B→A

H+
t A→A

where we have defined the coupling

strength for this term K = t2(U+V )
2UV

. This is because the first
term of the commutator requires a hole at the intermediate
A site to begin with which is energetically unfavorable. As
shown in Fig. 17, this consists of the usual spin-preserving
and spin-flip terms. In one case, the spin at the intermediate
site remains the same as the initial state and in the other case
it flips.

The fermionic representation of H
Ai,Ak,Bj

trimer is as follows:

−K
∑

σ

η(σ )
[
Xσ←0

kA X0←σ
jB Xd←σ̄

iA X0←σ
kA

+Xσ̄←0
kA X0←σ̄

jB Xd←σ̄
iA X0←σ

kA

]
= K

∑
σ

(c̃†iAσ c̃kAσ̄ c̃
†
kAσ̄

˜̃cjBσ − c̃
†
iAσ c̃kAσ c̃

†
kAσ̄

˜̃cjBσ̄ )

= K
∑

σ

P[c†iAσ (1 − nkAσ̄ )cjBσ + c
†
iAσ c

†
kAσ̄ ckAσ cjBσ̄ ]P .

(42)

Similarly, the BBA trimer terms appear from the commutator
K[H+

t B→B
,H 0

t B→A
] ∼ −K

t2 H
0
t B→A

H+
t B→B

. The first term in
the commutator requires a doublon at the intermediate site B
to start with which is energetically unfavorable. As shown in
Fig. 18, these terms also come in two variants, spin preserving
and spin flip at the intermediate site.

Below we represent H
Bj ,Bl ,Ai

trimer in terms of X operators and
then in terms of projected operators as

−K
∑

σ

η(σ )
[
Xd←σ̄

iA Xσ̄←d
lB Xd←σ̄

lB X0←σ
jB

+Xd←σ
iA Xσ←d

lB Xd←σ̄
lB X0←σ

jB

]

B B A B B A B B A

↑ ↓ ↓ H+
t B−→B−−−−−−−→←−−−−−−

H−
t B−→B

↑↓ ↓ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↓ ↑↓

↑ ↓ ↑ H+
t B−→B−−−−−−−→←−−−−−−

H−
t B−→B

↑↓ ↑ H0
t B−→A−−−−−−−→←−−−−−−

H0
t A−→B

↑ ↑↓

FIG. 18. BBA trimer processes for correlated binary alloy model.
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= −K
∑

σ

(c̃†iAσ
˜̃c†lBσ̄

˜̃clBσ̄
˜̃cjBσ − c̃

†
iAσ

˜̃c†lBσ̄
˜̃clBσ

˜̃cjBσ̄ )

= −K
∑

σ

P(c†iAσ nlBσ̄ cjBσ − c
†
iAσ c

†
lBσ̄ clBσ cjBσ̄ )P .

(43)

The terms from the commutators [H−
t A→A

,H 0
t A→B

] and
[H−

t B→B
,H 0

t A→B
] are the Hermitian conjugate terms of the

trimer terms in Eqs. (42) and (43) and are represented by the
lower arrows in Figs. 17 and 18.

C. Gutzwiller approximation

After finding various terms in the low-energy effective
Hamiltonian for the strongly correlated binary disorder model,
we will now evaluate Gutzwiller factors for various terms in
Heff of Eq. (30). The low-energy effective Hamiltonian for
binary alloys consists of certain dimer and trimer terms and
for some of these terms we have already found the Gutzwiller
factors in the section on IHM. However here, unlike in IHM,
the densities on A or B sites are not homogeneous. They are site
dependent and depend on the local environment. Let us first
consider the hopping process of O(t) between two neighboring
sites. Within the Gutzwiller approximation

