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Single photons from a gain medium below threshold
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The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold
is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable
quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal
time second-order correlation function demonstrates the triggered probabilistic generation of single photons well
separated in time.
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Introduction. Single photon sources are an essential com-
ponent for emerging quantum technologies such as quantum
computation [1], quantum cryptography [2], and long-distance
quantum communications [3,4]. Pulses from a faint laser are
often taken to constitute a single photon source, however,
even the faintest laser generates multiphoton pulses as the
photon number obeys Poissonian statistics. These unavoidable
multiphoton pulses are unsuitable for many applications [5].
This motivates the study of quantum nonlinear systems, where
Poissonian statistics can be skewed to favor antibunched light
sources.

Mechanisms of generating antibunched light typically rely
on coherent resonant excitation. To give examples, parametric
down-conversion requires phase matching conditions to be
achieved and the photon blockade mechanism [6] is based
on the interplay of an anharmonic energy spectrum with the
specific frequency of a coherent source [7–11]. An alternative
blockade mechanism known as the unconventional blockade
[12–15] has been recently reported experimentally [16] using
superconducting resonators. It illustrates that the quantum
optics of two coupled nanophotonic modes can be vastly
different from that of a single mode [17] and that the range of
open quantum systems for observing quantum optical effects
is steadily increasing. At the same time, it illustrates further the
tendency of open quantum systems to operate with coherent
sources when the objective is a nonclassical state.

Photonic resonators containing a gain medium are also well
studied, where gain represents excitation through scattering
processes that are not themselves coherent. It is only above
threshold that the scattering processes become stimulated and
allow the formation of a coherent state, characterized by Pois-
sonian statistics. Below threshold, a single resonator exhibits
an incoherent state of small bunched number fluctuations. In
either regime, the gain medium does not seem particularly well
suited to observing antibunched states.

Here, we recall that the physics of coupled quantum modes
may be different. We consider a generic open quantum system
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comprising a strongly nonlinear mode weakly coupled to
a gain medium operating below the single-mode threshold.
Presenting analytic and numerical solutions for the master
equation in the steady state, we show that photons passing
from the gain medium to the nonlinear mode can generate an
antibunched state. At the same time, the mean-field occupation
of the modes remains zero and the state of the gain medium
remains incoherent, representing a situation radically different
from that of existing blockade mechanisms.

We identify a pair of coupled exciton-polariton modes in
semiconductor microcavities as an example of a potential
physical realization. Semiconductor microcavities are well
known for functioning as a gain medium where under electrical
excitation they realize light-emitting diodes [18] and polariton
lasers [19–21]. Furthermore, polaritons are known to behave
as quantum particles, passing their quantum properties into
an emitted optical field [22,23] and their antibunching was
experimentally reported under coherent excitation [24]. While
only showing the weak onset of the polariton blockade [25], a
strongly nonlinear regime (where the interaction strength be-
tween a pair of interacting polaritons exceeds their linewidth)
has been reached in separate experiments [26–28].

Finally, we consider the situation of a pulsed excitation
or time-dependent gain, where we find strong antibunching
during time periods when the nonlinear mode is significantly
populated. By calculating an unequal time correlation function,
we show that for an appropriate choice of measurement
time window, single photons are generated at moments well
separated in time. Thus the considered system is capable of
triggering single photons with some probability.

Theoretical scheme. We begin with the Hamilto-
nian describing two coupled bosonic quantum modes (a
Bose-Hubbard dimer),

Ĥ = εaâ
†â + αâ†â†ââ + εbb̂

†b̂ + J (â†b̂ + b̂†â), (1)

where â and b̂ are the annihilation operators; εa and εb are
the respective uncoupled energies of the two modes. J is the
coupling strength between â and b̂. The parameter α describes
a Kerr-type nonlinearity of the â mode, while the other b̂

mode is considered linear. The system could be physically re-
alized with photonic crystal cavities [29,30], superconducting
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circuits [27], or coupled micropillars [31,32] containing exci-
ton polaritons. We note that in the latter system the coupling
J is controllable through the micropillar overlap and the mi-
cropillar size (which in principle could be different for the two
micropillars) affects the effective nonlinear interaction strength
α by changing the mode volume [25]. Alternative methods of
localizing exciton-polaritons into discrete modes are reviewed
in Ref. [33]. Assuming that the mode b̂ corresponds to a gain
medium (which in the case of micropillars corresponds to
the nonresonant excitation of an exciton reservoir [34] in the
micropillar containing mode b̂), the system is described by the
quantum master equation for the density matrix ρ,

