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We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general
theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle’s
internal spin transition, akin to optical dipole traps for ultracold atoms. Next we discuss in detail periodic arrays
of magnetic traps, i.e., magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with

lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art
experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one

based on surface acoustic waves.
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I. INTRODUCTION

The advent of cold atoms trapped in optically defined
potential landscapes has enabled experimental breakthroughs
in various disciplines ranging from condensed-matter physics
to quantum information processing [1,2]. In particular, thanks
to largely tunable system parameters and the possibility to
mimic and gain understanding of complex solid-state systems,
ultracold atomic gases have become a rich playground and
valuable tool to explore novel quantum many-body physics
[3]. On a complementary route towards controllable quantum
matter and a fully fledged quantum simulator, solid-state
platforms allow one to pursue the same goals in a very different
physical context, both bearing challenges such as overcoming
impurity-induced disorder in semiconductor systems [4], but
also offering the potential to benefit from long-range interparti-
cle interactions, access to a wide variety of quasiparticles, and,
in principle, means to build scalable on-chip architectures for
quantum information processing. To this end, different kinds of
quasiparticle traps in semiconductor nanostructures have been
proposed and realized [5—11]. Likewise, in the realm of atomic
[12,13] and molecular [14,15] systems, mesoscopic on-chip
platforms have been tailored to miniaturize experiments with
ultracold quantum matter. Apart from more established solid-
state platforms such as, e.g., quantum-dot-based architectures
[16], it has recently been proposed [17] to employ surface
acoustic waves (SAWs) to trap and control semiconductor
quasiparticles such as electrons in intrinsically scalable and
tunable acoustic lattices. The latter operate at elevated energy
scales with typical lattice spacings a = 100 nm and recoil
energies Er/kg ~ (0.1-1) K [where Eg = h?/(8ma*) with
an effective particle mass m which is typically of the order of
the electron rest mass] as compared with optical lattices where
typically Eg/kg ~ 107 K [18]. Inspired by these results and
recent advances in the rapidly evolving field of nanomagnetism
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[19,20], i.e., the generation and control of (high-frequency)
magnetic fields on the nanoscale, the present work aims to
bring the favorable scaling properties and flexibility of optical
lattices to the solid-state domain.

In contrast to electrically defined confinement potentials for
charged particles in quantum wells, the spin degree of freedom
(DOF) can be addressed with magnetic field gradients in order
to trap and control particles in semiconductor nanostructures;
note that this is in close analogy to the working principle of
optical dipole traps where the induced ac Stark shift of the
atomic levels gives rise to a dipole potential for the atom [21].
In previous theoretical proposals [22,23] and experimental
demonstrations [24,25], magnetic traps for charge carriers in
low-dimensional quantum wells were induced by a spatially
inhomogeneous giant Zeeman splitting in dilute magnetic
semiconductors (DMSs) [26], which feature extremely large
g factors ~10%. In particular, microscale magnets [27] and
current loops [28] as well as superconducting (SC) vortex lat-
tices [23] have been considered in this context. So far, however,
none of these previous results have been tailored to scalable
architectures and, moreover, only static traps with limited
tunability of system parameters have been taken into account.
In this work, we take a significant next step towards tunable
and scalable magnetic lattices and develop a general theoretical
framework fit to describe the latter. We show that a nonstandard
form of the Hubbard model with two independently tunable
hopping parameters can readily be implemented. Ultimately,
two alternative implementations of the developed model will
be discussed in detail, one based on SAWs and the other based
on magnetic field gradients generated by SC nanowires, both
operated in yet unexplored parameter regimes and with highly
favourable tunability and scalability properties.

The basic scheme is depicted in Fig. 1. We consider
electrons with two internal (spin) states |1) and ||) which
are confined to a conventional low-dimensional quantum well
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FIG. 1. Schematic illustration of the trapping scheme and mag-
netic lattice. (a) At each point, the two-level spin systems experience
an ac Stark shift which defines an effective (state-dependent) potential
landscape for the electrons. (b) The local eigenenergies ¢(2) of the
two spin components |+) g, and |—) gz, are shifted with respect to each
other. The energies +&(2) (dashed curves) and —&(Z) (solid curves)
are shown for A / Q¢ = 10 (blue), A/ 2y = 1 (black),and A/ 2y =0
(red) in units of €2¢. The hopping matrix elements (see Sec. IIB) 7. and
t; denote next-nearest-neighbor spin-conserved and nearest-neighbor
spin-flip-assisted tunneling, respectively. V;, denotes the trap depth.

or a purely two-dimensional material, e.g., from the group
of transition-metal dichalcogenides (TMDs), and subject to
a spatially inhomogeneous magnetic driving field. Due to the
thereby induced ac Stark shift acting on the internal energy
levels, the electrons feel an effective state-dependent potential
which is periodic along one axis (in the one-dimensional setup
we consider here), as illustrated in Fig. 1. As a result, the
electrons are attracted to a regular lattice of antiferromagnetic
character since the two internal states are found to be trapped
at nodes or antinodes of the magnetic field distribution,
respectively; cf. Fig. 1(b). For simplicity, we consider only one-
dimensional systems, but all results can readily be generalized
to two dimensions.

This paper is organized as follows. In Sec. II, we first
introduce the theoretical framework to describe magnetic
trapping potentials for electrons confined to a two-dimensional
electron gas (2DEG). All requirements for the validity of
the theoretical treatment and relevant approximations are
discussed in Sec. I A, followed by an investigation of hopping
and interactions in magnetic lattices (see Sec. IIB), and a
detailed description of possible implementations in Sec. III.
Finally, we will provide case studies for both implementations
with realistic parameters in Sec. IV.

