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Extended Bose-Hubbard model with dipolar and contact interactions
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We study the phase diagram of the one-dimensional boson gas trapped inside an optical lattice with contact
and dipolar interaction, taking into account next-nearest terms for both tunneling and interaction. Using the
density-matrix renormalization group, we calculate how the locations of phase transitions change with increasing
dipolar interaction strength for average density ρ = 1. Furthermore, we show the emergence of pair-correlated
phases for a large dipolar interaction strength and ρ � 2, including a supersolid phase with an incommensurate
density wave ordering manifesting the corresponding spontaneous breaking of the translational symmetry.
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I. INTRODUCTION

Ultracold gases loaded in optical lattices enable simulation
of a broad range of lattice gas models, most prominently the
Bose-Hubbard (BH) model [1] with Mott insulator (MI) to
superfluid (SF) quantum phase transition [2]. Precise control of
model parameters is achieved by optical potential manipulation
or by advanced techniques such as Feshbach resonances [3,4].
Long-range dipolar interparticle interactions are often taken
into account by adding a simple nearest-neighbor interaction
term resulting in the extended Bose-Hubbard (EBH) model,
which has been the topic of numerous theoretical [5–16] and
experimental [17] works.

A feature of ultracold gases is the ability to control the
geometry of the underlying optical lattice potential or even the
possibility of implementation of a more complex unit cell. The
boundary conditions of the potentials can be set by an external
harmonic or a box trap, leading to the open boundary conditions
(OBCs) [18,19], or by arranging a system into a ringlike or
cylinderlike geometry [20,21], thus implementing periodic
boundary conditions (PBCs). Notably, one-dimensional sys-
tems offer the possibility of efficient many-body numerical
simulations of the resulting lattice models by a family of
methods related to the density-matrix renormalization group
(DMRG) [22,23].

For one-dimensional lattices the EBH model features not
only MI and SF phases but also an isolator density wave (DW)
characterized by infinite-range spatial order, a topologically
protected Haldane insulator (HI) with a nonzero value of
the string order parameter, and supersolid (SS) phases which
show both spatial ordering and superfluid behavior [24–26].
It has also been suggested that at the mean density ρ = 3/2
the EBH model features Fibonacci anyon excitations [27,28]
corresponding to fractional domain walls between different
DW phases. In this context, the mean-field analysis [27]
predicted the existence of the SS phase between DW and SF
phases, in contrast to the DMRG calculation [28].

The necessary strength of the dipole-dipole interactions
is achieved for isotopes of dysprosium and erbium [29,30],
Feshbach molecules [31], and polar molecules [32–34]. More

exotic phases such as checkerboard and stripe-ordered phases
are possible for higher-dimensional lattices [35–40] (for a
review see [13]).

The BH and EBH models are motivated by an expan-
sion of the field operators in the discrete basis defined by
Wannier functions [1,41] for the optical potential, followed
by truncating the physics to the lowest Bloch band and
neglecting hopping beyond the nearest neighbors. The BH
model includes only on-site interactions, while the EBH also
contains density-density interactions on the nearest-neighbor
sites. The rigor of this procedure has been the topic of extended
research in the presence of fast-time dependence [42,43] and
strong interatom interactions manifesting as so-called density-
dependent tunnelings [13,32,44] and even as a renormalization
of model parameters due to a virtual population of higher bands
[45–47]. Moreover, the coupling beyond the nearest neighbor
has been included in studies which treated shallow optical
lattices [48,49] and for strongly interacting dipolar systems
[50]. In the latter case the extra couplings led to the appearance
of spatially ordered phases [35].

Extensive studies of the EBH-like models mentioned in this
section were mostly done by scanning the parameter space
of the constructed Hamiltonians at a chosen mean density
or possibly under other constraints such as a ratio between
parameters. In this study we take a more systematic approach
to obtain the Hamiltonian for a dipolar gas of ultracold atoms
in the optical lattice and study its phase diagram. First, our
intent is to modify only experimentally accessible parameters
such as the optical lattice potential depth, the scattering length
for contact interactions, the dipole-dipole interaction strength,
and the mean density of the gas. Second, we chose to keep
all the relevant tight-binding terms describing tunneling and
interactions. In this way the parameters of the obtained EBH-
like Hamiltonians yield a realizable physical model. In other
words we get natural constraint values of the parameters.
This saves us from considering parameter ranges unaccessible
experimentally. In the phase diagram defined by the experi-
mentlike control knobs, we predict modifications of up-to-date
theoretical results going beyond a simple readjustment of
phase boundaries. In particular we provide evidence for the
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emergence of a new phase: a pair superfluid phase with an
incommensurate density wave order.

