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Importance of orbital fluctuations for the magnetic dynamics in the heavy-fermion compound SmB6
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The emergent dynamical processes associated with magnetic excitations in heavy-fermion SmB6 are inves-
tigated. By imposing multiorbital interactions on a first-principles model, we find the interplay between spin
and orbital fluctuations in the f manifold is highly sensitive to local correlations. The magnetic phase diagram
constructed at zero temperature reveals quantum critical features with the existence of several competing phases.
Within the random phase approximation, we perform a comprehensive study of the spin-spin correlation function,
and our results agree with neutron scattering experiments. Spectral weight analysis shows the low-energy spin
excitations are selectively accompanied by orbital fluctuations, indicating a nontrivial entanglement between the
spin and orbital degree of freedom driven by relativistic couplings.
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Introduction. While the possibility that SmB6 is topolog-
ically nontrivial has driven many recent efforts [1–12], an
equally relevant aspect of this material has been brought to
light through the lens of inelastic magnetic neutron scattering
(INS). Specifically, the temperature activated [13] dynamical
magnetic response signatures observed deep within the insu-
lating state are not traditional magnons, show a high degree
of momentum space anisotropy, and have been attributed to
correlation driven exciton [14–16] modes. The narrow gap,
strong Coulomb interaction, and residual specific heat give
exciton-type modes considerable plausibility in the context
of this system [17], and identifying the extent to which these
excitations contribute to the low-energy transport properties,
as well as the interplay between correlation and topology
is crucial in understanding SmB6. In fact, it is well known
in the heavy fermions that the Coulomb interaction, lattice
geometry, and spin orientation are essential in spawning exotic
phenomena; however, fair treatment of the multiorbital nature
is often hindered by an exponential growth in complexity.
It is precisely this interplay of competing energy scales and
many degrees of freedom that invoke the striking electronic
properties, yet in spite of this, a multiorbital, first-principles
study of the magnetic dynamics in SmB6 is still lacking.

We address this gap with a realistic model based on comple-
menting density functional theory (DFT) with the generalized
random phase approximation (GRPA). This is achieved by
projecting the relativistic eigenstates of the Kohn-Sham equa-
tions onto Wannier functions, and imposing the multiorbital
Hubbard-Kanamori interaction onto these maximally localized
orbitals. This approach treats the spin-orbit coupling, multior-
bital Coulomb interaction, and band-structure effects on equal
footing. Quantum critical features are found at zero tempera-
ture with several nearby magnetic phases. In the normal state at
finite temperature, the low-energy spin excitations are shown
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to be tightly coupled to orbital exchange processes through the
large spin-orbit coupling, and a number of important features
observed in the INS experiments naturally emerge with this
approach.

Model. Motivated to capture hybridization effects between
localized Sm 4f moments, and itinerant Sm 5d states, we
employ a relativistic multiorbital Hamiltonian as

H = Ht + Hint, (1)

where Ht is given by

Ht = 1

2

∑
ijαβσ

(
t
αβ

ij − 2μδij δαβ

)
c
†
iασ cjβσ . (2)

Here the fermion operators create (destroy) particles at site
i (j ), with orbital character α (β) and spin σ . Symmetry con-
siderations and the spin-orbit interaction dictate the Wannier
basis is chosen as spinors of the Sm d-eg states and the full Sm
f level multiplet [18]. In this way, contained within Ht is the
fully relativistic ab initio information pertaining to the entirety
of the d-f hybridization, as well as f level character in the
vicinity of the Fermi energy. This approach has the advantage
of treating the f manifold relativistically in contrast to previous
studies [15], and is known to be sufficient in producing the
hybridization gap [19].

Hint = U

2

∑
iασ

niασ niασ ′

+
∑

i,α<β,σ

{(U − 2J )niασ niβσ ′ + (U − 3J )niασ niβσ

+J (c†iασ ciβσ c
†
iβσ ′ciασ ′ − c

†
iασ ciβσ c

†
iασ ′ciβσ ′)}. (3)

Hint is the centrosymmetric representation [20] of the multior-
bital Hubbard-Kanamori interaction [21] that is treated at the
mean-field level to calculate the magnetic phase diagram, and
at the RPA level to calculate the dynamical spin susceptibility
in the normal state. U is the intraorbital repulsion, and J is the
Hund’s coupling parameter. The first-principles calculations
are performed with full potential linear augmented plane waves
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FIG. 1. Electronic structure plots contrasting local-density ap-
proximation and Wannier projection. (a) Band structure; (b) density
of states.

plus local orbitals and the local-density approximation imple-
mented in the WIEN2K [22] ecosystem. The total energy was
converged to 0.1 meV on a 5000 k-point grid with an RKmax

of 5. Projection onto Wannier states including fourth nearest
neighbors is accomplished with the WANNIER90 package [23],
resulting in 40 500 complex hopping parameters.