II. GENERAL THEORETICAL FRAMEWORK
A. Single-particle physics in magnetic traps

Single-particle physics. We consider an electron confined
to a 2DEG with effective mass m and the two internal
states |[1) and |]) exposed to an external magnetic field,
B(r,t) = B, (r,wt) + B;. The spatially homogeneous, static
(in-plane) part of the field, B, = BoZ, gives rise to a Zee-
man splitting, Ziwy = gsiup By, and the inhomogeneous (time-
dependent or time-independent) (out-of-plane) field compo-
nent, B, (r,wt) = B A(r)cos(wt)X, drives spin transitions
with frequency w. The corresponding Hamiltonian can be
written as (here and in the following, we adopt the convention

that i = 1)
") ")
H=2 tney=2 D5, 20 ( ) cos@no®, (1)
2m 2m 2

where 2, p, o = 1) (LI + 1) (1], and o = [1) (1] = 1) (U]

denote the particle’s position, momentum, and Pauli spin
operators, respectively. The inhomogeneous Rabi frequency
is denoted by €2(2) = QpA(Z) with Qy = y By, where y =
gsup is the gyromagnetic ratio of the electron. We assume
A(Z) = cos(k?) in the following, where k denotes the wave
vector, but more general periodic functions can be considered.
While the universality of this model will become more apparent
later, especially when we consider different implementations
in Sec. III, we may already distinguish between two physically
dissimilar cases both captured by Eq. (1): (i) static traps
(w = 0) are time-independent and (ii) dynamic traps (v > 0)
are explicitly time-dependent realizations of the model. Due
to their intrinsic flexibility and in situ tunability of system
parameters, we put the main focus on dynamic magnetic traps,
ie,w > 0.

Within a co-rotating frame and rotating-wave approxi-
mation (RWA) for |A| = |wy — o| € wg + 0 and Qy K w,
the time-independent internal model hrwa(2) = [A/2]o% +
[2(Z)/2]c* can be diagonalized exactly, which yields the
local eigenenergies +&(2) with &(2) = %‘/92(2) 4+ A? and
position-dependent eigenstates,

[+)g¢) = cos QM) i QN«)

|— >8(z)__51n%|1\) QN)

Q%)

/Qz( )+ A2

fective potentials £e&(Z), which is given by the difference
|max e(2) — m1n &(2)|, depends only on € and A and will

where 6(Z) = arcsin[ ]. The trap depth of the ef-

be denoted by Vo in the following (see Fig. 1). In the limit
Qo < |Al, the standard result from second-order perturbation
theory, &(2) ~ |A|/2 + Q3A2(2)/(4|A]), can be recovered.
Note that the periodic modulation of the internal energy levels
|£)g(;) amounts to a state-dependent potential for the motional
DOF such that the states are trapped at nodes and antinodes
of the driving field, respectively. As a consequence, magnetic
trapping potentials for the two spin components are shifted with
respect to one another, as illustrated in Fig. 1(b). In fact, this
result is reminiscent of state-dependent optical lattices which
can be enriched by laser-assisted tunneling between internal
atomic states [29,30], whereby gauge fields for ultracold atoms
can be generated [31-34].

Note that in the realm of the RWA introduced before, the
Rabi frequency €2 is limited to relatively small values, as
compared to other relevant energy scales. This limitation can
be overcome, to some extent, by deriving an effective Floquet
Hamiltonian without RWA; see Appendix A for details.

Until now, we have not explicitly taken into account
the presence of the kinetic term, p?/(2m), in Eq. (1).
Its presence induces a coupling between the local spin
eigenstates |+)y; and, as a consequence, undesired spin
flips may result in particle loss from the trap [35]. In order
to quantify this effect, it is instructive to introduce a unitary
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transformation U (Z) which diagonalizes hrwa (Z) at each point,
such that [+);) = U(2I1) [|=)ez) = U2 )]. The thereby
transformed ~ Hamiltonian, H = U T[% + hrwa (DU =
p? /2m + h(2) + AT, contains the kinetic term from Eq. (1),
the diagonal (in the local eigenbasis spanned by |+)) and
=)o) spin Hamiltonian h = UThgwaU, and an additional
term AT, which stems from the transformation of the kinetic
term; see Appendix B for details. If the latter contributes
only a small correction to the system’s characteristic energy
scale set by the motional quantum wgyo, the internal spin DOF
follows adiabatically the local direction of the magnetic field
and the contribution from AT can be safely neglected.
For this adiabatic approximation (also referred to as
the Born-Oppenheimer approximation) to hold, the local
eigenstates of the two-level system spanned by [+)y, and
|—)g(z) must be sufficiently separated in energy. If this energy
gap by far exceeds wpyo, i.e., x := wngo/|A| K 1, spin-flip
processes are typically negligible [35].

