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Electronic state and optical response in a hydrogen-bonded molecular conductor

Makoto Naka1 and Sumio Ishihara2

1Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050, Japan
2Department of Physics, Tohoku University, Sendai 980-8578, Japan

(Received 14 January 2018; revised manuscript received 29 March 2018; published 7 June 2018)

Motivated by recent experimental studies of hydrogen-bonded molecular conductors κ-X3(Cat-EDT-TTF)2

[X = H, D], interplays of protons and correlated electrons, and their effects on magnetic, dielectric, and optical
properties, are studied theoretically. We introduce a model Hamiltonian for κ-X3(Cat-EDT-TTF)2, in which
molecular dimers are connected by hydrogen bonds. Ground-state phase diagram and optical conductivity spectra
are examined by using the mean-field approximation and the exact diagonalization method in finite-size cluster.
Three types of the competing electronic and protonic phases, charge density wave phase, polar charge-ordered
phase, and antiferromagnetic dimer-Mott insulating phase are found. Observed softening of the interdimer
excitation due to the electron-proton coupling implies reduction of the effective electron-electron repulsion,
i.e., “Hubbard U ,” due to the quantum proton motion. Contrastingly, the intradimer charge excitation is hardened
due to the proton-electron coupling. Implications of the theoretical calculations to the recent experimental results
in κ-X3(Cat-EDT-TTF)2 are discussed.
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I. INTRODUCTION

It is widely known that the proton is the most lightweight
ion and plays essential roles on various physical, chemical, and
biological phenomena, e.g., quantum ferroelectricity in crys-
talline solids and liquid crystals, redox reactions in molecules,
and self-renewal of DNA in biological materials [1–8]. These
multifunctional characters of the proton are owing to its high
quantum and reactive natures similar to the electrons in solids
and molecules [9–13]. Revelation of the interaction among
protons and electrons is widely recognized as one of the
central issues in solids, molecules, and biomacromolecules
[14]. In comparison with the biomaterial systems in which
a huge number of components and couplings with them
bring about unmanageable complexity, the crystalline solids
provide suitable playground for the electron-proton coupled
phenomena.

Recently, a new series of organic molecular compounds
showing a predominant proton-electron coupling was dis-
covered [15–19]. The chemical formula of this material is
κ-X3(Cat-EDT-TTF)2, where Cat-EDT-TTF represents the
catecholfused ethylenedithiotetrathiafulvalene (abbreviated as
Cat) and X takes the proton H or deuteron D. The crystal
structure consists of the Cat molecular layers, shown in
Fig. 1(a), which are connected by the hydrogen bonds with each
other. The hydrogen-bond network consisting of the dimerized
Cat molecules and the protons are extended to the out-of-plane
direction as shown in Fig. 1(b). In a Cat molecular dimer, a pair
of the molecular orbitals forms the bonding and antibonding
orbitals. Since one hole exists per the Cat molecular dimer, the
antibonding molecular orbital band is identified as a half-filled
band. Thus, the system is a candidate of a Mott insulator
in the case of a strong electron-electron interaction. This is
termed a dimer-Mott (DM) insulator, which is well known
in low-dimensional organic crystals [20,21]. A prototypical
example of the DM insulator is the κ-type bisethylenedithio-

tetrathiafulvalene (abbreviated as ET) organic salts [22,23].
Instead of the anion molecules in the ET salts, the hydrogen
bonds connect the conducting layers in the present compounds.
It is expected that the proton motions affect significantly the
electronic states in the Cat layer. Thus, the present compounds
are recognized as a possible proton-electron coupled system,
where not only exotic electronic and protonic states but also
functionalities based on their coupling are expected.

One of the intriguing phenomena in κ-X3(Cat)2 with X= H
is that it does not show any magnetic long-range ordered
states down to 50 mK despite that the magnitude of the
spin exchange interaction is estimated to be around 80 K
[17]. This indicates a realization of a quantum spin liquid
state [24,25]. The crystal structural analysis by the x-ray
diffraction measurements reveals that the average position of
the proton is at the center of the hydrogen bond, suggesting
the quantum tunneling of the protons among the two potential
minima [18]. The electronic and protonic states are drastically
changed by deuteration; κ-D3(Cat)2 undergoes a first-order
phase transition at around 185 K from a paramagnetic to
nonmagnetic insulator. This is accompanied by an alternate
charge disproportionation between the crystallographically
nonequivalent Cat dimers and displacements of the deuterons
from the centers of the hydrogen bond [18]. These results
indicate that the proton degree of freedom in the hydrogen bond
strongly interacts with the charge and spin degrees of freedom
in the electron in the Cat dimers. However, the microscopic
picture of the electronic and protonic states in κ-H3(Cat)2 and
κ-D3(Cat)2 and a role of proton-electron coupling behind it
remain to be clarified.