H
Ai,Aj

1,low = −t
∑

σ

Ph[c†iAσ cjAσ + H.c.]Ph

= −t
∑

σ

gAA
tσ (i,j )[c†iAσ cjAσ + H.c.],

H
Bi,Bj

1,low = −t
∑

σ

Pd [c†iBσ cjBσ + H.c.]Pd

= −t
∑

σ

gBB
tσ (i,j )[c†iBσ cjBσ + H.c.],

H
Ai,Bj

1,low = −t
∑

σ

P[c†iAσ cjBσ + H.c.]P

= −t
∑

σ

gAB
tσ (i,j )[c†iAσ cjBσ + H.c.]. (44)

As explained for AB terms in the section on IHM, one can
evaluate these Gutzwiller factors by evaluating probability for
hopping process on corresponding bonds within the projected
and unprojected Hilbert space. By doing an exercise similar to
the one explained in the section on IHM, we obtain

gAA
tσ (i,j ) =

√
(niA − 1)(njA − 1)

niAσ njAσ

,

gBB
tσ (i,j ) =

√
(1 − niB)(1 − njB)

(1 − niBσ )(1 − njBσ )
, (45)

gAB
tσ (i,j ) =

√
(niA − 1)(1 − njB)

niAσ (1 − njBσ )
.

Next let us consider the renormalization of O(t2/U ) dimer
terms which are also of three types depending upon the bond
under consideration in a given disorder configuration. Within
the Gutzwiller approximation, couplings in Eqs. (34), (36), and
(37) get rescaled with the corresponding Gutzwiller factors to

give

H
Ai,Aj

dimer = JgAA
s (i,j )

(
SiA · SjA − (2 − niA)(2 − njA)

4

)
,

H
Bi,Bj

dimer = JgBB
s (i,j )

(
SiB · SjB − niBnjB

4

)
, (46)

H
Ai,Bj

dimer = J2g
AB
s (i,j )

(
SiA · SjB − (2 − niA)njB

4

)
.

The corresponding Gutzwiller factors are obtained, as
explained for an AB term in the section on IHM, to be

gAA
s (i,j ) = 1√

niA↑niA↓njA↑njA↓
,

gBB
s (i,j ) = 1√

(1 − niB↑)(1 − niB↓)(1 − njB↑)(1 − njB↓)
,

gAB
s (i,j ) = 1√

niA↑niA↓(1 − njB↑)(1 − njB↓)
. (47)

In the calculation of Gutzwiller factors for the trimer terms,
the intermediate step is unimportant; only the initial and final
states are used to calculate the probabilities. The renormalized
form of the AAA trimer term which is written in Eq. (38) is
given below:

H
Ai,Aj ,Ak

trimer = t2

U

∑
σ

[
gAAA

1σ (i,j,k)c†iAσ (1 − n̂jAσ̄ )ckAσ

+ gAAA
2σ (i,j,k)c†iAσ̄ c

†
jAσ cjAσ̄ ckAσ + H.c.

]
. (48)

The processes in projected and unprojected spaces for the
calculation of g1↑ are shown in Fig. 19. The probability of
the process in the unprojected basis is (1 − niA↑)niA↑(1 −
njA↓)2nkA↑(1 − nkA↑) and in the projected basis it is (niA −
1)(1 − niA↑)(1 − njA↓)2(nkA − 1)(1 − nkA↑). The Gutzwiller
factor then comes out to be

gAAA
1↑ (i,j,k) =

√
(niA − 1)(nkA − 1)

niA↑nkA↑
. (49)

In Fig. 19(b), the processes in unprojected and projected
spaces required for the calculation of g2σ are shown for
which the total probability in the unprojected basis is (1 −
niA↓)njA↓(1 − njA↑)nkA↑(1 − nkA↑)njA↑(1 − njA↓)niA↓ and
in the projected basis is (1 − niA↓)(1 − njA↑)(nkA − 1)(1 −
nkA↑)(1 − njA↓)(niA − 1). The Gutzwiller factor then comes
out to be

gAAA
2σ (i,j,k) =

√
(nkA − 1)(niA − 1)

njA↑njA↓nkAσ niAσ̄

. (50)

Similarly, the BBB trimer terms of Eq. (39) can be obtained
by replacing nAσ with (1 − nBσ ) and (nA − 1) with (1 − nB)
in the above two equations.