In Sec. II we derive the model from the microscopic
principles identifying the realistic parameter set relevant for
ultracold dipolar atoms and ultracold dipolar molecules. The
phase diagrams for the system are presented in Sec. III (for
the case of unit density in the lattice) and Sec. IV (for the case
of other densities). In Sec. V we provide the final conclusions
and outlook. We finish with three Appendixes describing in
detail the computational methods used throughout the paper:
in Appendix A we present our method of calculating the
terms present in the Hamiltonian, Appendix B contains the
parameters used in our DMRG runs, and in Appendix C we
describe the DMRG method used in Sec. IV.

II. MODEL

The realistic Hamiltonian that models ultracold bosonic gas
in the one-dimensional optical lattice potential considered in
this work has the form

H = − t

L−1∑
i=1

(b†i bi+1 + H.c.) − tnnn

L−2∑
i=1

(b†i bi+2 + H.c.)

+ U

2

L∑
i=1

ni(ni − 1) + V

L−1∑
i=1

nini+1 + Vnnn

L−2∑
i=1

nini+2

− T

L−1∑
i=1

[b†i (ni + ni+1)bi+1 + H.c.], (1)

where t , T , and V denote the amplitude for standard, nearest-
neighbor tunnelings, the amplitude of density-dependent tun-
nelings resulting from interactions, and the strength of interac-
tions between nearest-neighbor sites, respectively. The terms
proportional to tnnn and Vnnn are, respectively, the tunneling and
strength of interaction between next-nearest-neighbor lattice
sites.

The Hamiltonian (1) in its full glory is a result of a realistic
tight-binding approximation to the many-body formulation
continuous in space, as given by the second quantization. We
consider an ultracold gas of atoms or molecules of mass m

in the separable optical potential created by three pairs of
standing waves of lasers with a wavelength λL which takes the
form Vopt(r) = Vx cos2(kLx) + Vy cos2(kLy) + Vz cos2(kLz),
with kL = 2π/λL. The recoil energy ER = h̄2k2

L/2m defines
a natural energy scale for the single-particle physics. We take
Vy = Vz = 50ER and Vx � Vy,Vz, which freezes the motion
in directions y and z and leaves an effectively one-dimensional
motion along the x axis. We can recover the parameters of (1)
from (for more details see Appendix A)

H =
∫

ψ†(r)

[
− h̄2∇2

2m
+ Vopt(r)

]
ψ(r)

+
∫

ψ†(r)ψ†(r′)V (r′ − r)ψ(r′)ψ(r)d3rd3r′. (2)

The function V (r) represents the sum of contact (Vc) and
dipolar (Vd ) interactions, V (r) = Vc(r) + Vd (r), where

Vc(r) = 4πh̄2as

m
δ(r), Vd (r) = Cdd

4π

1 − 3 cos2 θ

r3
, (3)

with θ being the angle between the direction of polarization
and r and as being the scattering length for effective contact
interactions [6].

The value of Cdd depends on the strength of dipolar
interactions and has the form

Cdd =
{
μ0μ

2
m, for magnetic dipole moment μm,

μ2
e/ε0, for electric dipole moment μe.

(4)

Later we will use a representation of the dipolar interaction
strength by a dimensionless quantity:

d = mCdd

2π3h̄2a
. (5)

In effect, we have two parameters, Vx and as , that can be
controlled in the experiment (using the previously mentioned
Feshbach resonance) and d, which depends on the kind of
particles used in an experiment (we can, however, modify the
strength of dipolar interactions by changing the direction of
polarization). In the case of molecules, d can be controlled by
the external electric field inducing the dipole moment. In this
work, we set the dipole direction to be perpendicular to that of
the lattice, so that dipolar interactions are maximally repulsive.
Then, for given values of U/t and V/t , the appropriate values
of Vx and as can be found, which in turn determines the values
of tnnn/t , Vnnn/t , and T/t .

Let us remark that one can, in principle, employ a transverse
harmonic confinement of the boson gas [32] to change the
relative values of the parameters of dipolar interactions. We
have found that while it does provide more control over the
values ofT/t , ultimately, they have a magnitude similar to what
we obtain solely with Vopt, and so we refrain from including
that method in our considerations.