In this paper, motivated by the recent research in κ-X3(Cat)2,
we present a microscopic theory for the hydrogen-bonded
molecular conductor, which involves the proton-electron cou-
pling, quantum proton fluctuation, and electron correlation
effect in the π -electron system. We introduce an effective
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FIG. 1. Schematic (a) intralayer and (b) interlayer crystal struc-
tures of κ-X3(Cat)2. Ellipses and circles represent the Cat molecules
and protons, respectively. Solid and dotted lines denoted by A, B, p,
q, and l are the major intermolecular bonds with dominant electron
transfer integrals and Coulomb interactions. The two molecules in the
dimers are denoted by a and b. The a∗ axis is perpendicular to the
b-c plane. (c) Lattice structure and the major bonds in the simplified
one-dimensional model.

model for κ-X3(Cat)2, and calculate the ground-state phase
diagram and optical spectra by complimentary use of the mean-
field approximation and the exact diagonalization method.
Competition between the proton-electron coupling and elec-
tron correlations causes cooperative disproportionation of the
electronic and protonic charges. In the ground state, a charge
density wave (CDW) state with the interdimer charge dispro-
portionation, polar charge order (CO) states with the intradimer
charge disproportionation, and an antiferromagnetic (AFM)
DM insulating state compete with each other. The CDW fluc-
tuation strongly suppresses the AFM spin correlations in the
DM phase. The charge excitation energies in the DM state are
changed significantly when the proton-electron coupling turns
on; the intra- and interdimer charge excitations show hardening
and softening, respectively. This softening of the interdimer
excitation implies a reduction of the effective electron-electron
repulsion, i.e., “Hubbard U ,” due to the quantum proton
motion. On the other hand, the hardening of the intradimer
excitation is caused by cooperative displacements of protons
and electrons. These results give us a method to evaluate the
magnitude of the proton-electron coupling through the optical
measurements. The present results provide a fundamental
understanding of proton-electron cooperative phenomena in
crystalline solids and give a guiding principle to explore new
functional hydrogen-bonded molecular conductors.

This paper is organized as follows. In Sec. II, an effective
model Hamiltonian for κ-X3(Cat)2 is introduced. In Sec. III,
numerical methods and physical quantities calculated in the
following sections are introduced. In Sec. IV, the ground-state
properties obtained by the mean-field approximation and the
exact diagonalization method are presented. In Sec. V, analyses
of the charge excitations and optical responses are presented.
Section VI is devoted to discussion and summary.

II. MODEL

We introduce a tight-binding model for κ-X3(Cat)2 where
the electron and proton degrees of freedom are taken into

Px

Pz
a b

FIG. 2. Pseudospin directions in the P x-P z plane and proton
states. Shades represent proton distribution in a hydrogen bond,
schematically. The molecules a and b belong to neighboring dimers
connected by the hydrogen bond.

account. The model Hamiltonian is given by

H = He + Hpro, (1)

where the first term represents the kinetic energy and Coulomb
interactions in the π -electron system in the Cat layers and
the second term represents the proton-electron coupling and
quantum proton motion. The first term is given by the extended
Hubbard model, in which the highest occupied molecular
orbitals of the two molecules in the Cat dimer are introduced
as the basis orbitals. This is given by

He = tA
∑
iσ

(c†iaσ cibσ + H.c.) +
∑
〈ij〉σ

t
μμ′
ij (c†iμσ cjμ′σ + H.c.)

+U
∑
iμ

niμ↑niμ↓+VA

∑
i

nianib+
∑

〈ij〉μμ′
V

μμ′
ij niμnjμ′ ,

(2)

where ciμσ is the annihilation operator of a hole with spin
σ = (↑ , ↓) at μ(= a,b) molecule of the i-th dimer, niμσ =
c
†
iμσ ciμσ is the number operator, and niμ = ∑

σ niμσ . The first
and second terms in Eq. (2) represent the intra- and interdimer
electron transfers, respectively. The third and fourth terms
represent the Coulomb interaction between two holes in the
same molecule and that between two holes in the different
molecules in the dimer, respectively. The last term describes
the Coulomb interaction between holes in the different dimers.

We introduce the pseudospin (PS) operator P with the
amplitude 1/2 to describe the proton degree of freedom in
the hydrogen bond. The present PS description is justified in
the case where the kinetic energy of the proton is much smaller
than the height of the energy barrier between the two potential
minima in the hydrogen bond as shown in Fig. 2. According
to Refs. [18] and [26], the height of the barrier is estimated to
be at least 600 K in an isolated monomer in κ-H3(Cat)2, and
the recent dielectric measurement in κ-H3(Cat)2 in Ref. [19]
suggests that the proton transfer energy is of the order of 10 K.
These results imply that the PS description in this system
is suitable. The eigenstates of P z, denoted by |+〉 and |−〉,
represent the states where the proton is located at one side
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FIG. 3. Schematic picture of the three-dimensional dimer-proton
network and the primitive translational vectors in κ-X3(Cat)2. Ellipses
and circles represent the Cat molecules and protons, respectively. The
shaded four dimers and four protons denoted by 1–4 are included in
the unit cell adopted in the mean-field calculation.

of the two potential minima The eigenstates of P x , denoted
by |+x〉 = (|+〉 + |−〉)/√2 and |−x〉 = (|+〉 − |−〉)/√2, rep-
resent the states where the proton occupies the bonding and
antibonding states in the double-well potential, respectively.
Using the PS operators, the second term in Eq. (1) is given by

Hpro = 2tpro

∑
i

P x
i + 1

2
g

∑
〈ij〉

(nja − nib)P z
i , (3)

where the first term represents the quantum proton tunneling
between the two potential minima, and the second term
represents the proton-hole coupling. The coupling constant
is chosen to be repulsive (g > 0) because both the hole and
proton have the positive charge.

III. METHOD

We analyze the effective model in Eq. (1) by the compli-
mentary two methods, the mean-field approximation, and the
exact diagonalization method based on the Lanczos algorithm.
In the mean-field method, we consider the three-dimensional
lattice structure of κ-X3(Cat)2 shown in Fig. 3. In the Lanczos
method, we employ a model in the one-dimensional chain,
which is formed by the Cat dimers connected by the hydrogen
bonds shown in Fig. 1(c). This is a minimal structural unit
to analyze the proton-electron coupling in κ-X3(Cat)2,. The
details of the methods are explained below.