Figure 1 overlays the Wannier interpolated electronic struc-
ture with the Kohn-Sham result. The density of states shows
the sharp Sm f peaks with the doubly split J = 5/2 and triply
split J = 7/2 multiplets just below and above the Fermi level,
respectively [18]. This electronic structure is representative of
Oh point group symmetry in a weak cubic field and strong spin-
orbit coupling scheme [24]; in this respect it is commensurate
with the latest tunneling spectra [25]. The itinerant Sm d-eg
bands are seen to hybridize with the localized f manifold
developing a 15 meV direct gap. Excellent agreement is found
between the Wannier projection and Kohn-Sham result in
the low-energy window Ef ± 500 meV. Admittedly, a parity
crossing between the hybridized samarium 4f band and the
boron p state at the X point lost in this Wannier projection,
likely resulting in a shift of the Berry phase. However, being
interested in excitation effects, this truncated basis serves as
an effective representation of the low-energy physics.

Mean-field theory. Decoupling the quartic terms in the
interaction is accomplished as in Refs. [26,27] with

〈c†iασ cjβσ ′ 〉 =
[
nα + σ

2
cos(q · ri)mα

]
δij δαβδσσ ′ . (4)

This leads to a momentum space mean-field Hamiltonian

HMF = Ht +
∑
pασ

θαc†pασ cpασ + ζ

+
∑
pασ

ηασ (c†pασ cp+qασ + H.c.) (5)

with mean-field potentials

θα = Unα + (2U − 5J )
∑
β �=α

nβ,

ηασ = −σ

2

(
Umα + J

∑
β �=α

mβ

)
(6)

FIG. 2. Schematic magnetic phase diagram of SmB6 obtained by
mean-field treatment of first-principles Wannier projection.

and mean-field constant

ζ = J

2

∑
α �=β

mαmβ − U
∑

α

(
n2

α − 1

4
m2

α

)

− (2U − 5J )
∑
α �=β

nαnβ. (7)

Calculating the phase diagram proceeds by self-consistently
determining the mean-field parameters nα and mα = nα↑ −
nα↓, with convergence characterized by ‖D‖ < 1 × 10−5.

D = 〈
nα

i+1 − nα
i

∣∣	〈
mα

i+1 − mα
i

∣∣. (8)

Minimization of the norm of D gives the self-consistent condi-
tion, automatically ensuring a minimum in the free energy [28].
The self-consistent process is repeated across different mag-
netic phases and ordering wave vectors. We consider a set of
five phases characterized by three antiferromagnetic ordering
wave vectors q1 = ( 1

2 ,0,0), q2 = ( 1
2 , 1

2 ,0), q3 = ( 1
2 , 1

2 , 1
2 ), and

the paramagnetic and ferromagnetic phases. The total particle
number is constrained to the experimental average Sm valence
of 2.54 [29] during each of the self-consistency cycles.

Figure 2 shows the zero temperature magnetic phase di-
agram in the plane of the interaction parameters U and J .
A central feature consistent with muon spin rotation (μSR)
experiments [30] is the large paramagnetic belt found in the
region with moderate correlations where the intraorbital repul-
sion is comparable to the f level bandwidth W . Interestingly, in
the regime of large Hund’s coupling J compared to intraorbital
repulsion U , q1 = ( 1

2 ,0,0) antiferromagnetic order is found to
be the ground state. We notice that high-pressure experiments
[31] have already seen evidence for this one-dimensional- (1D)
like antiferromagnetic order, and a recent theoretical study
reported in Ref. [32] has obtained similar results. The region
of U > 1 eV, J/U > 1/5 shows several phases very close
in energy, suggesting the dominance of quantum fluctuations
and highly competing order. For U 	 J/U , ferromagnetism
is found to be the lowest-energy magnetic phase. It is worth
mentioning that experimental evidence for ferromagnetic order
is not conclusive. While μSR experiments [30] find no evi-
dence of long-range ferromagnetic order, magnetoresistance
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experiments [33] are suggestive of ferromagnetic puddling.
In short, our mean-field calculations are commensurate with
experiments in suggesting a system with various competing
magnetic orders at zero temperature, implying the magnetic
dynamics are complicated even in the normal state at finite
temperatures.