We denote the values of V and U restricted to only
contact (dipolar) interactions as Vc (Vd ) and Uc (Ud ). In the
most common parameter range used in this paper, V/U is
of the order of 1. For the optical lattice that we consider
(Appendix A), both Vc/Uc and Vd/Ud are smaller than 10−1

(see the inset in Fig. 1). Consequently, for a given positive
value of d, the value of as has to be negative in order to lower
the value of U to achieve the desired V/U .

We now take a closer look at how changes in the dipolar
interaction strength influence the validity of using (1) for a fixed
phase diagram point (U/t , V/t). Vd and Ud increase linearly
with d, and so must |as | if we want to maintain the desired
ratio of V/U . To keep V/t (which is approximately Vd/t)
and U/t unchanged, the lattice must be made shallower (as t

depends solely on Vx). Since the tight-binding approximation
is no longer correct for shallow lattices, this provides an
effective upper limit for t , which gets stricter as d increases.
The maximum value of d we consider in this paper is 0.1,
which corresponds to Vx being roughly equal to 2.5ER for the
exemplary values of U/t = 2 and V/t = 1.5 (see Fig. 1, where
we also plot the resulting values of Vnnn/t , T/t , and tnnn/t).

To give an example of the magnitude of d for real atoms
and molecules, we first assume the lattice constant is a =
532 nm. Single atoms have weak dipole moments (for 52Cr,
d ≈ 9.7 × 10−4; for 168Er, d ≈ 4.3 × 10−3; and for 164Dy,
d ≈ 8.5 × 10−3) [29,30,40]. The values for molecules can be
a few orders of magnitude greater (for 168Er2, d ≈ 0.1) [4]. It is
worth noting that multiple experimental methods of decreasing

245102-2



EXTENDED BOSE-HUBBARD MODEL WITH DIPOLAR AND … PHYSICAL REVIEW B 97, 245102 (2018)

0

5

10

15

20

V
x
/
E

R

(a)

Vx

as/a

0.02 0.04 0.06 0.08 0.10

d

0.0

0.1

0.2

0.3

(b)Vnnn/t

−T/t
−tnnn/t

−0.04

−0.03

−0.02

−0.01

0.00

a
s
/
a0 5 10

Vx/ER

10−9
10−7
10−5
10−3
10−1

V
/
U

dipolar
contact

FIG. 1. (a) Values of Vx and as/a necessary to get U/t = 2 and
V/t = 1.5 for different values of d . (b) Values of parameters in
Hamiltonian (1) in such a case. The inset shows the values of V/U

for dipolar-only and contact-only terms.

a in optical lattices [which would increase d; see Eq. (5)] by a
factor of 2 or 3 (with the prospect for a larger value) have been
developed and tested [51–54].

III. THE PHASE TRANSITIONS AT ρ = 1

The full phase diagram calculated numerically for the EBH
model with t , U , and V as the only parameters and a unit mean
density ρ = 1 has been studied in detail already [24,25], and
here we will only briefly sum up the possible phases observed
in the (V/t , U/t) plane. For large values of t , the system is
in the SF phase, whereas large values of U/t with small V/t

drive the system into the MI. Large enough values of V/t for
a sufficient U/t put the system in the DW phase. The HI is
present on the phase diagram in between the three previously
mentioned phases, that is, for intermediate values of both V/t

and U/t .
In this section we will calculate how the locations of the

transitions between these phases change for the Hamiltonian
(1), depending on dipolar interaction strength d. We will not,
however, recover a full phase diagram, and instead, we focus on
two lines, given by the constraints V/U = 0.75 and U/t = 3.
The first of these values is chosen because it covers three of
the phases achievable in the EBH model (DW, HI, and SF)
and has already been extensively analyzed [25,26], while the
second one allows us to examine the MI phase (in addition to
DW and HI, which are also present in that case).

In order to determine the boundaries between different
phases, we define their characteristic properties: (1) for DW,
ODW �= 0, 	E �= 0, (2) for MI, ODW = 0, Ostring = 0, 	E �=
0, (3) for HI, ODW = 0, Ostring �= 0, 	E �= 0, and (4) for SF,
ODW = Ostring = 0, 	E = 0. Order parameters are defined
similarly to those in [24], Op ≡ limr→∞ Cp, for the following
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FIG. 2. The values of the string and DW order parameters, critical
exponent K , and energy gap 	E for V/U = 3/4, d = 0.02. The
positions of black dashed vertical lines correspond to the critical
values of t/U for DW-HI and HI-SF transitions (tDW−HI

c /U ≈ 0.175
and tHI−SF

c ≈ 0.82). The inset shows a logarithmic plot of Ostring and
	E near the HI-SF transition.