Now we consider the trimer terms of ABA and BAB types
for which we also calculated the Gutzwiller factors in the
section on IHM. The renormalized form of these terms under
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(a)
Unprojected:

Ai Aj Ak Ai Aj Ak
↑ ↑ −→ ↑ ↑

↑ ↑↓ −→ ↑ ↑ ↓

↓ ↑ ↑ −→ ↑↓ ↑

↓ ↑ ↑↓ −→ ↑↓ ↑ ↓
Projected:

Ai Aj Ak Ai Aj Ak
↓ ↑ ↑↓ −→ ↑↓ ↑ ↓

(b)
Unprojected:

Ai Aj Ak Ai Aj Ak
↓ ↑ −→ ↓ ↑

↓ ↑↓ −→ ↓ ↑ ↓

↑ ↓ ↑ −→ ↑↓ ↑

↑ ↓ ↑↓ −→ ↑↓ ↑ ↓
Projected:

Ai Aj Ak Ai Aj Ak
↑ ↓ ↑↓ −→ ↑↓ ↑ ↓

FIG. 19. (a) Processes involved in the calculation of g1σ and g2σ which are renormalization Gutzwiller factors for AAA trimer terms.

the Gutzwiller approximation is

H
Ai,Bj,Ak

trimer = − t2

V

∑
σ

c
†
kAσ

[
gABA

1σ (i,j,k)njBσ̄ ciAσ

− gABA
2σ (i,j,k)ciAσ̄ c

†
jBσ̄ cjBσ

]
, (51)

H
Bj,Ai,Bl

trimer = − t2

V

∑
σ

clBσ

[
gBAB

1σ (j,i,l)(1 − niAσ̄ )c†jBσ

+ gBAB
2σ (j,i,l)c†iAσ ciAσ̄ c

†
jBσ̄

]
. (52)

Now we will calculate Gutzwiller factors for these trimer
terms shown in Fig. 6 and Fig. 7. Figure 6(a) shows hopping
of an ↑ electron from an A site to its next nearest neighbor A
sites with a spin ↓ on the intermediate B site being preserved.
In the unprojected basis, the probability for this process to
happen is niA↑n2

jB↓(1 − nkA↑)(1 − niA↑)nkA↑. It is to be noted
that processes with either a down-type particle or a doublon at
the intermediate B site have been considered in the unprojected
space. Likewise, the probability for the process to happen in
the projected basis is (niA − 1)(1 − nkA↑)n2

B↓(nkA − 1)(1 −
niA↑). Therefore, the Gutzwiller factor for this process is

gABA
1↑ (i,j,k) =

√
(niA − 1)(nkA − 1)

niA↑nkA↑
. (53)

Figure 6(b) depicts hopping processes on the A sublat-
tice in which spin on the intermediate B site gets flipped.
The probability in the unprojected basis for this process
to occur is niA↓njB↑(1 − njB↓)(1 − nkA↑)(1 − niA↓)njB↓(1 −
njB↑)nkA↑, whereas that in the projected basis is (niA −
1)njB↑(1 − nkA↑)(1 − niA↓)njB↓(nkA − 1) resulting in the
Gutzwiller factor

gABA
2σ (i,j,k) =

√
(niA − 1)(nkA − 1)

niAσ̄ nkAσ (1 − njB↑)(1 − njB↓)
. (54)

Similarly, we can obtain the Gutzwiller factors gBAB
1σ (i,j,l)

and gBAB
2σ (i,j,l) from the above two equations by replacing

nAσ with (1 − nBσ ) and (nA − 1) with (1 − nB).