Requirements. Following the line of arguments outlined
above, we have implicitly made a few assumptions about the
system parameters which we summarize in the following:
(i) We have assumed idealized two-level spin systems with
well-resolved energy levels and thus a relatively small intrinsic
linewidth I' <« |A]. (ii)) We require a weak electron-phonon
coupling, i.e., the spontaneous phonon emission rate y which
quantifies motional damping of the electron must be small
compared to all other characteristic system’s time scales;
explicitly, we demand that it should be smaller than the
motional transition frequencies, i.e., y < wyo. (iii) In order
to obtain thermally robust traps and minimize particle loss
from the trap, we need thermal energies kg7 < Vj (where kg
denotes the Boltzmann constant). Typically, in case ground-
state cooling is desired, this requirement is replaced by the
stronger condition kg T < wyo. (With at least one bound state,
ny = Vo/wuo = 1, supported by the trap, the latter condition
is more restrictive.) (iv) The magnetic trap depth Vj is either
much smaller than g, i.e., V) = Q(Z) /(4| A]) in the perturbative
regime 2¢p < |A|, or approaches Vy — €2¢/2 in the opposite
limit, |A|/ 29 — 0; however, in both cases, V} is limited from
above by €2(/2. In terms of other relevant physical parameters
contained in 29 = y By, this means that strong magnetic radio-
frequency (rf) fields ~B; and large g factors are favorable.
(v) The Rabi frequency €2, in turn, is typically much smaller
than the driving frequency within the RWA, Qy < w, but this
condition can be relaxed as mentioned earlier. However, for
too large €2y, even the high-frequency expansion of the Floquet
Hamiltonian fails to converge. For our purposes, we therefore
demand 2y < w. (vi) Finally, introducing the small number
€. = Vo/w < 0.5, the adiabaticity condition y < 1 can be
rewritten as w < np|A|/€,q. However, this condition may be
relaxed at the cost of higher loss rates. The Majorana loss
rate s, compared to the natural frequency scale wyo of
the trap, can be estimated as n := ['ss/wHo ~ 2w exp (—4/x)
[35] (compare also Ref. [36] for a related description of
nonadiabatic spin flips in radio-frequency dressed magnetic
traps for cold atoms); deep in the adiabatic regime with
x = 0.1, spin-flip losses are negligible as n ~ 10~!7, but
even for moderate values y = 0.5 (x = 1), the loss rates are
relatively small with n ~ 2 x 1073 (y &~ 1.2 x 10~!). Hence,

the adiabaticity condition may be relaxed in order to obtain
well-performing traps. Putting these findings together results
in a concise list of necessary requirements and, in general,
without resorting to the RWA or the perturbative regime where
Qp < |A|, we find

YikeT K who S Vo S Q0/2 S w/2. (2)

In order to obtain reliable magnetic traps, both implementa-
tions discussed in Sec. III need to be operated in a parameter
regime where Eq. (2) is fulfilled and 7 is sufficiently small.

B. Engineering of Hubbard models

Towards many-body physics. Based on the theoretical
framework fit to describe single traps as worked out above,
the following paragraphs are dedicated to the study of Fermi-
Hubbard physics in magnetic lattices, i.e., periodic arrays
of magnetic traps. Explicitly, we show that spin-dependent
forms of the Hubbard model with independently tunable
hopping parameters 7. and ¢, can be realized with the aid
of additional driving fields (see Appendix C for more de-
tails) in the fashion of zigzag optical lattices for cold atoms
[37,38]. Here and in the following, 7. denotes spin-conserved
next-nearest-neighbor coherent tunneling processes and 74
describes spin-flip-assisted tunneling between adjacent lattice
sites; cf. Fig. 1(b). Another genuine prospect is the operation
in a low-temperature, strong-interaction regime [at dilution-
fridge temperatures 7" ~ (10-100) mK] where the thermal
energy is much smaller than the hopping parameters f., f4
which, in turn, are small compared to the on-site interaction
strength U, i.e., kgT < t.,tx < U.

As a starting point, we consider the single-particle Hamil-
tonian A within the adiabatic approximation (see Sec. 11 A),
which can be written as

A2 )
A~ i =2 4 e, 3)
2m 2m

with ¢ = |4+) (4] — |—)(—]. In a next step, we now consider
an ensemble of electrons in a magnetic lattice. At sufficiently
low temperatures (kg7 < wyo) such that the electrons are
confined to the lowest Bloch band, we find that the system
is characterized by a Fermi-Hubbard model of the form [39]

Hry = —tc Y (clejs+He)—e Y (—=D)n
{ is

i,J)).s

+ Z pini + Z Z Uijle,‘TyCLClscks"v “
i s,s" ijkl

M

where the fermionic operator ¢; annihilates (creates) an

electron with spin s = +,— at lattice site 7, and n;; = cjsc,-s
and n; = n;; + n;_ are the spin-resolved and total occupa-
tion numbers, respectively. The summation over ((-,-)) is
performed for next-nearest neighbors (accordingly, (-,-) in
Eq. (5) denotes a summation over neighboring sites). Ujju =
fdzdz’w;‘(z’)w;f(z)Uc(z,z’)wk(z)wz(Z') quantifies the inter-
particle interaction strength (U = U;;; denotes the on-site
interaction strength), where w; is a Wannier basis func-
tion which is typically strongly localized around the re-
spective lattice i. Typically, it is inversely proportional to
the lattice constant a, depends on the dielectric constant €
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of the substrate, and can be reduced with the aid of an
additional metallic screening layer positioned at a distance
dy.; from the 2DEG. The screened Coulomb interaction can
be written as Uc = e? f,(z,7')/(4me|z — Z'|), where f, =1 —
|z — Z'|/\/(z — 2/)* + 4dZ, incorporates screening [39,40]. In
Eq. (4), the spin-dependent energy offset ~¢ (see Fig. 1)
incorporates the remnant of the Zeeman splitting (in the
rotating frame) and the ac Stark shifts. Moreover, the site-
dependent chemical potential u; can take disorder effects into
account [17]. In the tight-binding limit where the potential
is sufficiently deep, i.e., Er < Vy (with the recoil energy
Eg = k*/2m), the hopping parameter is approximately given
by t./Er ~ (4//7)(Vo/Eg)** exp[—2+/Vo/Er] [3]. Realis-
tic parameter values (see below for details) suggest that the
low-temperature, strong-interaction regime U =~ 10z, > . >
kpT =~ 1 ueV lies within reach with state-of-the-art experi-
mental techniques.