A. Mean-field approximation

We examine the charge, spin, and proton configurations in
the ground state of the effective Hamiltonian by use of the
mean-field approximation. The electron-electron interactions

and proton-electron coupling in the Hamiltonian given in
Eq. (1) are decoupled as

niμ↑niμ↓ → 〈niμ↑〉niμ↓ + niμ↑〈niμ↓〉 − 〈niμ↑〉〈niμ↓〉,
niμσ njμ′σ ′ → 〈niμσ 〉njμ′σ ′ + njμσ 〈njμ′σ ′ 〉 − 〈niμσ 〉〈njμ′σ ′ 〉

−δσσ ′(〈c†jμ′σ ′ciμσ 〉c†iμσ cjμ′σ + c
†
jμ′σ ciμσ 〈c†iμσ cjμ′σ 〉

−〈c†jμ′σ ciμσ 〉〈c†iμσ cjμ′σ 〉),
niμP z

i → 〈niμ〉P z
i + niμ

〈
P z

i

〉 − 〈niμ〉〈P z
i

〉
. (4)

The mean-field approximation introduced above is suitable to
examine possible ordered states in the system with the multiple
degrees of freedom. In the numerical calculations, we adopt a
unit cell, including the four Cat dimers and four protons located
between the two Cat layers shown in Fig. 3 and 20×20×20 k-
points in the Brillouin zone.

We set the value of the intradimer electron transfer tA = 1
as the unit of energy. Through the numerical calculations with
several sets of parameter values, we find that the quantum
proton tunneling tpro, the proton-electron coupling g, and
the intramolecular Coulomb interaction U are most relevant
parameters to the electron and proton states. Therefore, we
will show the results by varying these parameter values while
fixing the others. The values of the dominant electron transfers
shown in Figs. 1(a) and 1(b) are chosen based on the recent
first-principles band calculation as tp = 0.2, tq = 0, tB = 0.3,
and tl = 0.1 [27], and the intermolecular Coulomb interactions
are fixed as VA = 0.75 and Vp = Vq = VB = 0.5, assuming
1/r-type distance dependence.

B. Exact diagonalization

We apply the Lanczos exact diagonalization method to the
Hamiltonian in the one-dimensional lattice shown in Fig. 1(c)
to examine the charge and spin correlations and the charge
dynamics in the ground state. We introduce two kinds of the
charge correlation functions characterizing the CDW and the
polar CO states defined as

N (k) = 1

N2

∑
ij

〈ninj 〉e−ik(ri−rj ), (5)

P (k) = 1

N2

∑
ij

〈pipj 〉e−ik(ri−rj ), (6)

respectively, and N is the number of the molecular dimers.
Here, ni = (nia + nib − 1)/2 and pi = (nia − nib)/2 repre-
sent the charge density and electric dipole moment in the
i-th dimer, respectively, and ri denotes the center of the i-th
dimer. The spin-correlation function characterizing the AFM
structure is given by

S(k) = 1

N2

∑
ij

〈
sz
i s

z
j

〉
e−ik(ri−rj ), (7)

where sz
i = (ni↑ − ni↓)/2. The maximum values of the corre-

lation functions introduced above are 0.25, when the classical
ordered states are realized. Charge dynamics is examined by

245110-3



MAKOTO NAKA AND SUMIO ISHIHARA PHYSICAL REVIEW B 97, 245110 (2018)

calculating the optical conductivity spectra defined by

σ (ω) = − e2

ωN

∑
m( 
=0)

Im

[ |〈0|j |m〉|2
ω − Em + E0 + iη

− |〈0|j |m〉|2
ω + Em − E0 + iη

]
, (8)

where E0 and |0〉 represent the ground-state energy and wave
function, respectively, Em and |m〉 represent the m-th eigen
energy wave function, respectively, η is an artificial broad-
ening factor, and j = i

∑
〈ij〉σ tij (ri − rj )(c†iσ cjσ − c

†
jσ ciσ ) is

the electronic current operator. The light is applied along
the one-dimensional chain. We set tA = 1 and VA = 0.75
and change the parameter values of g, tpro, and U . The
interdimer electron transfer and Coulomb interaction on the
bond l shown in Fig. 1(c) are chosen as tl = 0.3 and Vl = 0.5.
The finite-size cluster including six dimers and six protons is
adopted.

IV. GROUND STATE

A. Phase diagram

In this section, we present the ground-state properties
obtained by the mean-field approximation. Figures 4(a)–4(c)
show the ground-state phase diagrams on the plane of the
proton-tunneling tpro and the proton-electron coupling g. The
intramolecular Coulomb interaction is chosen as U = 1, 2, and
3 in Figs. 4(a), 4(a), and 4(c), respectively. We find four kinds
of insulating phases with different charge, spin, and proton
configurations, termed CDW, AFE CO, AFM DM, and FE
CO. We also find a uniform metallic phase, where charge and
spin densities are uniform, and two metallic CDW phases,
termed CDW metal 1 and CDW metal 2. Schematic charge
and spin configurations in the insulating phases are presented
in Figs. 4(d)–4(g).

