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Dimensionality of excitons in stacked van der Waals materials:
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With the example of hexagonal boron nitride, we demonstrate how the character of electron-hole (e-h) pairs
in van der Waals bound low-dimensional systems is driven by layer stacking. Four types of excitons appear, with
either a two- or three-dimensional spatial extension. Electron and hole distributions are either overlapping or
exhibit a charge-transfer nature. We discuss under which structural and symmetry conditions they appear and
they are either dark or bright. This analysis provides the key elements to identify, predict, and possibly tailor the
character of e-h pairs in van der Waals materials.
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Two-dimensional (2D) systems and layered weakly bound
structures thereof are considered the materials of the 21st
century. Their wealth of intriguing properties is widely ex-
plored from a fundamental scientific point of view but also in
view of a plethora of possible applications [1,2]. Hexagonal
boron nitride (h-BN) is one of these materials, consisting of
covalently bound sheets that are held together by van der Waals
(vdW) forces [3]. h-BN is a wide-gap semiconductor, exhibit-
ing pronounced excitonic effects in its optical excitations that
are present irrespective of the material’s dimensionality [4–11].
Owing to the flat geometry of its in-plane hexagonal lattice,
h-BN is often chosen as a building block in vdW heterostruc-
tures [12–15]. Combining different 2D systems, quantum
confinement effects allow for tailoring their optoelectronic
properties [16–18]. This not only concerns level alignment at
the interface [19–26] but also the way the system interacts
with light, i.e., quantum efficiency, as well as the character and
spatial distribution of electron-hole (e-h) pairs [14,15,27–32].

In this Rapid Communication, we show that the nature and
dimensionality of excitons can also be governed in a single
vdW bound bulk material, taking h-BN as an example. This
seems surprising at a first glance as e-h pairs in this material
have been found to exhibit basically the same character
and extension in bulk [6–8], monolayers [10], as well as in
interfaces with graphene [14]. Here, we demonstrate how
strongly stacking impacts the optical excitations of a vdW
crystal at the onset of absorption and beyond. By varying
the arrangement of individual h-BN layers, we find in total
four types of electron-hole pairs, of a two-dimensional, three-
dimensional (3D), and charge-transfer character, and discuss
their appearance by symmetry considerations. We focus on the
five structures that are obtained by including four inequivalent
atoms in the unit cell, allowing only a rigid translation by
one bond length and/or exchanged positions between the two
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atomic species. We employ density functional theory [33–
37] and many-body perturbation theory (MBPT, including
G0W0 [38,39] and the Bethe-Salpeter equation [40–43]),
implemented in the all-electron framework of the exciting
code [44–46].

Prototypes of the four kinds of excitations that can appear in
h-BN are displayed in Fig. 1. There, the electronic distribution
surrounding a fixed position of the hole is plotted. The first type
is a 2D exciton, i.e., with the electron and hole on the same
layer. Such e-h pairs are typical of atomically thin sheets [10],
but may also dominate the onset of absorption in multilayer
crystals [6–8,25,48]. We notice that these excitons are very
localized, extending only up to three lattice parameters in the
in-plane direction. The trigonal shape of the excitonic wave
function reflects the hexagonal symmetry of the monolayer.
As extensively discussed in earlier works on h-BN based
on MBPT [6,7], this exciton is twofold degenerate, and its
shape results from the averaged densities of the two degenerate
contributions [7].

In multilayer structures, e-h pairs can also be extended in the
vertical direction, with the electron and/or the hole spreading
over neighboring layers. This is the case of charge-transfer
(CT) excitons, where the electron and the hole sit on different
layers and their extension is limited to a few (here up to five)
lattice parameters in the in-plane direction. Viewed from the
top, this e-h pair also exhibits clear trigonal symmetry (see
Fig. 1). CT excitons are particularly intriguing in view of
generating photocurrents [28,49] or, if characterized by large
binding energies, even Bose-Einstein condensates [50–54].