As illustrated in Fig. 1(b), the standing-wave field distribu-
tion, as described by Eq. (1), gives rise to spatially separated
traps for the different spin components. Hence, adjacent poten-
tial minima host two different spin states, [+)g¢) and |—=)g ),
respectively. As a consequence, spin-flip-assisted tunneling
~t4 between neighboring lattice sites is strongly suppressed,
whereas next-nearest neighbors, occupying the same internal
state, are coupled much more strongly via direct tunneling
~t., as captured by Eq. (4). In order to control these hopping
matrix elements independently, we consider the application of
an additional magnetic driving field at frequency w, # @ which
effectively couples different spin states (at adjacent lattice
sites), thus increasing the hopping parameter 7 and at the same
time also the ratio t,4 := t4 /.. As outlined in Appendix C, this
introduces a second hopping term to the Fermi-Hubbard model
in Eq. (4), and the resulting Hamiltonian can be written in a
suitable co-rotating frame as

Hrgp = — 1, Z (cjscjs +Hc) -1ty Z (cjscjg + H.c)

(i, )).s (i,j).s
+ Y wini Y Y Usuelyclenci &)
i s,s" ijkl
where s and 5 denote opposite spins (i.e.,s = +,5 = — or vice

versa).

The additional transverse driving field of strength ~24; has
to be sufficiently small in order to be considered a perturbation
to the magnetic-lattice Hamiltonian in Eq. (3); more precisely,
we demand Qg4 < . In general, the time dependence and
exact form of this spatially homogeneous field can be derived
and reverse engineered from the desired Hamiltonian in the
adiabatic frame; see Appendix C for further details. Since,
in the tight-binding regime, next-nearest-neighbor hopping is
exponentially suppressed, weak driving fields €24,/ 29 < 1 are
sufficient to reach situations where 7. 2> #,. and, typically, for
moderate driving strengths, direct tunneling processes ~, can
be safely neglected [29]. In Fig. 2, it is shown how the ratio
1o 18 affected by sweeping 24,/ 20 and €29/ A, while keeping
the number of bound states n;, =~ /V,/(4Eg) at a constant
value. Evidently, smaller driving fields €24, lead to smaller 7...
Moreover, at small 29/A < 1 (i.e., deep in the perturbative
regime; see Sec. [T A), ., tends to decrease with increasing
Qo/A. By choosing adequate driving fields, the tunneling

I_ntrat

x1073
S 4 3
a -2
> 31
(@]
5 r1
g S e

2_
s — INtx=0
o 0
= B M tgr = =1
O

l_
| /A -1

o :

0 0.08
Rabi frequency Qq (A)

0.16 0.24

FIG. 2. Overview of In #,,, as a function of €24,/ 29 and 2o/ A. The
contour lines depict parameter constellations of equal 5 Int,, = 1
(dash-dotted), In #,,, = O (solid), In #,,, = —1 (dashed). Other param-
eters: n, = 1.

matrix elements ¢, and 71 can thereby be independently tuned
over a relatively wide range.

Spin-orbit interaction. In the presence of strong spin-
orbit interaction (SOI), transitions between different spin
states at adjacent lattices sites can be induced (eventu-
ally, for strong enough SOI, without any external driving
field) such that the Hubbard model in Eq. (4) may contain
additional SOI-induced hopping terms. Specifically, SOI-
induced hopping parameters can be estimated as t}/Er ~
A/ VoErm? Jaexp(—m?/164/Vo/ER), where A = ag,fp de-
notes the Rashba and Dresselhaus coupling strengths, re-
spectively. For realistic parameter values, this may give rise
to t}/t. > 1 such that nearest- and next-nearest-neighbor
hopping terms become comparable; see Sec. IV for further
details. Both the Rashba and Dresselhaus SOI strengths depend
on the orientation of the lattice in the host material and can
thereby induce anisotropic hopping. This gives access to a
wider class of Hubbard models than those captured by Eq. (5).

III. IMPLEMENTATIONS

In the following, we propose two experimental setups for
the realization of our model. First, in Sec. III A, we consider
magnetic field gradients provided by a classical current source
as an example for a setup which can be operated both in a
static [w = 0; compare Eq. (1)] or dynamic (@ > 0) mode.
Subsequently, we will discuss a purely dynamic (i.e., always
w > 0) setup based on surface acoustic waves in Sec. III B.