Characteristics in each phase are summarized. In the CDW
phase shown in Fig. 4(d), one of the two kinds of dimers is
occupied by two holes while the other dimer is nearly empty,
and spin polarization does not appear in either dimers. The
protons shift from the center of the hydrogen bonds toward
the dimers which are poorly occupied by holes. The electric
dipole moments in the hydrogen bonds are ordered alternately.
Thus, the CDW phase is identified as an antiferroelectric (AFE)
phase. In the AFM DM phase, the charge density in each
molecule is 0.5, and spins are antiferromagnetically ordered
as shown in Fig. 4(e). The protons tunnel between the two
potential minima, and their average positions are the center
of the hydrogen bonds. The other two insulating phases are
polar CO phases, where a charge disproportionation occurs in
the two molecules inside the dimer, generating an intradimer
electric dipole moment [28–32]. The AFE CO and FE CO
are distinguished with each other by the configurations of the
intradimer electric dipoles and the proton displacements. In
the AFE CO phase shown in Fig. 4(f), both of the two kinds
of the electric polarizations owing to the electron and proton
orders are zero. This phase is identified as an AFE phase. On
the other hand, in the FE CO phase shown in Fig. 4(g), the
electric dipole moments due the electron and proton orders
are not canceled out and the macroscopic electric polarization

remains in the a-c plane, showing a ferroelectric order. In both
of the two CO phases, the magnetic moments in the dimers are
almost located in one of the molecules in the dimers and are
ordered antiferromagnetically. In the phase diagrams shown
in Figs. 4(a)–4(c), the CDW, AFE CO, and FE CO phases,
in which the electronic charge disproportionation in the dimer
and the proton displacement are finite, appear in the large-g and
small-tpro region. On the other hand, the AFM DM and uniform
metallic phases, in which the charge distributions are uniform
and the protons are not polarized in the hydrogen bonds, are
stabilized in the small-g and large-tpro region. In addition,
two metallic CDW phases appear between the CDW and
uniform metallic phases. The electronic and protonic charge
configurations of both of the two phases are similar to those of
the CDW phase. The CDW metal 1 phase is nonmagnetic,
while the CDW metal 2 phase involves a weak staggered
magnetic order in between the charge rich and poor dimers.

To elucidate the variations of the charge, spin, and proton
configurations in more detail, we show in Fig. 5 the g de-
pendences of the charge densities 〈niμ〉 = (〈niμ↑〉 + 〈niμ↓〉)/2,
spin moments 〈sz

iμ〉 = (〈niμ↑〉 − 〈niμ↓〉)/2, and proton PS mo-
ments 〈P z

i 〉, where the subscripts i(= 1,2,3,4) and μ(= a,b)
denote the sublattices defined in Fig. 3. Figure 5(a) shows the
results at tpro = 0.2 and U = 1. In the small-g region, the holes
are uniformly distributed in each molecule, and neither the spin
polarization nor the the proton displacement appear. This is
interpreted as a uniform metallic phase. With increasing g, both
the charge densities and proton PS moments jump at around
g = 0.7, and show the staggered ordered states in the CDW
phase.

Figure 5(b) shows the g dependences of the order parame-
ters at tpro = 0.2 and U = 2. As shown in the phase diagram in
Fig. 4(b), the uniform metallic phase seen in U = 1 is replaced
by the AFM DM phase. The AFE CO phase with the intradimer
electric dipole emerges between the CDW and AFM DM
phases. With increasing g from the AFM DM phase, the system
changes into the AFE CO phase, where the charge densities and
the spin moments show the different values between the a and
b molecules inside the dimer unit, and the protons are polarized
in the hydrogen bonds. This phase transition at around g = 1.5
is of the second order. With further increasing g, the first-order
phase transition occurs from the AFE CO phase to the CDW
phase. At the transition point, the charge densities in the
two kinds of dimers and the proton configurations in the
one-dimensional dimer-proton chain change from the uniform
[Fig. 4(f)] to staggered [Fig. 4(d)] alignments, and the spin
moments disappear. In the large-tpro region in Fig. 4(b), the
AFE CO phase disappears and the phase boundary with the
first-order transition between the AFM DM phase to the CDW
phase emerges.

In the phase diagram at U = 3, the CDW phase shown in
U = 2 is replaced by the AFE CO in the region of large g,
and FE CO phase appears between the AFE CO and AFM DM
phases. The phase transition between the AFM DM and FE CO
is of the second order as shown in Fig. 5(c). In the FE CO phase,
the proton PS moments are aligned uniformly; the net electric
polarization emerges due to the proton configuration. Further
increasing g, the first-order phase transition occurs from the
FE CO phase to the AFE CO phase, where the alignments of
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FIG. 4. Ground-state phase diagrams obtained by the mean-field approximation at (a) U = 1, (b) U = 2, and (c) U = 3. Solid and broken
lines denote the second- and first-order transitions, respectively. Schematic charge, spin, and proton configurations in (d) CDW, (e) AFM DM,
(f) AFE CO, and (g) FE CO. Filled and open ellipses represent the hole-rich and hole-poor molecules, respectively. Circles and shaded ellipses
between the dimers represent the protons. Solid and shaded arrows represent the spin moments and the electric dipole moments due to electrons
and protons, respectively.

the electric dipoles between the one-dimensional chains are
changed from parallel to antiparallel configuration, and the
macroscopic electric polarization disappears. The results in
Refs. [33] and [34] show that competition between a variety of
CO states is controlled by the interdimer Coulomb interactions,
i.e., Vp, Vq , VB . On the other hand, the proton degree of
freedom and the magnetic exchange interactions between the
neighboring dimers play dominant roles in the competition
between the CDW and FE/AFE CO phases in the present
calculations.