The other two types of excitons shown in Fig. 1 exhibit
a 3D distribution that can be either localized in the in-plane
direction (3D-l) or delocalized over the whole space (3D-d).
In both cases, the electron distribution overlaps with the hole
distribution and further extends uniformly and symmetrically
to the adjacent layers. In the 3D-l e-h pairs, the electron
probability density is significantly enhanced in the layer where
the hole resides. This e-h pair exhibits a trigonal in-plane
shape with an extension similar to the one of 2D excitons. In
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FIG. 1. Real-space distribution (side and top view) of the four types of excitons that can appear in bulk h-BN upon different layer stackings.
From left to right: 2D exciton, with the electron and the hole sitting on the same layer; charge-transfer (CT) exciton, with the electron and the
hole on different layers; 3D exciton with localized (3D-l) and delocalized (3D-d) in-plane extension. The hole is indicated by the black dot and
the electron distribution by the green isosurface. B atoms are pink and N atoms blue. Figures produced with the VESTA software [47].

addition to the specific arrangement of the atoms, as discussed
in the following, the 3D-l excitons appear in configurations
where the neighboring layers are linked by inversion symmetry.
3D-d excitons appear above the onset of absorption and
are characterized by a delocalized spatial distribution in the
three directions. In the h-BN structures considered here, these
e-h pairs extend up to 12 lattice parameters in the in-plane
directions and across three layers in the stacking direction
[55]. While reflecting a resonant character and reduced crystal
symmetry, such excitons exhibit a trigonal shape, typical of
higher-energy excitons in monolayer h-BN [10].

In order to relate the exciton characters described above with
symmetry and atomic arrangement of the considered stackings,
it is instructive to inspect more closely the corresponding
geometries [55–57] and analyze their electronic structure and
optical spectra. In the simplest configuration, all atoms of
the two inequivalent layers are aligned on top of each other
(AA stacking). In the AB or Bernal stacking, every second
atom lies on the hollow site. These patterns, initially defined
for monatomic stacks of graphitic layers [58], can be further
modulated by the positions of the two atomic species. The AA

configuration results in the AA′ stacking [59] if B and N atoms
of alternating layers lie on top of each other. We note in passing
that this is considered to be the most stable h-BN arrangement
[3,60,61]. The A′B and AB ′ stackings are obtained from the
AB configuration: Instead of alternating B and N atoms on the
hollow site, as in theAB pattern, in theA′B (AB ′) arrangement,
only N (B) atoms occupy the hollow position. While the
AB configuration has been reported for bilayer structures
[62], other arrangements are observed only locally in few-
layer stacks [63–67]. Complex modulated patterns have been
achieved in combination with graphene [68–73] while transi-
tions from a stacking sequence to another one have been shown
upon morphological deformation [9]. These different layer
stackings combined with atomic arrangements in the vertical
direction strongly impact the electronic structure (Fig. 2, right
panel) and the optical spectra accordingly. In the following,
we discuss how this structure-property relation determines the
conditions under which different types of e-h pairs are formed.

Alternative approaches to extract this information are based
on model Hamiltonians [10,74,75], analytic envelope-function
modeling [76], and double-Bader analysis [77].

In Fig. 2 we display the optical spectra (left panel) together
with the quasiparticle (QP) band structures (right panel). Our
results are in good agreement with available experimental
data for the AA′ stacking [78–86] (see also Ref. [55]). First,
we consider the character of the first bright exciton in each
configuration (green bars). The contributions of individual
electronic states to the e-h pairs are indicated by the green
circles drawn on top of the QP band structures [55]. Regardless
of the stacking, the direct QP gap of bulk h-BN is always along
or in the vicinity of the K-H path in the Brillouin zone (BZ).
Hence, all excitations comprised within the first peak and up
to ∼1 eV above it always stem from transitions between QP
states in the gap region. The two uppermost valence bands (VB,
VB-1) and the two lowest conduction bands (CB, CB+1) are
energetically very close to each other, due to the presence of
two atoms of the same species in the unit cell. These bands
have a well-defined N and B character (highlighted in color
in Fig. 2), which is related to the atomic structure of the
constituting species and thus independent of the layer stacking.