ih̄
dρ

dt
= [Ĥ,ρ] + L(ρ) + iPb

2
(2b̂†ρb̂ − ρb̂b̂† − b̂b̂†ρ), (2)

where L(ρ) = ∑
s=a,b iγs(ŝρŝ† − ρŝ†ŝ/2 − ŝ†ŝρ/2) is the

Lindblad term describing dissipation in the two modes. While
the first term on the right-hand side of Eq. (2) represents the
coherent evolution, the last term represents a gain applied to
the linear mode b̂ which can be interpreted as a time-reversed
dissipation (such a form has appeared previously in the context
of quantum dots [35]). γa/h̄ and γb/h̄ are the dissipation rates
of the nonlinear mode â and the gain mode b̂, respectively, and
Pb/h̄ is the gain rate in mode b̂. All numerical data presented in
this Rapid Communication will be obtained by exact numerical
simulations of Eq. (2) using a truncated Fock basis [36].

Although the gain is applied to the mode b̂, we will focus on
the statistics of the mode â. As a measure of antibunching, we
calculate the unequal time second-order correlation function
g2(t1,t2), defined by

g2(t1,t2) = 〈â†(t1)â†(t2)â(t1)â(t2)〉
〈â†(t1)â(t1)〉〈â†(t2)â(t2)〉 , (3)

where 〈· · · 〉 denotes the expectation value of the respective
operators. We recall that the equal time correlation function
g2(t,t) evaluates to one for a coherent (classical) state and is
zero for the ideal single-particle state.

For a constant gain Pb, the system reaches, as a generic
feature, a steady state after some initial time evolution. In
such a state, the mode â loses particles at a constant rate.
We calculate the equal time correlation function g2(t,t) using
Eq. (3) for this mode. In Fig. 1(a), we present g2(t,t) as a
function of the mode coupling J and the energy gap εb − εa .
We observe a strong antibunching effect [g2(t,t) ∼ 0] when
εa ≈ εb and the mode coupling is weak, given by the blue area
in the figure. The closing mode gap εb ≈ εa allows particles
from the gain mode to efficiently transfer to the nonlinear
mode. In this regime, we find a maximum population in the
nonlinear mode, while a minimum population appears in the
gain mode [see Fig. 1(b)]. However, nonlinearity suppresses
multiparticle occupations and thus lowersg2(t,t) in the â mode.
One might hope to interpret this as the gain mode representing
an effective coherent source that acts on the nonlinear mode
in the same way as a laser in the case of a photon blockade.
However, the mean-field population of both modes 〈â〉 and
〈b̂〉 vanishes and we verified that the b̂ mode is far from
coherent (as we operate below the threshold). Consequently,
the physics is significantly different from previous examples
of photon/polariton blockades.

FIG. 1. The steady state properties of the system with a constant
gain in mode b̂. (a) Color plot of the equal time correlation function
g2(t,t) calculated for the nonlinear mode â as a function of the mode
energy gap εb − εa and coupling strength J . A strong antibunching
occurs in the weak-coupling J/γa � 1 regime for εb − εa ≈ 0 (deep
blue region). (b) Mode populations Na = 〈â†â〉 in mode â and
Nb = 〈b̂†b̂〉 in mode b̂ as a function of εb − εa calculated using the
analytic method (solid lines) given by Eqs. (4) and (5), and by exact
numerical simulations (open circles). While Nb remains nonzero for
all energies, Na becomes significant only for εb − εa ≈ 0. In the inset,
we replot the data (circles) as Na vs Nb to show that they are linearly
related, in agreement with Eq. (4) (solid line). (c) and (d) show g2(t,t)
as functions of εb − εa and J , respectively, calculated analytically
using Eq. (6) (solid lines) and numerically (open circles). The data
are obtained with parameters fixed at α/γa = 6.06, (εb − εa)/γa =
−0.303, J/γa = 0.303, γb/γa = 1, and Pb/γa = 0.0303 other than
the running variables. We note that a similar ratio ofα/γa was achieved
in Ref. [28] using an exciton-polariton system. For (d) we chose the
optimum εb − εa minimizing g2(t,t) for each value of J .