correlators:

CSF(r) = 〈b†j bj+r〉 , (6)

CDW(r) = (−1)r 〈δnj δnj+r〉 , (7)

Cstring(r) = 〈δnj e
iπ

∑
j�k�j+r δnk δnj+r〉 , (8)

where δnj = nj − ρ. The energy gap and its thermodynamic
limit extrapolation are defined simply as 	E(L) = E(1)(L) −
E(0)(L) and 	E = limL→∞ 	E(L), where E(k)(L) is the
energy of the kth excited state in a lattice of length L (k = 0
is the ground state).

We will also be using the fact that for the superfluid phase
it can be shown, using the Luttinger liquid theory, that the
correlations in the system show power-law decay [55]:

CSF(r) ∼ r−K/2. (9)

A. V/U = 0.75 constraint

We present the results of our calculations for the model (1)
obtained using the DMRG method described in Appendix B.
For t/U close to zero the system is in the DW phase. As
the value of t/U is increased, the first transition is a DW-HI
transition at tDW−HI

c /U . The transition location can be easily
determined because for t = tDW−HI

c (1) the gap 	E closes and
(2) the order parameter ODW vanishes (see Fig. 2, where the
values of the order parameters are plotted for d = 0.02). 	E

is linear with respect to t/U on both sides of the transition,
which allows us to easily determine where the gap closes.
Additionally, the function a[(t − tc)/U ]−b can be fitted to
the numerically computed ODW near the transition point for
t/U < tDW−HI

c /U . The values of tc/U obtained with these
methods are in agreement with each other (with a difference of
less than 5 × 10−3 for every value of d that was considered).

For even larger t , the consecutive transition occurs between
the HI and SF phases, but the determination of its location,
tHI−SF
c /U , proves to be more difficult. As in the earlier case,
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FIG. 3. Critical values of U/t for DW-HI and HI-SF transitions,
V/U = 3/4 (black solid lines), and the same for a model with Vnnn,
tnnn, and T set to zero (red dashed lines).

the energy gap closes, and the appropriate order parameter
(Ostring) goes to zero. However, the decay of both 	E and
Ostring features an exponential tail and does not provide a clear
value of the transition point (see the inset of Fig. 2). In order to
determine the correct value, we fit the correlations CSF(r) for
each L according to (9) and then extrapolate the obtained K

to the L → ∞ limit. It has been shown [56] that K = 0.5 for
ρ = 1 at the transition between insulator and superfluid phases.
That is the criterion we use here to determine tHI−SF

c /U .
The results of the analysis described above are shown in

Fig. 3, where the dependence on the chosen d value for both
DW-HI and HI-SF transitions is plotted as black solid lines.
The results of similar calculations but with parameters Vnnn,
tnnn, and T set to zero are marked with the vertical red dashed
lines. The U/tc value for the DW-HI transition has a strong,
linear dependence on d, and the transition point is moved
considerably for both small and large values of d in the chosen
interval (0 < d � 0.1). The situation is different for the HI-SF
transition; while for values of d close to zero U/tc is almost
the same as for an ordinary EBH, the SF phase disappears
completely around d = 0.03. What can also be seen for the
intermediate values ofd is that for smallU/tc another transition
appears; in simulations we see the reemergence of the HI phase,
indicated by a rise in Ostring, 	E, and K (the transition point is
once again pinpointed by the equation K = 0.5). The striking
substantial difference between the two models indicates that
real care has to be taken when applying the tight-binding
approximate Hamiltonian to a given physical system.

B. U/ t = 3 constraint

In this case, two transitions exist between three insulating
phases: DW-HI and HI-MI. The method of locating the HI-DW
transition is the same as in Sec. III A (the corresponding plot
of order parameters for U/t = 3 and d = 0.09 is shown in
Fig. 4). For the HI-MI transition a different approach must be
undertaken, as 	E does not have a linear dependence on t near
the transition point. To determine V/tc we find the minimum
of 	E with respect to V/t for each available L, and then we
extrapolate it for L → ∞ using a power function aL−b + V/tc
(see Fig. 5).
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FIG. 4. The values of the order parameters (6), (7), and (8) for
U/t = 3, d = 0.09. The positions of the black dashed vertical lines
correspond to the critical values of V/t for DW-HI and HI-MI
transitions (V/tHI−MI

c ≈ 1.94 and V/tDW−HI
c ≈ 2.74).