Spin susceptibility. In order to deepen our understanding of
the spin dynamics in multiorbital spin-orbit coupled systems,
we study the magnetic excitations in the normal state with the
following correlation tensor:

χ̊
γ δ

αα′ββ ′(q,iωn) =
∫ β

0
dτ eiωnτ

〈
Tτm

γ

αα′ (q,τ )mδ
ββ ′(−q,0)

〉
, (9)

where, for example,

mz
αα′ (q,τ ) =

∑
pσ

σc
†
p+qασ (τ )cpα′σ (τ ). (10)

The subscript greek indices represent orbitals and the super-
script indices represent magnetization direction components.
Evaluation of the correlation tensor follows textbook proce-
dures [34], and the bare susceptibility can be expressed by the
generalized Lindhard function

χ̊ zz

ᾱβ̄
(q,ω) = 1

2N

∑
pσ

σ�abσ
ᾱβ̄

(p,q)�ab(p,q,ω),

�abσ
ᾱβ̄

(p,q) ≡ (
Up+q

αaσ

)∗
U

p
α′bσ

(
U

p
βbσ

)∗
U

p+q
β ′aσ ,

�ab(p,q,ω) ≡ nF (ξp+qa) − nF (ξpb)

ω + iη + ξpb − ξp+qa

, (11)

where contravariant indices are eigenbasis indices and are
summed over, � is the orbital projection weight, and �

gives the thermal occupations. Here the rank-four tensor is
operated as a matrix by defining the sets ᾱ = {α,α′} and β̄ =
{β,β ′}. Due to the presence of strong spin-orbit coupling, the
longitudinal (χzz) and transverse (χ±) functions are calculated
separately since they could be different. Within the GRPA, the
renormalized correlation functions become

χzz

ᾱβ̄
= χ1 + χ4 − χ2 − χ3,

χ±
ᾱβ̄

= χ5. (12)

The functions χ1–5, along with the interaction kernel are
worked out in great detail in Refs. [35,36]. The spectral func-
tion of this correlator is directly measured by INS experiments,
and what is known from experiment is the low-energy peaks
around 14 meV cannot be attributed to phonon, crystal field,
or pure magnon modes [14].

Discussion. To gain insight into the origin of these peaks, we
analyze the orbital components of the spectra around 14 meV
for a set of scattering vectors tested by Ref. [14]. The GRPA
calculations were performed on an 8000 k-point grid in the
full Brillouin zone with a thermal broadening factor fixed to
η = 0.5 meV. Table I summarizes how the correlation tensor is
used to classify processes depending on initial and final orbital
states, and Fig. 3 shows two orbital decompositions of the
spectral function extracted via the sum and the trace of the
longitudinal function from Eq. (12).

Consider first the bare and the GRPA susceptibilities in
Fig. 3(a). The bare function shows no signature at 14 meV,

TABLE I. Sum and trace operations on the correlation tensors as
used to determine if orbital fluctuations are present in the excitation
channel.

Function Orbital conservation
∑

ᾱβ̄ (χ±
ᾱβ̄

) No∑
ᾱβ̄ (χzz

ᾱβ̄
) No

tr(χ±
ᾱβ̄

) Yes
tr(χzz

ᾱβ̄
) Yes

whereas the GRPA produces peaks matching the INS data, indi-
cating these modes are a result of electron correlations instead
of wave-vector nestings. Furthermore, the difference between
the sum and the trace of the spectral function demonstrates the
extent to which spin excitations at that wave vector have con-
siderable orbital content. This is readily visible in comparing
Figs. 3(a), 3(b), and 3(d) to Fig. 3(c). If the sum and the trace
have nearly identical line shapes, the corresponding peak is
mainly associated with spin-flip processes within intraorbital
channels. In this case, orbital fluctuations are not coupled to
this spin mode despite the strong spin-orbit interaction. On the
other hand, if the trace is only a portion of the sum around an
INS peak, the corresponding peak carries significant weight in
the interorbital channel, and orbital fluctuations are strongly
entangled with this spin excitation. Comparing the spin-spin
correlation function at all four momenta plotted in Fig. 3,
we find that the magnetic excitations at q = (0,0.695,0.695),
(0.98,0.69,0.69), and (0.77,0.26,0.26) have large interorbital
contributions while those at q = (0.49,0.49,0.49) are mainly
in the intraorbital channels. This observation indicates that the
effects of the interactions driving the spin collective modes
near 14 meV are inhomogeneous throughout the momentum
space, despite the fact that SmB6 has a centrosymmetric
crystal structure and the Sm point group should be at lowest
D4h. This strongly suggests the orbital degree of freedom
plays a crucial role in the collective excitations emerging
from electron correlations, and may lead to the symmetry-
breaking magnetic response witnessed in Ref. [37], for
example.