Analytical interpretation. To interpret the results, we can
instead study the steady state solutions analytically. Writing
equations of motion for Na = 〈â†â〉 and Nb = 〈b̂†b̂〉 and then
taking Na and Nb as constant, we deduce that

Nb = (Pb − γaNa)/(γb − Pb). (4)

We focus on the below-threshold regime Pb < γb, where
an increasing Na imposes a decrease in the steady state
population Nb. This behavior is evident in Fig. 1(b) and the
inset. However, Eq. (4) alone is not enough to find Nb and
Na individually, which require finding C = 〈â†b̂〉. A mere
mean-field approximation of type C ≈ 〈â†〉〈b̂〉 breaks down,
since 〈â〉 = 0. The time evolution of C can be obtained from
the master equation and depends on second-order correlations
such as 〈â†b̂â†â〉. It turns out that this second-order correlation
is crucial for accurate evaluations of Na , Nb, and g2(t,t). Using
the steady state equation for 〈â†b̂â†â〉 and approximating the
further higher-order correlations in terms of C, Na , and Nb, we
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arrive at a solution valid for J/γa � 1 and α/γa � 1,

C ≈ J

E1
(Nb − Na) + 4Jα

E2E1
NaNb, (5)

where the energies are given by E1 = (εb − εa) − i(γa + γb −
Pb)/2 and E2 = (εb − εa) − 2α − i(3γa + γb − Pb)/2 (see
Ref. [37] for calculation details). Note that the imaginary part
of C, Im C, represents the current of population flow from
mode b̂ to mode â. This current induces the accumulation of
population in mode â, Na = (2J/γa)Im C in the steady state.
In fact, this relation and Eq. (4) together yield a quadratic
equation, N2

a − 2ζ1Na + ζ2 = 0 (equivalently for Nb), where
coefficients ζ1 and ζ2 are solely given by the system parameters
εa , εb, γa , γb, Pb, J , and α. In Fig. 1(b), we compared
this fully analytic solution [38] with the exact populations
Na and Nb numerically calculated using Eq. (2). Despite all
approximations made, the analytical solutions show excellent
agreement with the numerical results as shown in Fig. 1(b).
Beyond these single-particle observable quantities, we find an
analytical solution for g2(t,t),

g2(t,t) = J (εb − εa)

αγaN2
a

Im C − J (γa + γb − Pb)

2αγaN2
a

Re C, (6)

where C is calculated from Eq. (5) aided by the previously
obtained formula for Na and Nb.

In Figs. 1(c) and 1(d), we compare g2(t,t) given by Eq. (6)
to exact numerical results as functions of the mode gap εb − εa

and coupling strength J . We observe that the agreement
between the analytical and numerical results is almost exact for
small J . The reason can be traced back to Eq. (5) which is found
to be exact for J/γa � 1. Moreover, only a weak intermodal
coupling induces strong single photon statistics [small g2(t,t)]
as evident in Fig. 1(d). Thus, our analytical solution given in
Eq. (5) is nearly exact for the most relevant regime of the
system. The effects that can skew the single photon statistics
are a strong nonlinearity in the pumped mode b̂ or a weak
nonlinearity in mode â. However, all these parameters can
effectively be tuned in modern experimental setups.

Pulsed gain. We now consider the situation of time-varying
gain, assuming that it is possible to engineer a series of gain-
inducing pulses of the form Pb(t) = P0 exp[−A sin2(πt/T0)]
that act on the mode b̂. We turn on the pump at t = 0 with
an initial condition Na = Nb = 0. Following some transient
dynamics, the observable quantities in the system such as
g2(t,t), Na(t), and Nb(t) become periodic in time. In Fig. 2,
we find that while the time modulation in Nb(t) more or
less follows the pump Pb(t), the modulation in Na(t) has a
time delay. This delay can be associated with the time taken
to transfer photons from the gain mode b̂ to the â mode.
Comparing Figs. 2(a) and 2(b), we find that the â mode shows
a very small g2(t,t) when population Na(t) is significant.
Thus, even with the pulses, we have a significant antibunching
statistics.

For our chosen parameters mentioned in Fig. 2, the anti-
bunched population in the â mode reaches up to Na = 0.11
in each pulse. Thus, roughly one in every ten pulses will
generate a single photon. Although a low g2(t,t) ensures no
simultaneous multiphoton emission, it does not reveal the time
gap between two consecutive emissions. For this, we compute
the unequal time correlation function g2(t0,t) where t0 is a

FIG. 2. Time evolution of the system when excited by a series of
gain pulses. (a) shows the equal time correlation function g2(t,t) and
(b) shows the time-dependent populations Na(t) (red line) and Nb(t)
(blue line) as responses to the incoherent pulses Pb(t) shown in (c)
applied to the gain mode b̂. In each pulse, g2(t,t) decreases down to
∼0.03 (strong single-particle statistics), while Na rises up to ∼0.11.
The data are obtained with parameters α/γa = 6.06, (εb − εa)/γa =
−0.545, J/γa = 0.76, and γb/γa = 1. Pulses are generated using
a periodic function Pb(t) = P0 exp[−A sin2(πt/T0)] with P0/γa =
0.91, T0 = πh̄/γa , and A = 5.