Now we will focus on the Gutzwiller factors of the new
trimer terms which arise out of the AAB and BBA processes. The
renormalized AAB and BBA trimer terms can be expressed
as

H
Ai,Ak,Bj

trimer = K
∑

σ

[
gAAB

1σ (i,k,j )c†iAσ (1 − nkAσ̄ )cjBσ

+ gAAB
2σ (i,k,j )c†iAσ c

†
kAσ̄ ckAσ cjBσ̄

]
,

H
Bj ,Bl ,Ai

trimer = −K
∑

σ

[
gBBA

1σ (j,l,i)c†iAσ nlBσ̄ cjBσ

− gBBA
2σ (j,l,i)c†iAσ c

†
lBσ̄ clBσ cjBσ̄

]
. (55)

The AAB and BBA spin-preserving hoppings as depicted in
Figs. 20(a) and 21(a) are effective next nearest neighbor hop-
ping processes, the Gutzwiller factors for which are like nearest
neighbor AB hopping. If we look at Fig. 20(a) for the processes
involved in the calculation of the Gutzwiller factor gAAB

1↑ ,
we see that the probability of the process in the unprojected
basis is (1 − niA↑)niA↑(1 − nkA↓)2(1 − njB↑)njB↑ and in the
projected basis it is (1 − niA↑)(niA − 1)(1 − nkA↓)2njB↑(1 −
njB) resulting in the Gutzwiller factor

gAAB
1↑ (i,k,j ) =

√
(niA − 1)(1 − njB )

niA↑(1 − njB↑)
. (56)

It is to be remembered that in the unprojected basis, processes
with either an up-spin electron or a hole at the intermediate A
site have been considered. In Fig. 21(a), processes involved in
the calculation of gBBA

1↑ have been depicted. The probability of
the process in the unprojected basis is (1 − niA↑)niA↑n2

lB↓(1 −
njB↑)njB↑ and in the projected basis is (1 − niA↑)(niA −
1)n2

lB↓(1 − njB )njB↑. Then, the Gutzwiller factor is

gBBA
1↑ (j,l,i) =

√
(niA − 1)(1 − njB)

niA↑(1 − njB↑)
, (57)

which is the same as gAAB
1↑ (i,k,j ).

The Gutzwiller factors for spin-flip terms depicted in
Figs. 20(b) and 21(b) can be found out similarly. For
gAAB

2↑ (i,k,j ), the probability in the unprojected space is
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(a)
Unprojected:

Ai Ak Bj Ai Ak Bj
↑ ↑ −→ ↑ ↑

↑ ↑↓ −→ ↑ ↑ ↓

↓ ↑ ↑ −→ ↑↓ ↑

↓ ↑ ↑↓ −→ ↑↓ ↑ ↓
Projected:

Ai Ak Bj Ai Ak Bj
↓ ↑ ↑ −→ ↑↓ ↑

(b)
Unprojected:

Ai Ak Bj Ai Ak Bj
↑ ↓ −→ ↑ ↓

↑ ↑↓ −→ ↑ ↓ ↑

↓ ↑ ↓ −→ ↑↓ ↓

↓ ↑ ↑↓ −→ ↑↓ ↓ ↑
Projected:

Ai Ak Bj Ai Ak Bj
↓ ↑ ↓ −→ ↑↓ ↓

FIG. 20. (a) Processes involved in the calculation of gAAB
1σ . Similar AAB physical processes with hole at intermediate A site in the unprojected

basis are considered in the calculation. (b) Processes involved in calculation of gAAB
2σ .