We plot the results in Fig. 6, comparing them with the results
obtained for a pure EBH model, i.e., setting Vnnn, tnnn, and T

in (1) to zero. While the changes are not as drastic as for fixed
V/U = 0.75, the HI phase gets narrower with respect to V/t

as d increases.

IV. THE PHASE DIAGRAM FOR d = 0.1

In this section, we characterize the phase diagram without
constraining the density of particles ρ while setting V/U =
0.75 and d = 0.1. The results for an ordinary EBH model,
obtained mostly using quantum Monte Carlo methods, can be
found in [15,25]. To this end we calculate the ground-state
energies using DMRG with OBCs (for technical details see
Appendix B) for ρ corresponding to each of the DW phases
present in the system for vanishing tunnelings. It is easy to
convince oneself that the DW phase requires a commensu-
rate relation between the number of particles and number
of sites. Restricting the calculation to next-nearest-neighbor
interactions, the corresponding densities are ρDW = nDW/4,
where nDW � 2, nDW ∈ Z. Repeating the same calculations
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FIG. 5. The energy gap for different system sizes and U/t =
3, d = 0.09. The inset shows an extrapolation for L → ∞, b ≈
0.56151.
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FIG. 6. Critical values of V/t for DW-HI and HI-SF transitions,
U/t = 3 (black solid lines), and the same for a model with Vnnn, tnnn,
and T set to zero (red dashed lines).

with particles added or removed from the system allows us to
obtain the chemical potential: μ(N,L) = ∂E(N,L)/∂N . We
can then get the boundaries of DW phases as a discontinuity in
μ(N,L) at NDW = ρDWL. The lower boundary for the DW
phase is then given by μ− = limN→N+

DW
μ(N,L), while the

upper one is given by μ+ = limN→N−
DW

μ(N,L). By adjusting
the system size we verify that systems with L = 200 are
sufficiently large to properly determine the values of μL and
μU ; for most of the boundary μ− = E(N,L) − E(N − 1,L),
and μ+ = E(N + 1,L) − E(N,L) [the only exception is the
cusps at the rightmost edges of the DW lobes, where we take
into account E(N − 2,L) and E(N + 2,L) and perform the
quadratic interpolation]. The resulting phase diagram can be
seen in Fig. 7. We remark that apart from the conventional
|0(2ρ)0(2ρ)0 · · ·〉 DW phases, with ρ = ρDW, we observe
|0(2ρ − 1

2 )0(2ρ + 1
2 ) · · ·〉 phases for odd nDW as an effect of

introducing Vnnnnini+2 coupling terms into the Hamiltonian.
The corresponding DW regions are, fortunately, quite tiny,
showing that for most parameters, the picture obtained within
the EBH model is correct.

Apart from the abundant DW phases we observe either SF-
or SS-like phases, as indicated by the power-law decay of the
CSF correlations (9). The difference between the two phases is a
nonzero density wave order parameter value in the supersolid
phase. The trivial SF phase is seen for ρ < 1; however, we
observe the emergence of a pair superfluid (PSF) phase for
large enough μ. We use the pair-tunneling correlation

Cp = 1

L

∑
i

〈b†i b†i bi+1bi+1〉 (10)

as a measure of pair superfluidity (see Fig. 7). The phases
marked SS and PSS (pair supersolid) in Fig. 7 differ from
conventional supersolid phases in a simple EBH model, where
CSF(r) is always positive. CSF(r) is negative for r = 4n + 2,
n ∈ Z in the SS phase [Fig. 8(a)] and for odd r in the PSS
phase [Fig. 8(b)]. The other difference is that Cp > 0 in the
PSS phase. We remark that both the PSS and PSF phases have
been previously observed in numerical calculations for EBH
Hamiltonians with density-dependent tunneling [32,57,58].

Next, we describe the last phase present in the phase
diagram, which we call an incommensurate pair supersolid

FIG. 7. The phases for the system for d = 0.1 at a fixed ratio
V/U = 0.75. Black lines showing the boundaries of DW phases are
the values of μ+ and μ− obtained from OBC DMRG (L = 200). The
black squares come from sine-square deformation (SSD) DMRG (see
Appendix C for details) for L = 100 and show the transition points
between PSS and PSF (where ODW vanishes). Blue error bars mark
the boundaries of the IPSS phase (and also SSD DMRG, L = 100).
The value of pair-tunneling correlations Cp (10) is plotted as a color
map with the scale shown on the right.