The first bright e-h pair has a 2D character in the AA′,
AA, and AB configurations. In the AA′ stacking, it is twofold
degenerate, owing to the symmetry of the lattice. Due to the
parity of the exciton with respect to the inversion symmetry
of the crystal, a doubly degenerate dark exciton with 2D
distribution appears lowest in energy (here, at 5.50 eV; for
a comparison with experiments, see Ref. [55]). These findings
are in agreement with earlier studies of this h-BN phase
[7,75,87]. The 2D character of the first bright exciton is
closely related to the electronic structure of the corresponding
arrangement. In the AA′ and AB stackings, where atoms of
the same species never lie on top of each other, VB-1 and VB
(and likewise CB and CB+1) are (almost) degenerate along the
entire K-H path, as reported also in Refs. [6,60,88,89]. At the
high-symmetry point H the Kohn-Sham wave functions sit on
one inequivalent layer only. In the AB configuration the same
behavior is found also at K , with the consequence that in this
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FIG. 2. Left: Optical absorption spectra, given by the imaginary
part of the macroscopic dielectric function, of the five considered
stacking arrangements of h-BN (insets). The character of selected
excitations is indicated following the nomenclature in Fig. 1. The
height of the vertical bars is indicative of their relative intensity
[55]. The first bright exciton is marked by a green bar with the
corresponding label framed in green. Dark excitons at lowest energies
are indicated by red arrows. A Lorentzian broadening of 0.1 eV is
applied to all spectra. Direct QP gaps are marked by dashed gray lines.
Right: Reciprocal-space distribution of the first bright exciton with
band character highlighted in color: blue for N and pink for B. The
sizes of the green circles indicate the k-resolved band contributions
to the corresponding excitation (green bar) [55]. Fermi energy set to
zero at the valence band maximum and marked by a dashed-dotted
line.

stacking the hole and the electron of the 2D exciton are always
localized within one specific h-BN sheet. Conversely, in the
AA′ and AA arrangements, electronic wave functions tend to
be delocalized over all layers towards the high-symmetry point
K . As a result, the 2D exciton appears with the same probability
in any layer [55,90].

The lowest-energy exciton is optically allowed in those
stackings that lack inversion symmetry between the layers.
This is the case of the AB arrangement, where the absence of
inversion symmetry allows for the presence of two optically
active e-h pairs, both twofold degenerate and encompassed
within the first peak (see Fig. 2). Likewise, in the AA stacking
the lowest-energy exciton is optically allowed and bears a 2D
distribution. It dominates the onset of absorption, giving rise to
a sharp peak. Conversely, in the AA′ stacking, exhibiting inver-
sion symmetry, the first exciton is dark. Overall, the spectra of
these three structures look quite similar: They are characterized
by an intense excitonic peak around 5.5 eV, followed by a
broader and less intense hump at higher energies. The binding
energy of the first optically active exciton ranges between 0.50
and 0.75 eV, depending on the specific structure [55]. We define
the binding energy as the difference between the excitation
energy computed with the e-h interaction included (by solving
the Bethe-Salpeter equation) and neglected (independent QP
approximation) [55]. This definition is general and holds for
any excitation independent of its position in the spectrum. For
the first bright excitons discussed above, it coincides with the
often adopted definition of binding energy as the difference
between fundamental and optical gaps.

In the A′B and AB ′ configurations the lowest-energy bright
exciton has a 3D-l nature. This e-h pair has the same in-plane
extension as the 2D one, but the electron is vertically spread
over two neighboring layers to the one hosting the hole. This
distribution can be once again traced back to the symmetry and
character of the electronic states near the gap that contribute
to it. As discussed above, in the A′B (AB ′) stackings, layers
are staggered with B (N) atoms vertically aligned on top of
each other. This makes the CB (VB) energetically split from
the CB+1 (VB-1). The wave functions of these bands along
the K-H path are therefore delocalized within all layers [55].
Under these conditions, the resulting e-h pairs extend to the
neighboring layers.