(1 − niA↑)niA↑(1 − nkA↑)(1 − nkA↓)nkA↑nkA↓njB↓(1 −
njB↓) and in the projected space is (1 − niA↑)(niA − 1)(1 −
nkA↑)(1 − nkA↓)njB↓(1 − njB ) resulting in the Gutzwiller
factor

gAAB
2↑ (i,k,j ) =

√
(niA − 1)(1 − njB )

nkA↑nkA↓niA↑(1 − njB↓)
. (58)

For gBBA
2↑ (j,l,i), the probability in the unprojected space is

(1 − niA↑)niA↑nlB↑nlB↓(1 − nlB↑)(1 − nlB↓)njB↓(1 − njB↓)
and that in the projected space is (1 − niA↑)(niA −
1)nlB↑nlB↓njB↓(1 − njB) leading to the Gutzwiller factor

gBBA
2↑ (j,l,i) =

√
(niA − 1)(1 − njB)

(1 − nlB↑)(1 − nlB↓)niA↑(1 − njB↓)
. (59)

D. Insights into correlated binary alloy from the
renormalized Hamiltonian

The renormalized Hamiltonian derived above brings deep
insight towards the possible phase diagram of the strongly

correlated binary alloy. Let us first focus at the projected hop-
ping terms given in Eq. (44) and the corresponding Gutzwiller
factors in Eq. (45). At half filling for U � t , if the disorder is
weak, the system will be an antiferromagnetic Mott insulator
because the hopping term is completely projected out. As
disorder increases and becomes comparable to U , the local
particle density does not remain close to one on all the sites
and the Gutzwiller factors g

αβ
tσ for various hopping processes

become finite resulting in finite kinetic energy of the electrons.
Also the Mott gap reduces with increase in V . This indicates the
possibility of a metallic phase in the system for V ∼ U . This
is consistent with what has been shown within DMFT + co-
herent potential approximation [35]. In the metallic phase, the
quasiparticle weight will be given by the most probable value
of the Gutzwiller factors for hopping terms [in Eq. (45)]. Since
V ∼ U , the local electron densities will not deviate much from
unity. Hence the Gutzwiller factors g

αβ
tσ are very small resulting

in very small quasiparticle weight in the metallic phase.
Let us now turn our attention to the spin exchange terms

in the low-energy Hamiltonian. For the parameter regime

(a)
Unprojected:

Ai Bl Bj Ai Bl Bj
↓ ↑ −→ ↑ ↓

↓ ↑↓ −→ ↑ ↓ ↓

↓ ↓ ↑ −→ ↑↓ ↓

↓ ↓ ↑↓ −→ ↑↓ ↓ ↓
Projected:

Ai Bl Bj Ai Bl Bj
↓ ↓ ↑ −→ ↑↓ ↓

(b)
Unprojected:

Ai Bl Bj Ai Bl Bj
↑ ↓ −→ ↑ ↓

↑ ↑↓ −→ ↑ ↓ ↑

↓ ↑ ↓ −→ ↑↓ ↓

↓ ↑ ↑↓ −→ ↑↓ ↓ ↑
Projected:

Ai Bl Bj Ai Bl Bj
↓ ↑ ↓ −→ ↑↓ ↓

FIG. 21. (a) Processes involved in the calculation of gBBA
1σ . Similar BBA physical processes with doublon at intermediate B site in the

unprojected basis are considered in the calculation. (b) Processes involved in calculation of gBBA
2σ .
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V ∼ U � t , since the effective hopping in the projected
Hilbert space becomes finite, and the electron density on each
site is not one, spin exchange terms might give rise to disor-
dered superconductivity with either d-wave pairing or d + is

pairing. Due to the presence of large binary disorder, we might
get a disordered superconducting phase coexisting with an
incommensurate/discommensurate charge density wave which
is a topic of great interest in context of high-Tc superconductors
[36].