A. Superconducting circuit

As a first example for a realization of our model as
described by Eq. (1), we consider SC circuits operating at GHz
frequencies. The electrons are confined in a 2DEG at a distance
d from a current-carrying wire, which is located above the
surface. For our purposes, SC circuits and circuit resonators are
attractive because of their capability to generate ac magnetic
fields by carrying relatively large currents and the possibility

235451-4



SOLID-STATE MAGNETIC TRAPS AND LATTICES

PHYSICAL REVIEW B 97, 235451 (2018)

0.4

Distance x (a)

0.2

A\ A\ /A

24 25 26
Position z (a)

0

FIG. 3. (a) Sketch of the meandering-wire setup. A current
provides a magnetic field as described by the Biot-Savart law. At
a distance x = d from the surface, the two-dimensional electron gas
is located (see text). (b) Magnetic field distribution for an example
of a meandering nanowire that consists of N = 50 parallel wires
which are separated by the lattice constant @ = 1 um. The vector
field Bac(r,t = 0) is shown and its scalar field |Bac| is plotted on
a logarithmic scale. Magnetic field strengths of the order of B, ~
(10-50) mT are obtained in the proximity (x < 0.6a = 600 nm) of
the wire. Other numerical parameters: [, = 70 mA ata current density
J. = 30 MA/cm? [44] and wire dimensions of 480 x 480 nm.

to integrate them in semiconductor nanostructures [42,43]. Ina
simple toy model, we describe the circuit by a meandering wire
carrying an ac current, ~ Iy cos(wt), through parallel sections
of the wire separated by a lattice constant a; see Fig. 3(a)
for an illustration of the setup. Note that, in principle, this
setup can also be operated in the static regime (w = 0) when
dc currents and, thus, time-independent fields are considered.
The classical electric current density J induces a magnetic field
which is calculated using the Biot-Savart law; see Fig. 3(b) for
an exemplary field distribution as induced by a current source
at fixed positionsr = (0 < x < a,y =0,23.5 < z/a < 26.5)
[45].

Here, we consider only one-dimensional trapping potentials
in which the electrons are confined to a one-dimensional chan-
nel such that the y motional DOF is frozen out. Furthermore,
we assume that the spatial extension of the meandering wire
exceeds the size of the trapping region within the 2DEG,
such that finite-size effects of the induced magnetic field can
be neglected. This simplifies the mathematical description
and we obtain the ac magnetic field distribution Bac(r,t) =

Q(r) cos(wt)X for a given wire geometry by summing up the
induced fields of all parallel wire segments; see Fig. 3 (for
details, cf. Appendix D). In the presence of an additional static
homogeneous field Beyy = BexiZ, the resulting Hamiltonian,
H(t) = ﬁz/(Zm) + y(Bac(F,t) + Bexy) - 0, approximately co-
incides with our model in Eq. (1), where we can identify
wo = Y Bext and the amplitude 2y of the Rabi frequency is
given by

(©)

molod (=1
QO =Y .
4’ neXI\;o (n+3) + ()

Equation (6) becomes exact in the limit of an infinitely long
wire and it converges to the numerically exact result in the
limit of a long wire and in the center region below the wire
(see Appendix D for further details); for all practical purposes,
it yields sufficiently exact results for typical resonator geome-
tries. The exact spatial pattern of the Rabi frequency (%)
depends on both the geometry of the resonator and the ratio
d/a. Neglecting finite-size effects and for a perfectly periodic
resonator geometry, the Rabi frequency can be approximately
written as Q(2) = Qo cos(wz/a + ¢); see Appendix D for
further details.

Let us conclude the description of the proposed setup with
a few general remarks. First, we note that the calculation of
the Hamiltonian results in an additional time-dependent term
oo® which we have neglected here and which is typically
very small compared to the time-independent contribution
from Bex; see Appendix D for more information. Second, the
calculated rf field strength B; ~ (10-50) mT [see Fig. 3(b)]
at a given distance d < 0.6a and given current intensity I =
70 mA from the surface ranges from realistic to very optimistic
values. The highest given values can only be obtained in close
proximity to the surface. Moreover, the critical current density
J. = 30 MA/cm? [44] used in our calculations is optimistic
because high (~GHz) frequencies and strong (~7') in-plane
magnetic fields might reduce this value. However, in particular,
the frequency dependence of J; is still a current topic of
research and, as noted earlier, the proposed setup may also
be operated at w = 0, i.e., with dc currents. For g factors
~15 (e.g., in InAs-based quantum wells), the given range
of field strengths amounts to trap depths Vy < (4-22) ueV =
kg x (46-255) mK. An explicit case study for specific material
parameters follows in Sec. IV, where we check when the
requirements set by Eq. (2) can be fulfilled. Finally, we stress
that the relevant system parameters from Eq. (2) do not depend
on the material choice (except for the g factor of the quantum
well) and, due to its simplicity, the setup can, in principle,
readily be implemented in an experiment. While the trap depth
Vo is tunable, the geometry is predefined in this setup, and
therefore the lattice constant a (thus also the ratio d /a) is fixed.
In the following, we will discuss an implementation which
overcomes this limitation by construction, allowing for more
widely tunable system parameters and lattice geometries.

B. Surface acoustic waves

As a second implementation, we discuss time-dependent
(w > 0) magnetic field gradients induced by SAWSs. In
piezomagnetic materials which exhibit a significant (inverse)
magnetostrictive effect, mechanical and magnetic DOFs are
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FIG. 4. (a) Sketch of the SAW-based setup with a ferromag-
netic film above the surface. Two counterpropagating SAWs gen-
erate standing-wave mechanical and magnetic field distributions.
(b) Magnetic field strength B, as a function of distance x from the
ferromagnetic film and SAW frequency f. The contour lines indicate
the regions where kg7 = 1 pneV < y By /2 K 2nf [see Eq. (2)] can
be fulfilled for different g factors: g, = 2 (dash-dotted lines), g; = 15
(solid lines), g = 70 (dashed lines). Other numerical parameters:
speed of sound vy = 3500 m/s, film thickness § = 25 nm, satura-
tion magnetization uo|mg| = 1.87, strain amplitude &,, = 2 x 1074,
damping constant « = 0.01, magnetoelastic constant &7 = 107", and
g factor of the ferromagnetic film gomy = 2.1.

coupled, which can be captured by the constitutive relations
for magnetostriction; cf. Appendix E. Specifically, the magne-
tization m of a sample with nonzero magnetoelastic coupling
changes due to mechanical stress applied to the material, which
is described by a stress tensor 7.