(IPSS). This phase is characterized by a finite, positive Cp and
the structure factor

S(q) = 1

L2

L∑
j,k=1

〈njnk〉 e−iq(j−k), (11)

with a peak at π/2 < q < π , which is incommensurate with
respect to lattice size and the particle density. In order to
identify this phase, we use the sine-squared deformation
(SSD) variant of the DMRG method which we describe in
Appendix C.

In the IPSS we see periodic modulation of both density and
density-density correlations [Fig. 9(a)] in the form of

〈ni〉 = ρbulk + 	ρ sin(q〈nn〉i + ϕ0), (12)

〈nini+r〉 = C1 + A1 sin(q〈nn〉r + ϕ1)r−α1 , (13)

where q〈nn〉 is the same wave-number value for which there
is a peak in S(q) [see Fig. 9(c)] The pair correlations also
show the same modulation, while at the same time following
a power-law decay [Fig. 9(b)],

〈b†i b†i bi+rbi+r〉 = [C2 + A2 sin(q〈nn〉r + ϕ2)]r−α2 . (14)

Another modulation can be observed in 〈b†i bi+r〉; however, in
this case the wave number differs from q〈nn〉, and the values
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FIG. 8. OBC DMRG results of 〈b†
i bi+r〉 correlations in the middle

of an L = 200 lattice at (a) ρ = 1.25, t/U = 0.59 (SS phase) and
(b) ρ = 2.25, t/U = 0.37 (PSS phase). Log-log plots of the same
correlations are shown in the insets.

oscillate around zero [see Fig. 9(d)]:

〈b†i bi+r〉 = A3 sin(q〈b†b〉r + ϕ3)r−α3 . (15)

After combining the results for many different μ and t/U

parameters, we can provide the relation between q〈b†b〉 and q〈nn〉
[see Fig. 10(a)]:

q〈b†b〉 = π − 0.5q〈nn〉. (16)

We also note that is q〈nn〉 does not depend exclusively on ρbulk

[which is the case in, e.g., underdoped ρ = 0.5 DW, where
q = 2πρ [26]; see Fig. 10(b)].
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FIG. 9. Correlations and structure factor values obtained with
SSD DMRG for the system in the IPSS phase (L = 100, t/U = 0.48,
and μ = 3.7). (a) Density correlations, (b) pair correlations, (c)
structure factor (11), and (d) creation-annihilation correlations. For
(a), (b), and (d), black points mark the numerical results, with red
lines showing the fits of the functions in Eqs. (13) to (15). The value
of the appropriate wave number qα obtained from the fits [or from the
position of the S(q) peak in (c)] is written above each plot.
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FIG. 10. The results of SSD DMRG for the IPSS phase.
(a) The relation between q〈nn〉 and q〈b†b〉. The linear fit (red) is
q〈b†b〉 = 0.9991(6)π − 0.4984(7)q〈nn〉. (b) The relation between q〈nn〉
and ρbulk shown for different values of t/U .

V. CONCLUSIONS

In this paper we have presented an accurate Hamiltonian
representation of a one-dimensional system of bosons in
an optical lattice considering both the dipolar and contact
interactions (the mutual strength of which may be balanced
using the Feshbach resonance). We have employed the well-
established DMRG method to measure the dependence of
the phase transitions on often overlooked terms in the EBH
model (most notably, the next-nearest-neighbor tunnelings
and the density-dependent tunnelings). We have observed the
suppression of the SF phase with rising dipolar interaction
strength. In the case of fixed ρ = 1 we have also noted the
stable presence of a nontrivial, highly nonlocally correlated
HI phase throughout the considered parameters range, which
is even more pronounced for realistic, low values of dipolar
interactions. This robustness can be traced back to the fact that
HI is a symmetry-protected topological state [59].

For greater dipolar interaction strength and higher densities
we have observed interesting pair-correlated phases. Among
those, we put a particular emphasis on characterizing a novel
incommensurate pair superfluid phase, whose distinctive fea-
ture is an incommensurate density wave order. That phase is
not present either in the standard EBH model or for large
dipole-dipole interactions in small-diagonalization studies. We
have also noticed a particular relation between wave numbers
characterizing different correlations measured in this phase
(16) which may provide some insight into how to construct
an appropriate theoretical description. Rigorous theoretical
treatment of the IPSS is, however, beyond the scope of this
paper.
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APPENDIX A: THE DETERMINATION OF HAMILTONIAN
PARAMETERS

The values of the parameters in model (1) have been
calculated numerically using Wannier function representation
for a periodic boundary system with a standard optical lattice
potential Vopt(r). In the numerical calculations described below
we assume the lattice is in the form of a cube with N3 sites,
so that the total volume 
 = (Na)3, where a = π/kL is the
lattice constant.