FIG. 3. Longitudinal spin response spectrum for selected scatter-
ing vectors of INS data of Ref. [14]. Note the spectra have been scaled
differently.
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FIG. 4. Top: The sum of the transverse function for T = 1 K,
U = 1 eV, J = U/10. Bottom: trace of the transverse function for
T = 1 K, U = 1 eV, J = U/10.

Figure 4 maps the transverse spin excitation in frequency-
momentum space. The inter- vs. intraorbital channels can be
seen to have different structure and intensity as a function of the
scattering wave vector. This reiterates a strong inhomogeneity
in the spin-orbital coupling, and supports the idea that the low-
energy states are selectively susceptible to orbital excitations.
The peak around q = X observed in INS and in our data can be
directly tied to the phase diagram, as this excitation is associ-
ated with 1D antiferromagnetic (AFM) order. The lowest-lying
excitations exhibiting a reduced dimensionality profile has
ramifications on transport properties as discussed by Ref. [17],
especially given the centrosymmetry present in the crystal
structure and our interaction kernel. The fact that we find the X

point susceptibility peaking near 4 meV is indicative that in our
model, the cost of the 1D AFM excitation is within 10 meV of
experiment. Given the fact we are in a weak-coupling regime,
this suggests that even though this is correlation driven physics,
the U → ∞ limit is not absolutely necessary. This alleviates
chemical potential pinning and integer occupancy constraints
imposed by slave bosonization, for example, and is another
benefit of this approach to mixed valent systems. To explore
this further, the onset of the excitation is studied as a function
of local correlations.

Figure 5 shows the longitudinal susceptibility as a function
of U with J = U/5 for the selected scattering vector q =
(0,0.695,0.695). We find that the excitation at 14 meV onsets as
U ≈ W ≈ 1 eV, and is driven down in energy as a function of
U . While the result agrees with the previous study [15,16], our
results further ascribe significant orbital angular momentum
to the spectral weight of the 14 meV mode by comparing the
trace and the sum. The trace in Fig. 5(b) showing a significantly
weaker excitation profile than the sum in Fig. 5(a), again shows
that at this specific wave vector there is significant orbital
character in the excitation. In light of the phase diagram in
Fig. 2, increasing U drives the system into a region of high fluc-
tuations, reducing the energy cost of instantiating this specific

FIG. 5. Scattering at q = (0,0.695,0.695) as a function of interac-
tion for T = 2 K, J = U/5. (a) The sum of the longitudinal function.
(b) The trace of the longitudinal function.

spin-orbital excitation. The fact that the 14 meV peak arises
when U ≈ W places a strong constraint on theoretical treat-
ment of correlations in SmB6, further showing the U → ∞
limit is an unnecessary assumption if starting with an accurate
electronic dispersion.

Conclusion. We have shown that a first-principles model
can reproduce the low-energy physics in SmB6, and that
momentum-dependent entanglement between the spin and
orbital degree of freedom emerges naturally from strong
spin-orbit coupling. The various competing magnetic phases
at zero temperature lead to nontrivial magnetic dynamics
in the normal state, and spectral decomposition of the spin
susceptibility exposes the anisotropic orbital character of the
excitations. This first-principles approach clarifies a num-
ber of intriguing features observed in the inelastic neutron
scattering measurement. With the evidence presented here,
we propose the orbitally degenerate nondispersive f man-
ifold is the perfect environment to harbor orbital exciton
modes, a new correlation driven mode carrying exclusively
orbital angular momentum. This conjecture proffers a different
physical interpretation when considering nontrivial topology
with a charge-neutral Fermi surface, and provides a simple
mechanism for bulk SmB6 to couple selectively to magnetic
perturbations while simultaneously ignoring the charge sector.
This exciton form allows an additional pathway for low-
temperature specific heat anomalies, and will additionally
cause an orbital dichroic signal in optical probes. Further
work to address the role of topology, as well as quanti-
tative descriptions of these contemporary exciton modes is
underway.
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