We consider a ferromagnetic film of thickness § deposited
on top of a SAW-carrying substrate, where the surface waves
generate rf strain fields which, in turn, can induce magnetiza-
tion dynamics in the ferromagnet and may thus provide strong
time-dependent magnetic stray fields; for related experimental
works, see Refs. [20,46]. This setup is schematically shown
in Fig. 4(a). Two counterpropagating SAWs, which can be
launched from interdigital transducers (IDTs) patterned on
top of the material, generate a standing-wave pattern of both
the mechanical field and induced spin wave, introducing a
periodicity which defines the lattice constant a = A /2 where
A is the SAW wavelength; the dispersion relation of the SAW,

w =21 f = kv, yields A = v/ f, where vs denotes the speed
of sound in the host material. This results in a spatially and
time-periodic magnetic field as needed for the realization of
Eq. (1). The coupled equations of motion for the (i) mechanical
and (ii) magnetic field distributions can be described by (i)
pii; = 07T;;/0z;j, where p and u(x,t) denote the mass density
and the mechanical displacement vector, respectively, with
the displacement u; along the coordinate z; (=X,9,Z), and
(i1) the Landau-Lifshitz-Gilbert (LLG) equation, respectively.
The latter describes the motion of the unitless magnetization
direction m due to an effective magnetic field Hes and reads
[47,48]

om Heo + om )
— = —ym X e om x —,
a1 Y oHett Y

where ©o and o denote the magnetic constant and phe-
nomenological Gilbert damping parameter, respectively, and
H.¢ accounts for the SAW-induced magnetic field.

Given the effective magnetic field H¢ at the ferromagnetic
film (x = 0) which is calculated from Eq. (7), we estimate
the stray field at the 2DEG; see Appendix E for details. The
accessible range of field strengths B; strongly depends on
the specific material-dependent parameters, i.e., the saturation
magnetization mg, the damping parameter «, the g-factor gq pm
and magnetoelastic constant # of the film, and, moreover,
the amplitude of the SAW-induced strain field. The latter is
technically limited due to undesired heating effects at too
large amplitudes. Figure 4(b) shows the rf field strength B
as a function of distance x from the ferromagnetic film and
SAW frequency f. The numerical parameters are chosen such
that they can be implemented in state-of-the-art experiments
(see caption of Fig. 4); note that even much higher strain
amplitudes [49], magnetoelastic constants [46], and lower
damping constants [50] have been realized in experiment,
which renders our chosen set of parameters very realistic. As
a result, we obtain strong driving fields B; ~ (10-100) mT at
given distance x = (0.1-0.5)a from the film, which amounts
to trap depths Vy < (4-43) eV at gg ~ 15. However, for
increasing frequencies f ~ (10-50) GHz, the field strength
decreases at fixed distance x. Hence, the lattice constant cannot
be made arbitrarily small. In Sec. IV, we provide an overview
of realistic parameter regimes [specifically, with a focus on
Eq. (2)] based on the derived driving fields.

Strain-induced acoustic traps. So far, we have neglected
strain-induced deformation potentials and electric-field com-
ponents generated in a piezoelectric host material. In principle,
these electric fields couple to the motional DOF of a charged
particle and thereby induced time-dependent electric potentials
can either constitute stable traps or, if the driving amplitude
of the electric field becomes too large, destabilize the motion
of the electron [17]. In order to take both the electric- and
magnetic-field-induced couplings to the external and internal
DOFs into account, we extend our previous analysis to the
more general model

)
Hyyp = L + Vsaw cos(k2) cos(wt)
2m
o Qp .
+ 702 + > cos(kz) cos(wt)a”, ®)
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FIG. 5. Spin-dependent trap depth of effective potential as given
by Eq. (9) plotted as a function of Rabi frequency €2 and strain-
induced potential amplitude Vsaw for fixed €20/|A| =0.3 and
Vsaw/Es = 0.3. (a) Effective trap depth of hybrid trap for the s = —
spin component. The magnetic and strain-induced potentials add up
and the effective potential becomes deeper if either the magnetic or
strain contribution is increased. (b) Effective trap depth of hybrid
trap for the s = 4 spin component. The magnetic and strain-induced
potentials have different signs. At Vsaw = 22, the two potentials
cancel each other.

which contains a kinetic term, a time-dependent strain-induced
potential of amplitude Vsaw, and the remaining terms from
the Hamiltonian in Eq. (1). Following the procedure outlined
in Refs. [51,52], we derive an effective time-independent
Hamiltonian for the hybrid (strain-induced and magnetic)
lattice by performing a high-frequency expansion of Eq. (8)
in 1/w. Starting from Eq. (8), we obtain an effective model of
the form

52 2 2
e _ D7 1AL [V, I BRCTR
Hyp= o+ 67+ [ ;g:v - 4|A0|o" sin®(k2),  (9)

with Eg = mv?/2. This result can be self-consistently verified
in the limit 0/|A|,Véw/(BE3) < 1. The second term in
Eq. (9) describes a spin-dependent energy offset (compare
Fig. 1) and the third term is a spin-dependent effective
potential.