reference time. Note that as our system has no time translational
symmetry, the correlation function g2(t0,t) depends on both the
arguments t0 and t individually. In Fig. 3(a), we show the color
plot of g2(t0,t) within the span of one incoherent pulse. We find
a fish-shaped region (blue area in the figure) in the t0-t plane
where g2(t0,t) is small. This fish-shaped region corresponds
to a low probability of consecutive emissions. The width of
the region along t signifies the average time gap between two
consecutive emissions. We maximize this width by an optimum
choice of the reference time t0. For the pulse considered in

FIG. 3. (a) Color plot of the unequal time correlation function
g2(t0,t) as a function of t0 and t in the span of one incoherent pulse. We
find a fish-shaped region (blue area) where the probability [g2(t0,t)]
of two sequential emissions of photons is low. In each pulse, there is
an optimum t0 (indicated by the vertical dotted line) maximizing the t

window in which g2(t0,t) < 1. (b) We superimposed two plots: Na(t)
and g2(t0,t) as functions of time t during one incoherent pulse with
an optimum t0 = 12.08h̄/γa . We indicate three time windows (gray
shades) corresponding to g2(t0,t) < 0.4, < 0.5, and < 0.75, which
have widths W1 = 1.34h̄/γa , W2 = 1.51h̄/γa , and W3 = 1.89h̄/γa ,
respectively.
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Fig. 3(a), the best value of the reference time is found to be
t0 = 3.845T0, i.e., 0.845T0 far from the previous closest pulse.
By superimposing the population Na(t) and the correlation
function g2(t0,t) in Fig. 3(b), we find the best time window
where the antibunched photons have a significant population
with a low g2(t0,t). In the figure, we show three windows with
widths W1 = 1.34h̄/γa , W2 = 1.51h̄/γa , and W3 = 1.89h̄/γa

and centered at t0 corresponding to g2(t0,t) < 0.4, < 0.5,
and < 0.75, respectively. Within these time windows, the
maximum values of Na vary in between 0.09 and 0.065. Thus,
if these time windows are chosen for single photon emission,
we can get one antibunched photon in every 12–16 pulses. Note
that t0 is chosen 3.845T0 for the considered pulse in Fig. 3(b),
but for subsequent pulses t0 = (n + 3.845)T0, where n is an
integer.

Conclusion. We presented the general idea that a nonlinear
mode weakly coupled to a mode exhibiting gain can be
utilized to produce antibunched photons. When an incoherent
excitation is applied, with a rate smaller than the dissipation
rate of the gain mode, the system attains a strongly antibunched
steady state (g2 ∼ 0). We investigated the steady state
properties of the system both analytically and numerically
by solving the quantum master equation for an applied
incoherent pump. The achieved analytical solutions for the
photon populations in both modes agree exactly with the
numerically calculated results. We further derived the equal
time second-order correlation function analytically, which
also agrees well with numerical values in the most relevant
parameter range. We found that the performance of the
single photon source is optimum when the mode coupling J

and the nonlinearity in the pumped mode are weak, but the
nonlinearity in the antibunched mode must be strong.

In the case of pulsed gain (or incoherent excitation), the
nonlinear mode shows strong antibunching only when the
photon population is significant in the mode. Thus, the system
can be used as a probabilistic source of single photons triggered
at specific times. We calculated the unequal time second
correlation function during the span of a pulse, and found that
the single photon emission would be well separated in time
with a gap comparable to the pulse period.

We identify exciton-polaritons in semiconductor microcav-
ities as a promising platform for realization of the proposal.
Recent experimental reports showed a weak polariton block-
ade under coherent excitation [24] and separate experiments
have reached the strongly nonlinear regime [26–28]. The
gain medium could be realized with optically or electrical
injection techniques, that is, polariton lasers operating below
the threshold could be used as compact probabilistic quantum
sources.

Finally, we note that a significant amount of physics has
been uncovered related to the blockade physics of two coupled
quantum modes under coherent drive, including the influence
of polarization [39], the control allowed by multiple sources
[40–42], antibunching of symmetric and antisymmetric modes
[43], and different forms of nonlinear interaction [44–47]. It
would be interesting to see the influence of similar effects in the
case of a gain medium and the generalization of applications
based on the photon blockade such as quantum diodes [48,49].
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