Bloch functions of the form

φk(r) = eik·ruk(r), (A1)

where uk(r) is a function with the same periodicity as the lattice
potential, are calculated for the noninteracting Hamiltonian,
HNI = −h̄2∇2

2m
+ Vopt(r), as the lowest-energy eigenvectors of

the Schrödinger equation:

HNIφk(r) = Ekφk(r). (A2)

Wannier functions can be calculated in the usual way [41]
from the Bloch functions:

wn(r) = 1√
N3

∑
k∈BZ

φk(r)e−ikxan, (A3)

where φk(0) is real and positive, n is the number of the
lattice site in the x direction (we assume y = z = 0), and the
summation is done over k = (kx,ky,kz) from the first Brillouin
zone.

Substituting field operators of the form φ(r) = ∑
i wi(r)bi

in (2), we get

t = ti(i+1),

tnnn = ti(i+2),

U = Viiii ,

V = Vi(i+1)i(i+1) + Vi(i+1)(i+1)i ,

Vnnn = Vi(i+2)i(i+2) + Vi(i+2)(i+2)i ,

T = − 0.5[Vii(i+1)i + Viii(i+1)], (A4)

with

tij = −
∫




drw∗
i (r)HNI wj (r), (A5)

Vijkl =
∫




dr1dr2w
∗
i (r1)w∗

j (r2)

× V (r1 − r2)wk(r1)wl(r2). (A6)

Integral (A5) is straightforward to calculate using (A2) and
(A3). In order to calculate (A6), we use periodic extension of
the interaction potential:

V (r) = 1




∑
k

Ṽ (k)eik·r, (A7)

where k = 2π
Na

(n1,n2,n3), ni ∈ N, and Ṽ (k) = Ṽc(k) + Ṽd (k)
is the sum of the Fourier transforms of the contact and dipolar
interaction potentials (3):

Ṽc(k) = 4πh̄2as

m
, Ṽd (k) = Cdd (cos2 γ − 1/3), (A8)

where γ is the angle between the direction of polarization and
k. For convenience, we group the Wannier functions with the
same arguments wij (r) = w∗

i (r)wj (r):

Vijkl =
∫




dr1wik(r1)
∫




dr2V (r1 − r2)wjl(r2)

=
∫




dr1wik(r1)(V ∗ wjl)(r1)

= 1




∫



dr1wik(r1)
∑

k2

˜(V ∗ wjl)(k2)eik2·r. (A9)

We use the convolution theorem for the Fourier series to obtain

Vijkl = 1




∫



dr wik(r)
∑

k2

Ṽ (k2)w̃jl(k2)eik2·r

= 1


2

∫



dr
∑

k1

w̃ik(k1)eik1·r
∑

k2

Ṽ (k2)w̃jl(k2)eik2·r

= 1


2

∑
k1,k2

w̃ik(k1)Ṽ (k2)w̃jl(k2)
∫




dr ei(k1+k2)·r

= 1




∑
k

w̃ik(−k)Ṽ (k)w̃jl(k). (A10)

APPENDIX B: DMRG PARAMETERS

All of the numerical calculations reported in this paper were
done using density-matrix renormalization group (DMRG)
implementation found in the ITENSOR library [23]. For most
of the work OBCs were used, with sizes from L = 100 to
L = 400 and a maximum bond dimension χ = 600. The cutoff
ε was set to 10−12 [ε determines the number of singular
values discarded after each singular-value decomposition step
in the ITENSOR algorithm: (

∑
n∈discarded λ2

n)/(
∑

n λ2
n) < ε]. In

Sec. III, we limit the maximum number of particles on each
lattice site Ncut to 5, while for the OBCs and the SSD DMRG
used in Sec. IV the number is, respectively, up to 10 and 12.

Unless stated otherwise, a boundary term equal to
2ρ(n1V + n2Vnnn + nLVnnn) was added to break the degener-
acy of the DW state (the added term simulates a situation where
we have four additional sites at the boundaries, with fixed
n−1 = 0, n0 = 2ρ, nL+1 = 0, and nL+2 = 2ρ, as expected in
one of the DW ground states). Another motivation for adding
these terms is to remove excitations on the edges in the HI
phase.