B. Charge and spin correlation functions

In this section, we show the charge and spin correlations
in the ground state beyond the mean-field approximation.
We adopt the one-dimensional dimer-proton chain shown in
Fig. 1(c) and analyze the Hamiltonian in Eq. (1) by using
the exact diagonalization method. Figures 6(a)–6(c) show the
variations of the charge correlation function for the CDW state
N (k = 1/2), that for the polar CO state P (k = 0), and the
spin correlation function for the AFE DM state S(k = 1/2) in
the tpro-g planes. Schematic charge and spin configurations in
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FIG. 5. Charge densities (upper panels), spin moments (middle panels), and proton PS (lower panels) at each molecule as functions
of g at (a) U = 1, (b) U = 2, and (c) U = 3. Parameter values are chosen to be tA = 1, tB = 0.3, tp = 0.2, tq = 0, tl = 0.1, VA = 0.75,
VB = Vp = Vq = 0.5, and tpro = 0.2.

these states are shown in Fig. 7. We checked that the values
of correlation functions at the other wave numbers are smaller
than those shown in Fig. 6 in the whole parameter regions
shown here.

First, we focus on the results at U = 1 shown in Fig. 6(a).
In the large-g and small-tpro region, the CDW correlation
function N (k = 1/2) shows almost the maximum value 0.25,
indicating a realization of the CDW state shown in Fig. 7(a).
The AFM spin correlation function S(k = 1/2) is almost zero
in this region, while it is remarkable in the small-g and

large tpro region, implying the AFM DM state. These results
indicate that the CDW and AFM DM states are exclusive with
each other. The polar CO correlation P (k = 0) is small, but
shows a weak enhancement between the CDW and AFM DM
states.

At U = 2 shown in Fig. 6(b), the parameter region of
the CDW state is shrunk, while that of the AFM DM state
is extended. The polar CO correlation is enhanced in the
small-tpro and intermediate-g region between the CDW and
AFM DM states, in which the AFM correlation also shows
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FIG. 6. Correlation functions for CDW (upper panels), polar CO (middle panels), and AFM (lower panels) in the ground state of the
one-dimensional model at (a) U = 1, (b) U = 2, and (c) U = 3.

the large value, implying the coexistence of the polar CO
and AFM structures as shown in Fig. 7(b). This means that
the polar CO state is compatible with the AFM correlation
in contrast to the CDW state. With further increasing U ,
the CDW correlation becomes smaller, while the polar CO
correlation is dominant in the wide range of the large-g
region as shown in Fig. 6(c). Although the AFM correlation
is further enhanced in the whole parameter range, a weak
suppression is seen in the region where the CDW correlation is
enhanced.

Through the results explained above, it is concluded that the
CDW, polar CO, and DM states compete with each other in the
ground state. The phase transitions between them are governed
by the proton-electron coupling g, the proton tunneling tpro,
and the local electron-electron interaction U . These results
are consistent with the characteristic structure of the phase
diagram in the three-dimensional lattice obtained by the mean-
field approximation.

We discuss the stabilities of these three states. For simplic-
ity, we focus on the one-dimensional lattice and assume the
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(b) (c)(a)

FIG. 7. Schematic charge, spin, and proton configurations in
(a) CDW, (b) polar CO, and (c) AFM DM states in the one-dimensional
model.

isolated dimer limit given by t = 0. First, we start with the case
of the classical proton limit given by tpro = 0. We obtain the
analytical expressions of the energies per unitcell (two dimers)
in the three states as follows:

ECDW = −1

2
(g + 4tA) + Ueff , (9)

ECO = −1

2

√
g2 + 16t2

A, (10)

EDM = −2tA, (11)

where Ueff is the intradimer Coulomb interaction between two
holes in the antibonding orbital given by Ueff = 2tA + (U +
VA)/2 −

√
4t2

A + (U − VA)2/4. We find that the energy of the
DM state is not lower than the others for finite value of g.
In the noninteracting case (Ueff = 0), the CDW state has the
lower energy than the polar CO state for any finite values of
tA and g. The stability of the CDW state can be understood
by the molecular-orbital configurations as follows. Figure 8
shows the energy levels of the molecular orbitals in the CDW
state and the polar CO state. At tA = 0, the energy levels of

g/2

FIG. 8. Molecular-orbital energy diagrams in the CDW state (left)
and the polar CO state (right). Bold solid and broken lines represent
the energy levels of the molecular orbitals with and without tA,
respectively. Lower panels show schematic electronic charge and
proton configurations.

the molecular orbitals represented by the bold broken lines in
the figure are degenerate in the CDW and polar CO states,
although the electron and proton configurations are different
with each other. When tA is introduced, the molecular orbitals
are hybridized and form the bonding and antibonding orbitals
denoted by the bold solid lines in the figure. The lowering of
the energy of the antibonding orbital in the CDW state is given
by tA, and this value is larger than that in the polar CO state

given by
√

(g/4)2 + t2
A − g/4 for any positive tA. Therefore,

the stability of the CDW state is attributed to the cooperation
of the potential energy due to protons and the electronic kinetic
energy. When we introduce the intradimer Coulomb interaction
Ueff , the polar CO state overcomes the CDW state because of
Ueff in Eq. (9). This is the reason why the polar CO state is
dominant in the large-U region in which the CDW state is
suppressed. When we turn on the proton tunneling tpro, the x

component of the proton PS moment increases, while the z

component corresponding to the proton displacement reduces.
Thus, the energy gains due to the proton-electron coupling in
the CDW and polor CO states are suppressed. As a result, the
DM state without the proton displacement is more stable than
these states for large tpro.