The inversion symmetry in these structures is responsible
for the presence of a forbidden exciton that is lowest in energy:
In the A′B lattice, the first dark e-h pair has the same energy
as the first bright 3D-l exciton, while in the AB ′ stacking it is
found at approximately 5 eV. The intensity of the first peak
is considerably lower compared to the other arrangements,
due to the reduced wave-function overlap between the QP
states contributing to it. In the A′B arrangement, the direct
QP gap and thus the onset of absorption are significantly
redshifted compared to the AA′ stacking, up to 1.3 and 0.8 eV,
respectively. Depending on the stacking arrangement, only
2D or 3D-l excitons can appear at the onset of absorption
and are always associated with intense peaks. Their oscillator
strength is related to the symmetry conditions as well as to
the large overlap between the π/π∗ wave functions of the
bands involved in the corresponding transitions. Their spatial
localization, in turn, reflects the bound character of these e-h
pairs. On the other hand, CT and 3D-d e-h pairs emerge
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only at higher energies and, especially the former, upon strict
symmetry and structural requirements, reflecting the layer-
selective distribution of the contributing bands. In fact, CT
excitons can appear only in the AA′ and AB stackings, since
in these structures the condition that atoms of the same species
are aligned on top of each other is never satisfied. In the AA′
arrangement, the CT exciton marked in the spectrum of Fig. 2
originates from transitions between the VB-1 and the CB+1,
and between the VB and the CB, at the H point in the BZ. Here,
these bands are degenerate and the corresponding electronic
wave functions are spread over N and B atoms belonging to
different h-BN layers. The CT exciton is dipole allowed only in
the out-of-plane polarization direction and does not exhibit any
degeneracy. As a result, the in-plane distribution of this e-h pair
differs from the one shown in Fig. 1 [55]. In the spectrum of
the AB arrangement, we find a doubly degenerate CT exciton
with in-plane polarization, stemming from transitions between
the VB and the CB in the vicinity of the K point. According to
the wave-function distribution of these bands, the hole and the
electron sit on different layers, giving rise to the CT character
of this exciton. Its weak oscillator strength is due to the small
overlap between the electron and hole wave functions [55].

Delocalized 3D excitons characterize mainly the high-
energy window of the optical spectra. They only appear
when inversion symmetry is present. In the AA′ configuration
the 3D-d exciton marked above 6 eV is twofold degenerate
and has a binding energy of 0.2 eV. Viewed from the side
(Fig. 1), this type of exciton extends symmetrically to the
nearest-neighboring layers in the vertical direction. This in-
plane distribution appears in the h-BN monolayer [10] and
is apparently preserved also in multilayer structures. Also in
the A′B and AB ′ configurations, 3D-d excitons are present
in the high-energy range, but they exhibit a different in-plane
distribution that reflects the structural arrangement [55]. It is
worth noting that in the AA and AB configurations, where
inversion symmetry is absent, delocalized 2D excitons with a
trigonal shape appear in the high-energy range. Remarkably,
they resemble higher-energy excitons in monolayer h-BN
[10,55].

Finally, above 1 eV from the onset of absorption of each
stacking, very delocalized excitations appear (not shown; see
also Ref. [55]). They stem from a number of mixed transitions
between electronic states far from the QP gap and do not
correspond to any type of exciton depicted in Fig. 1. Due
to their resonant character of band-to-band transitions, their

delocalized distribution resembles that of Kohn-Sham states.
Such 3D excitations with an extremely extended character
are expected to form more favorably in vdW crystals and
heterostructures exhibiting superlattices and/or Moiré patterns.
These complex structural arrangements, which are observed in
realistic samples (see, e.g., Refs. [91–93] for graphene/h-BN
interfaces), tend to decrease the symmetry of the system,
thereby promoting weakly bound e-h pairs.

The general arguments underpinning the presented analysis
can be directly extended to other vdW materials. While
group-IV monatomic layers (graphene, silicene, etc.) exhibit
a semimetallic character [94,95], binary compounds such as
transition-metal dichalcogenides have a pronounced excitonic
behavior largely influenced by layer stacking [74,96–106].
Spin-orbit coupling [107–109] and an indirect-direct band-gap
transition upon an increasing number of layers [110,111]
further enrich their excited-state properties. Also group-V vdW
materials, such as phosphorene, are known for the dependence
of their gap on the number of layers and the stacking order
[112–119]. Layer displacement in these cases can evidently
further contribute to tune the character of the e-h pairs.

In summary, we have analyzed the four types of excitations
that appear in different stacking arrangements of bulk h-BN,
considered here as a prototypical vdW material. We have
shown that localized e-h pairs with a purely 2D character
appear in all configurations. Charge-transfer excitons occur
only if specific structural and symmetry conditions are fulfilled.
3D excitons with a more or less extended spatial distribution
are also present at the onset of absorption and/or above it,
depending on the layer stacking. Our results demonstrate the
interplay between structural arrangements and optical proper-
ties in stacked vdW materials, providing the key elements to
assess, foresee, and tune the character of their e-h pairs. As
such, our findings contribute to the fascinating perspectives of
designing vdW heterostructures with customized characteris-
tics, achieved through a controlled modulation of the electronic
structure via layer patterning.

Input and output files of our calculations can be downloaded
free of charge from the NOMAD repository [120].
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