From Eq. (9), by projecting onto the adiabatic eigenstates
[+)oc) and | =)y, respectively, we obtain the spin-dependent
potential amplitudes, i.e., V, = Q3/(4|A]) + Viw/(8Es)
and V,5 = [Q3/(4|A]) — V&\w/(8Es)|. We can deduce that
strain-induced and magnetic potentials add up constructively
(destructively) for the | =)y (|+)4;)) adiabatic potential. In
Fig. 5, the effective trap depths for both spin components
are shown as a function of 2y and Vsaw. Since the strain-
induced deformation potential is typically very weak [6,53,54],
we consider the strain-induced potential ~Vgaw to become
important only in piezoelectric materials. However, since the
magnetic traps operate at relatively high strain amplitudes (see
Sec. III B), in piezoelectric materials this contribution will typ-
ically not be negligible and also depends on the orientation of
the magnetic lattice with respect to the crystalline structure of
the piezoelectric host medium. More details on the derivation
of Eq. (9) and a stability analysis of the time-dependent model
Hamiltonian given in Eq. (8) can be found in Appendix E.

TABLE 1. Estimates for achievable Rabi frequencies in both the
nanowire and SAW setups. The table shows Rabi frequencies based
on both state-of-the-art (B}"™ = 10 mT, BS*W = 50 mT) and more
optimistic (B} = 50 mT, BS*W = 100 mT) maximum driving field
strengths (compare Figs. 3 and 4).

Host material FA QY (ueV) QA (ueV)
GaAs 0.44 ~(0.3-1.3) ~(13-2.5)
InAs 14.9 ~(8.6-43) ~(43-86)
InSb ~70 ~(41-200) ~(200-410)
DMS ~(102-10%)  ~(58-2900)  ~(290-5800)
MoS, 2.21 ~(1.3-6.4) ~(6.4-13)
WS, 2.84 ~(1.6-8.2) ~(8.2-16)

IV. CASE STUDIES

Faithful implementation of magnetic traps. As outlined
above, a faithful implementation of magnetic traps is only
possible if Eq. (2) can be fulfilled. This can be achieved
in state-of-the-art experiments, e.g., in the setups discussed
in Sec. III, as we outline in the following: (i) The sponta-
neous phonon emission rate can be as low as y ~ 0.3 ueV
in InAs-based setups [55] and similar values are expected
for InSb-based setups [56]. Even for much higher emission
rates, the regime y < wyo can still be reached and, typically,
kgT =~ (1-10) ueV < wyo imposes a stronger constraint on
the minimum energy wpo. (ii) Based on the results shown
in Figs. 3 and 4, Table I gives an overview of realistic Rabi
frequencies €2¢ in both described setups for different host
materials [57]. Since the trap depth Vo < ©0/2 is limited
from above by half of the Rabi frequency €2, it is evident
that relatively low-g; materials, such as, e.g., GaAs, do not
prove to be promising candidates for magnetic trapping as
described in Sec. II since, in particular, the condition kg7 <
Vo < €20/2 from Eq. (2) cannot be fulfilled easily. Assuming
thermal energies kg7 ~ (1-10) ueV, a comparison with the
data shown in Table I suggests that a faithful implementation
of magnetic traps should be feasible with state-of-the-art
experiments using materials with moderate (e.g., TMDs such
as MoS, or WS;) to relatively high g factors |gs| = 15 (as
can be found, e.g., in III-V semiconductors such as InAs or
InSb). Only then, thermal stability as required by Eq. (2) can
be guaranteed. (iii) Given that trap depths of the order of
Vo ~ 100 peV may be reached in SAW-based setups at |gs| =
15, the requirements kg7 <K wpo < Vo < w/2 can be fulfilled
at oscillator frequencies wyo 2 5 ueV (2 7.5 GHz). In this
parameter regime, accordingly, the trap can support a couple
of bound states, n;, ~ 1-5. (iv) Moreover, as discussed in detail
in Sec. IT A, high driving frequencies f = w/(27) 2 10 GHz
are another important bottleneck towards the experimental
realization of reliable magnetic traps; these can be provided by
both the proposed nanowire and SAW-based setups, as has been
experimentally demonstrated, reaching ultrahigh frequencies
f =~ 25 GHz (v ~ 103 peV) [58]. Using existing technology,
asindicated, e.g., by the solid lines in Fig. 4, experiments could
therefore be operated in a regime where 2y < w [and even
the more demanding requirement (within RWA) Qy < w] is
clearly fulfilled. (v) 2DEGs in InAs-based quantum wells can
have a long mean-free path of the order of a few pum [59,60]
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which is much larger than a lattice spacing of a few-hundred
nm. This provides optimism that disorder may not become too
large in some of the high g-factor materials considered here;
cf. also Ref. [17] for a more detailed discussion on the role of
disorder in related systems.

Parameter regimes for Fermi-Hubbard physics in magnetic
lattices. Typical tunneling rates 7. in magnetic lattices (as
described in Sec. IIB) can reach values of a couple of ueV,
as discussed below. By sufficiently screening the Coulomb
interaction, e.g., with the aid of a metallic screening layer
[39], we may enter a parameter regime where both 7. > kgT
and U =~ 10z, can be reached simultaneously, which itself is
interesting for studying phenomena of quantum magnetism
[3]. Furthermore, we introduced in Sec. II B the possibility to
enrich the standard Fermi-Hubbard model, typically including
only tunneling processes between adjacent lattice sites, by the
application of additional driving fields (see also Appendix C),
thus allowing for independent tunability of the hopping pa-
rameters f, and rr. Weak driving fields Qg4 < 2 already
give access to all the different regimes 14 < t, t+ X t., and
L > 1.