V. CONCLUSION

In this work, we have extended the idea of Gutzwiller
projection for excluding holes from the low-energy Hilbert
space, which so far has been developed only for exclusion of
doublons, e.g., in context of the hole-doped t-J model. We
have discussed variants of the Hubbard model with on-site
potentials because of which, in the limit of strong correlations
and comparable potential terms, on some sites doublons are
projected out from low-energy Hilbert space while from
some other sites holes are projected out from the low-energy
Hilbert space. In order to understand the physics of these
systems, it becomes essential to understand how to carry out
Gutzwiller projection for holes. We defined new fermionic
operators in the case of hole-projected Hilbert space and
derived effective low-energy Hamiltonian for these models by
carrying out systematic similarity transformation. We further
carried out rescaling of couplings in the effective Hamiltonian
using the Gutzwiller approximation to implement the effect
of site-dependent projection of holes and doublons. To be
specific, we provided details of the similarity transformation
and Gutzwiller approximation for the IHM and Hubbard model
with binary disorder.

The effective low-energy Hamiltonian derived in both the
cases shines light on the possibility of exotic phases. In the
half-filled IHM, our renormalized Hamiltonian predicts a half-
metal phase followed up by a metal with increase in � for
U ∼ � and a superconducting phase for higher-dimensional
(d � 2) systems. Our effective Hamiltonian also explains the
nonmonotonic behavior of the Néel temperature as a function
of � in the AFM phase of the IHM realized for U � t . In
the correlated binary alloy model, for both disorder and e-e
interactions being much larger than the hopping amplitude
(V ∼ U � t), there is a possible metallic phase which might
turn into a very narrow disordered superconducting phase
coexisting with a discommensurate charge density wave in
two- or higher-dimensional systems with the help of effective
next nearest neighbor hopping. The nature of Gutzwiller

factors indicates that the metallic phase intervening between
the two insulating phases in the IHM or the correlated binary
alloy model will be a bad metal with very high effective mass
of the quasiparticles.

Although we have considered so far the case of the strongly
correlated Hubbard model in the presence of large binary
disorder, the formalism can be easily used even in the case of
fully random disorder V (i) ∈ [−V,V ]. The strongly correlated
Hubbard model in the presence of fully random disorder has
been mostly studied in the limit of weak disorder mainly
in context of high-Tc cuprates [32,37]. The case of strong
disorder has been studied in order to understand the effect
of impurities like Zn in high-Tc cuprates [38] but that too
keeping V � U so that the constraint of no double occupancy
remains intact. But for the limit of strong correlation as well
as strong disorder such that U ∼ V � t the formalism of hole
projection is essential and has not been studied before. For
V (i) < 0 and |V (i)| > Vc, where Vc � t , holes will not be
allowed in the low-energy Hilbert space. But due to the limit
of strong correlations for the hole-doped case, doublons will
not be energetically allowed at other sites of the system which
have either V (i) > 0 or V (i) < 0 but |V (i)| < Vc. Hence, even
in the case of fully random disorder there will be effectively two
type of sites A where holes are projected out from low-energy
Hilbert space and B-type sites where doublons are projected
out from low-energy Hilbert space, and one can easily use
the formalism we have provided for strongly correlated binary
alloys. Another situation where this physics is of relevance
is a strongly correlated Hubbard model with large attractive
impurities randomly distributed over the lattice with V (i) =
−V at the impurity sites and V (i) = 0 at other sites of the
lattice. For V ∼ U � t , at the impurity sites energetics will not
allow holes in the low-energy Hilbert space while at all other
sites of the lattice for which V (i) = 0 large U will not allow
for doublons in the low-energy sector for the hole-doped case.
Again in this situation one can use the formalism developed
here for the case of strongly correlated binary alloys.

To conclude, in this work we have provided an essential tool
which has been missing so far in the field of strongly correlated
electron systems, that is, the Gutzwiller projection for holes
allowing for doublons which happens in many correlated
systems in various possible scenarios explained above. We
have described its implementation at the level of the Gutzwiller
approximation. We would like to mention that so far we have
evaluated Gutzwiller factors under the simplest assumption of
spin-resolved densities being the same in the projected and
unprojected state. In future work we would like to extend this
work to find Gutzwiller factors in more general scenarios.
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