V. CHARGE EXCITATION

In this section, we investigate the charge excitations in
the one-dimensional lattice model. The proton tunneling am-
plitude is chosen as tpro = 0.1. Figures 9(a)–9(c) show the
optical conductivity spectra for several values of g at U = 1–3.
We focus on the results at U = 2, where the ground state is
changed as AFM DM → polar CO → CDW with increasing
g. Dominant five peaks are denoted by A, B, C, D, and E.
First, the higher two peaks, D and E, are focused on. With
increasing g from zero, the peak D is hardened, and splits at
around g = 3. The higher energy peak is damped, and the lower
peak is connected to the peak E. Above g = 3, the energy of
the peak E does not show remarkable g dependence. As for
the lower energy peaks A, B, and C in Fig. 9(b), the peak
A is soften and dumped at around g = 1.5, and the peak B is
hardened with increasing g. In g > 3, the peak C is remarkable,
while the peak B almost disappears.

The optical spectra at U = 1 is presented in Fig. 9(a), where
the CDW state is realized in g > 1.5 and the polar CO state
does not appear. With increasing g, the amplitude of the peak
C is enhanced, and the energies of the peaks D and E weakly
change. The spectra at U = 3 are shown in Fig. 9(c), where
the polar CO state is realized in g > 1.5 and the CDW state is
absent. The peak C and E are not observed, while the peak B

and D are remarkable.
We identify the excitations processes of the peaks A–E

as shown in Figs. 9(d)–9(f). Figure 9(d) shows the excitation
processes of the peak C and E observed in the CDW state.
The peak C is the charge transfer excitation in which a
hole is transferred between the neighboring dimers. This
process is denoted as D2D0 → D1D1, where Dm represents
the lowest energy electronic state in a dimer with the hole
number m. The peak E is the local charge excitation from
the antibonding to bonding orbitals described as D2 → D2∗,
where Dm∗ represents the excited state of Dm. This is the
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FIG. 9. Optical conductivity spectra for several values of g at (a) U = 1, (b) U = 2, and (c) U = 3. We chose tpro = 0.1. The numerical
value of g is changed from 0 to 5 by 0.5 from the bottom to top. Solid and broken lines represent the excitation energies of the intra- and
interdimer charge excitations given in (d)–(f) obtained in the isolated dimer limit [see text]. Schematic processes of the intradimer (solid arrow)
and interdimer (broken arrow) charge excitations in (d) CDW, (e) AFM DM, and (f) CO states.

so-called dimer excitation [35–38]. Figures 9(e) and 9(f)
show the excitation processes in the AFM DM and polar
CO states, respectively. The peaks A and B are identified
as the interdimer charge excitations described by D1D1 →
D0D2, which is the so-called Hubbard excitation [35–38],
and the peak D is assigned as the dimer excitation described
by D1 → D1∗.

We evaluate the excitation energies in an isolated dimer,
i.e., t = 0, and analyze the g and U dependences of the optical
spectra. The results are shown in Figs. 9(a)–9(c). For simplicity,
we set tpro = 0 and P z = 1/2 in the polar CO and CDW states,
assuming that the hydrogen bonds are fully polarized. The
interdimer Coulomb interaction V is treated as the perturbation
up to the order of O(V ).
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First, we focus on the dimer excitations. The energy of the
dimer excitation in the polar CO state shown in Fig. 9(f) is
given by

�CO
dimer = 1

2

√
g2 + 16t2

A + g2V

g2 + 16t2
A

, (12)

in the case of t = 0 and tpro = 0. The first term originates from
the energy difference between the antibonding and bonding
orbitals, and the second term is due to the energy cost caused
by the electric dipole-moment reversal inside the dimer. The
energy of the dimer excitation in the CDW state shown in
Fig. 9(d) is given by

�CDW
dimer = U − Ueff + 2tA. (13)

The first term corresponds to the energy of the spin singlet
final state where each of the antibonding and bonding orbitals
is singly occupied, and the sum of the second and third
terms corresponds to the energy of the initial state where
the antibonding orbital is doubly occupied. It is shown that
�CO

dimer is proportional to g2 for small g, and coincides with
the excitation energy from the bonding to antibonding orbital
inside a dimer in the AFM DM state. On the other hand, �CDW

dimer
does not depend on g. The energies of the peaks D and E

obtained by the numerical calculation are well reproduced by
the above expressions of �CO

dimer and �CDW
dimer, respectively, as

shown in Figs. 9(a)–9(c).
Next, the Hubbard excitation in the AFM DM and CO states

and the charge transfer excitation in the CDW state are focused
on. The energy of the Hubbard excitation in the AFM DM state
is obtained by the perturbation with respect to g up to the order
of O(g2). The result is given by

�DM
Hubb = Ueff − γg2 + 1

4
V, (14)

where the first term corresponds to the Hubbard excitation
energy in the AFM DM state at g = 0, and the second and
third terms are correction by g and V , respectively. A positive
constant γ is given by Eq. (A9) in the Appendix, and is given
as a function of tA, U , and VA. The energy of the Hubbard
excitation in the polar CO state is obtained as an interdimer
excitation energy between the antibonding orbitals under the
charge disproportionation inside of dimers. The explicit form
is given in Eq. (A14) in the Appendix. Finally, the energy of
the charge transfer excitation in the CDW state is given by

�CDW
CT = 1

2
g − Ueff + 3

4
V, (15)

where the first term represents the energy difference of the
antibonding orbitals in the neighboring dimers under the proton
displacements, the second term is the effective intradimer
Coulomb interaction between the two holes in the same
antibonding orbital, and the third term is due to the interdimer
Coulomb interaction.