APPENDIX C: THE DESCRIPTION OF SINE-SQUARED
DEFORMATION DMRG

Some of the calculations (determination of boundaries of
the IPSS phase in Sec. IV) were performed using a smooth-
boundary DMRG method, referred to as a sine-squared de-
formation (SSD) DMRG. In this approach the Hamiltonian

245102-7
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m
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0.70π

q m
〈n

n
〉 q〈nn〉

FIG. 11. Position of the peak in S(q) (11) computed using m

middle sites (black points). The red solid line shows a fit of the
form C + A m−B cos(Km + φ). Here K ≈ 0.342π , which is roughly
half of q〈nn〉 = C ≈ 0.686π (shown as a green dashed line). At most
2/3 of all lattice sites have been considered. Data are calculated
for μ/U = 5.2, t/U = 0.6, L = 100, and Ncut = 12. The damped
oscillation amplitude S(q) position is approximately an order of
magnitude smaller than the FWHM of the S(q) function, which for
maximal m is ≈0.03π .

is rescaled using a sine-squared deformation [60]: HSDD =∑2
j=0

∑L−j

i=1 fi,jHi,i+j , where

fi,j = sin2

[
π

L

(
i + j − 1

2

)]
, (C1)

withHi,i+j acting only on sites i and i + j andHi,i ≡ Hi acting
only on a single site, i. We also add a chemical potential term
to the Hamiltonian, so that now Hi = (U/2)ni(ni − 1) − μni .

In contrast to regular DMRG methods, the density of the gas
of particles (as measured in the middle part of the lattice) is not
fixed by the number of particles N used in the simulation, but
rather by the value of μ. An excess (or a deficit) of particles
stemming from the choice of N is taken care of by placing extra
particles (vacancies) close to the system boundary, where the
coefficient fi,j takes a minimal value. This makes the edges
act as an effective bath for the particles (holes) in the middle
of the lattice. Because of that, in determination of the physical
quantities, we consider only 40% of the sites in the middle of
the lattice, unless stated otherwise.

7 8 9 10 11 12 13 14
Ncut
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0.695π

0.700π

0.705π

0.710π

0.715π

q 〈
n

n
〉(

N
cu

t)

qe〈nn〉(100)

(a)

40 60 80 100 120 140

L

0.683π

0.684π

0.685π

0.686π

q e
〈n

n
〉(

L
) (b)

FIG. 12. (a) Position of the S(q) peak q〈nn〉 (see Fig. 11) calculated
for different values of maximum particles per site cutoff Ncut for L =
100. The red solid line shows a power-law decay to a constant value
qe〈nn〉 (reached for a finite Ncut, here approximately 11.24; shown as a
blue dashed line). (b) Values of qe〈nn〉 calculated for different system
sizes L. Data for (a) and (b) were calculated for μ/U = 5.2 and
t/U = 0.6. The position of the S(q) peak for Ncut � 10 S(q) and
for L � 40 changes by at least one order of magnitude less than the
corresponding FWHM.

We pick N such that it does not differ much from Lρbulk,
the number compatible with the bulk density. This ensures
that fewer particles are displaced to (from) the edges, which
minimizes the undesired boundary effects on the computed
expectation values in the middle of the system.

In order to find the values of wave numbers q〈b†b〉 and q〈nn〉
[plotted in Fig. 10(a)] we look at the position of the peak of
S(q) (11) (or an analogical quantity for 〈b†b〉 correlations). To
remove the boundary effects from our analysis, we consider
only m lattice sites in the middle when calculating the structure
factor. Depending on m, the position of the peak qm〈nn〉
oscillates with decreasing amplitude (see Fig. 11) around a
value q〈nn〉, which is the one used in the main text.

As the mean densities in the IPSS phase in our calculations
are quite high [with sites filled by more than six particles;
Fig. 10(b)], we calculated how the cutoff on maximum particles
per site Ncut in DMRG calculations affects the obtained value
of q〈nn〉 [Fig. 12(a)], taking as an example values of μ/U = 5.2
and t/U = 0.6, corresponding to ρbulk ≈ 3.1. For each system
size L we define qe〈nn〉(L) = limNcut→∞ q〈nn〉(Ncut) and plot its
value in Fig. 12(b). We determine that Ncut = 12 and L = 100
are enough to get converged values of wave numbers, and these
parameters were used for SSD DMRG calculations.
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