As shown in the expressions of �DM
Hubb and �CDW

CT , the
Hubbard excitation in the DM state and the charge transfer
excitation in the CDW state are softened and hardened, re-
spectively, with increasing g. It is worth it to note that the
softening of the Hubbard excitation is due to the screening
of the intradimer Coulomb interaction Ueff by the quantum
proton motion., that is the so-called bi-polaron effect [39]. The

analytical results of �DM
Hubb and �CDW

CT denoted by the green and
blue broken lines in Figs. 9(a)–9(c), respectively, well explain
the numerical calculation results of the peaks A and C. The
Hubbard excitation in the polar CO state (�CO

Hubb) denoted by
the red broken line in Figs. 9(b) and 9(c) is hardened slightly
with increasing g. This is attributable to the increase of Ueff

due to the increase of the intradimer charge disproportionation
of the antibonding orbital. The energy of the peak B obtained
numerically is well reproduced by �CO

Hubb.

VI. DISCUSSION

We compare the present numerical calculations with the
experimental observations in κ-X3(Cat)2. First, we discuss
the isotope effect of proton. As mentioned in Sec. I, by the
substitution of H → D, the low-temperature phase is changed
from the DM to the CDW phase accompanied by localization
of the deuterons. The isotope effects have been studied so far
in the hydrogen-bonded ferroelectrics, and the following two
effects have been proposed: (1) Elongation of the hydrogen
bond length, as well as the increase of the mass of X ion, reduces
the quantum tunneling [4,5]. (2) Increasing of the lattice
deformation surrounding the X ion is caused by strengthening
of the coupling between the lattice and X [40]. In the present
model Hamiltonian, (1) and (2) introduced above correspond
to decrease of the proton tunneling tpro and increase of the
proton-electron coupling g, respectively. Here, we assume that
the energy of the molecular orbitals are affected by the lattice
deformations. Both of the two kinds of the parameter changes
promote the phase transition from the DM to CDW phase. This
tendency is consistent with the experimental results [18].

Next, we discuss the correspondence between the several
phases in the calculation and the experimental observations.
Through the first-principles calculation and the analysis of the
dielectric constant measured in κ-H3(Cat)2, the magnitude of
tpro is estimated as about 0.01tA–0.1tA [19]. It is known that in
several DM systems, the intramolecular Coulomb interaction
U is at about 2tA–3tA [20–22]. From the calculated phase
diagram shown in Figs. 4(b) and 4(c), we estimate tpro in
κ-X3(Cat)2 to be around 0.1tA, since the DM and CDW phases
compete with each other in this parameter region, in the similar
way to the experimental observation. The absence of the AFM
long range order in κ-H3(Cat)2 will be discussed later. We
note that the polar CO phase predicted by the calculation
has not been observed experimentally yet. This discrepancy
might be attributable to the structural change in κ-D3(Cat)2

as follows. According to the extended Huckel calculations, the
intradimer electron transfer tA below TCDW is about 50% larger
than that in the high-temperature DM phase [41]. This is due
to the reduction of the distance between the two molecules in
the hole-rich dimer. This enhancement of the transfer integral
increases the stability of the CDW phase in κ-D3(Cat)2, in
comparison with the polar CO phase as discussed in Sec. IV.
We expect that the polar CO phase is realized by applying
the magnetic field, since the local spin moments survive in
this phase, in contrast to the CDW phase. In the polar CO
phase, magnetoelectric phenomena are expected due to the
intradimer multipole composed of the magnetic and electric
dipole moments [42].
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We discuss a possible scenario of the quantum spin liquid
state observed in κ-H3(Cat)2. Theoretical realizations of the
spin liquid state are beyond the present mean-field approxi-
mation and the small-cluster calculations. However, it is found
that the CDW fluctuation suppresses the AFM spin correlations
as shown in Figs. 6(a)–6(c). We suppose that the charge degree
of freedom plays essential roles on the realization of the
spin liquid state in κ-H3(Cat)2. Experimentally, an increase
of the dielectric constant with decreasing temperature, which
is considered as a precursor of the CDW state, is observed
in low temperatures below of κ-H3(Cat)2 [19]. Recently, it
was found that the electronic and structural phases in low
temperatures below 50 K in κ-H3(Cat)2 strongly depend on
the samples. The DM phase without the long-range magnetic
order remains until 50 mK in some samples, and the CDW
phase is realized through the first-order phase transition at
around 50 K in others. These facts suggest that κ-H3(Cat)2 is
located in the DM phase near the boundary of the CDW phase,
and the large CDW fluctuation which suppresses the AFM
order is expected. Roles of the electronic charge fluctuation
on realization of the spin liquid state have been also stressed
in other spin-liquid candidates of the DM insulators, e.g.,
κ-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 [24,25].
In the present hydrogen-based molecular conductor system, the
quantum proton motion reduces the effective electron-electron
repulsions in the molecular dimers and promotes the electron-
proton coupled charge fluctuation. As shown in Figs. 9(a)–9(c),
these kinds of charge excitations can be examined directly by
the optical spectra.

Finally, we propose an experimental method to evaluate
the amplitude of the proton-electron coupling constant g. By
using Eq. (12), the proton-electron coupling is given by g ∼
2
√

ECO
dimer − 4t2

A. Here, the second term of Eq. (12) is omitted,
because this is sufficiently smaller than the first term for the
present parameter set. Since the intradimer transfer integral
can be estimated by the first-principles calculation [27], the
proton-electron coupling amplitude is evaluated through the
optical measurement of the dimer excitation. The comparison
of the values of g in κ-H3(Cat)2 and κ-D3(Cat)2 enables us to
elucidate whether the driving force of the CDW transition is
the change of g or tpro.

VII. SUMMARY

In summary, we have presented a microscopic theory of
properties of electronic and protonic states in the hydrogen-
bonded molecular conductors, motivated by the recent experi-
mental studies in κ-X3(Cat)2. We have introduced an effective
model for κ-X3(Cat)2 and obtained the ground-state phase
diagram and charge excitation spectra. The three competing
electronic and protonic phases appear: the CDW, polar CO,
and AFM DM phases. There are mainly two optical excitation
modes in the DM phase, i.e., the dimer and Hubbard exci-
tations, which are hardened and softened, respectively, with
increasing the proton-electron coupling constant g. The soft-
ening of the Hubbard excitation implies reduction of “Hubbard
U” due to the quantum proton motion. This result provides us
a direct experimental method to evaluate the magnitude of the
proton-electron coupling. The present theory for κ-X3(Cat)2

triggers further progress of the microscopic comprehensions
of other proton-electron coupled materials.
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APPENDIX

In this Appendix, we present details of the analytical
formulas of the Hubbard excitation energies in the DM and
polar CO states. We assume, for simplicity, t = 0 in the
one-dimensional lattice model.

First, the Hubbard excitation in the DM state is examined.
We adopt the perturbational approximation with respect to
the proton-electron coupling g and the interdimer Coulomb
interaction V up to the orders of O(g2) and O(V ). The
initial and final states of the excitations are expressed by
· · ·D1D1D1D1 · · · and · · ·D1D0D2D1 · · · , respectively. The
protons are assumed to occupy the antibonding states in the
hydrogen bonds. The wave function for the unperturbed initial
state is given by

|i〉 =
N∏

i=1

|αiσ 〉∣∣−x
i

〉
. (A1)

We introduce that |α(β)iσ 〉 and | − (+)xi 〉 are the antibonding
(bonding) states of the hole in the i-th dimer and that of the
proton in the i-th hydrogen bond, respectively. We set that
an excitation of a hole occurs between the i = 1 and i = 2
dimers. The wave function for the unperturbed final state is
given by

|f 〉 = |01〉|d−
2 〉

N∏
i=3

|αiσ 〉
N∏

i=1

∣∣−x
i

〉
, (A2)

where |0〉 and |d−〉 are the unoccupied and doubly occupied
states by holes, respectively. We define

|d±〉 = C±
α |α↑α↓〉 + C±

β |β↑β↓〉. (A3)

The coefficients are given by

C±
α = −U + 2tA − λ±

√
2L± , (A4)

C±
β = U − 2tA − λ±

√
2L± , (A5)

where L± =
√

4t2
A + (λ± − U )2. We introduce the eigenvalue

of |d±〉 as λ± = (U + VA)/2 ±
√

4t2
A + (U − VA)2/4.

The perturbational terms of the Hamiltonian are given by

Hg = 1

2
g

N∑
i=1

(ni+1a − nib)P z
i , (A6)
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and

HV = V

N∑
i=1

ni+1anib. (A7)

The lowest order perturbation energy is given by

Ẽμ = Eμ +
∑
ν( 
=μ)

|〈ν|Hg|μ〉|2
Eμ − Eν

+ 〈μ|HV |μ〉, (A8)

where |μ〉 and |ν〉 represent the initial and intermediate states,
and Eμ(Eν) is the unperturbed energy of |μ〉(|ν〉). The energies
of the orders of O(g) and O(gV ) are zero. Then, we have the
Hubbard excitation energy �DM

Hubb(≡ Ẽf − Ẽi) as

�DM
Hubb = Ueff + 1

4
V − g2

[
1

16tpro + 8(U − λ−)

4t2
A

(L−)2

+ 1

16tpro + 8(λ+ − λ−)

(
L+

L−

)2 4(U − λ−)2

(λ+ − λ−)2

− 1

32(tA + tpro)
+ 1

64tpro
+ 1

16tpro

(U − VA)2

(λ+ − λ−)2

]
,

(A9)

where the coefficient of g2 in the third term corresponds γ in
Eq. (14) in Sec. V.

Next, the Hubbard excitation energy in the polar CO state
is examined. We assume that the protons are fully polarized in
the hydrogen bonds, and set tpro = 0 The interdimer Coulomb
interaction in Eq. (A7) is treated as the perturbational term

of the Hamiltonian. The unperturbed Hamiltonian for single
dimer is given by

H0 = 1

2
g(nb − na) + tA

∑
σ

(c†aσ cbσ + H.c.)

+U
∑

μ

nμ↑nμ↓ + VAnanb, (A10)

where the first term represents the electrostatic potential
originating from the protons. The unperturbed initial and final
states are given by

|i〉 =
N∏

i=1

|α̂iσ 〉, (A11)

and

|f 〉 = |01〉|d̂−
2 〉

N∏
i=3

|α̂iσ 〉, (A12)

respectively. We introduce |α̂σ 〉 and |d̂−〉 as the lowest energy
states for Eq. (A10), where the numbers of holes in the dimer
are one and two, respectively. The perturbation energy is
given by

Ẽμ = Eμ + 〈μ|HV |μ〉, (A13)

where Eμ and |μ〉 represent the unperturbed energy and
wave function, respectively. The Hubbard excitation energy
is obtained as

�CO
Hubb = Ẽf − Ẽi . (A14)
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