For the SOI-induced hopping process ~t}, we estimate
that #} ~ 50 eV can be reached at lattice spacings of a
few-100 nm in InAlAs/InGaAs quantum wells where the
Dresselhaus SOI is mostly negligible [61] and the Rashba
parameter is given by ag &~ 10* m/s [62]. Note that this value
depends very strongly on the host material and, naturally, in
some materials both the Rashba and Dresselhaus couplings
become important, which can induce significant anisotropies
[6]. Most notably, this shows that the parameter regime % > t.
isaccessible and the next-nearest-neighbor tunneling processes
may become important even without the application of any
additional driving fields.

Within our tight-binding model where we consider the limit
Vo > ER, wyo is typically of the order of a few recoil energies
[3]. Considering, e.g., InAs or InSb as host materials, the
effective electron mass becomes relatively small, i.e., mpas =
0.023mg and my,sp, = 0.014mg, both expressed in terms of
the electron’s rest mass mg [63]. Then, only relatively large
lattice spacings @ 2 1 um give rise to small recoil energies
Er < Vp. In turn, much smaller lattice spacings a = 300 nm
can be self-consistently achieved in TMD-based setups, where,
€.8., MMoSe2 = 067mo

Spin relaxation and dephasing. The specific value for the
spin-relaxation time 7; is material dependent. Generically,
however, T; can be very long (77 ~ 10 ms), as is well known
from spin-relaxation measurements in quantum dots [64,65].
Therefore, on the relevant time scales considered here, spin
relaxation can be largely neglected, allowing for the faithful
realization of spinful (two-species) magnetic lattices. Only
in the presence of very strong magnetic fields, care must be
taken to avoid too fast spin relaxation since 1/77 ~ Bg [66].
Conversely, spin-dephasing times ~7 tend to be much shorter
than 77. In InAs [67] and InSb [68], e.g., values of T ~ 10 ns
have been reported. While spin dephasing should not affect our
ability to magnetically trap single electrons, the observation of
coherent (many-body) spin physics may be severely limited
by electron spin decoherence since the many-body wave
function of N electrons will dephase on a time scale set by
~Ty/N.

Specific examples: InAs and InSb. Finally, we discuss the
full set of relevant system parameters for two specific material
choices, i.e., InAs-based and InSb-based setups. In the follow-
ing, we assume dilution-fridge temperatures 7 = 10 mK, i.e.,
kgT =~ 1 ueV. Hence, the spontaneous phonon emission rate
given above fulfills y ~ 0.3 ueV < kgT, underlining that a
low y is expected to set the smallest energy scale in Eq. (2) if
thermal stability (kT < wyo, Vo) is ensured. First, we con-
sider electrons in InAs with an effective mass m = 0.023m.
For Qy = 86 ueV (compare Table I) and small detunings
|A| < €29, we can reach trap depths Vy &~ 43 ueV, which en-
sures thermal robustness of the trap at considered temperatures.
Operating at a high frequency f = 22 GHz, the highest energy
scale in Eq. (2) is set by w & 92 peV at a lattice spacing
a =900 nm. For self-consistency, we check that the recoil
energy is given by Er ~ 20 pueV,which means that we are not
deep in the tight-binding limit (Er < Vp). Still, the tunneling
parameter can be estimated as 7, ~ 5.2 ueV [3]. Note that in
this setting (|A| < 2p), the harmonic approximation around
a local potential minimum is typically not well justified.
Second, we consider heavy holes in InAs with an effective
mass m = 0.836my. For an ambitious Rabi frequency Qo =
100 peV and a large detuning A = 380 GHz = 250 ueV, we
obtain a trap depth Vj = |mle e(z) — mzin e(2)| ~ Qp/10 =

10 weV. Operating at a high SAW frequency f = 25 GHz, we
obtain w &~ 103 eV atalattice spacinga = 500 nm and v; =
25 km/s. Hence, the recoil energy is given by Eg =~ 1.8 ueV,
which ensures the validity of the tight-binding approximation.
Since the harmonic approximation, £(2) o Q2(2) o< 22, is well
justified in this case, we estimate mw?o22/2 &~ Q(2)*/(4|Al),
ie.,

(gs[g0])* y B (mT)
mmo] ~ a(um)y/TA(GHz)[’

where go = 2 denotes the g factor of the free electron. Accord-
ingly, we obtain wyo = 5.4 pneV for heavy holes in InAs, as
considered here. Hence, all conditions imposed by Eq. (2) are
fulfilled. In this scenario, the tunneling parameter amounts to
only ¢, ~ 0.2 ueV. However, the second hopping parameter
introduced in Sec. IIB, 7., can be significantly enhanced
such that 71 > ¢, with the aid of additional driving fields, as
discussed in more detail in Appendix C. Third, we consider
heavy holes in InSb with an effective mass m = 0.627m,. For
aRabi frequency €29 = 200 ueV (compare Table I) and a rela-
tively small detuning A = 38 GHz = 25 ueV, weobtain atrap
depth Vy ~ 90 neV. Assuming a very high (SAW) frequency
f = 50 GHz, we obtain w ~ 207 ueV ata = 100 nm and (in
the SAW implementation) vy = 10 km/s. The recoil energy is
then given by Er =~ 60 peV. The tunneling parameter can be
estimated as . &~ 18 ueV.

Altogether, these considerations clearly suggest that ther-
mally stable and well-performing magnetic traps may be im-
plemented with current technology; more specifically, fulfill-
ing Eq. (2) should be possible in host materials possessing high
enough g factors. Furthermore, note that the values presented
in Table I might be further enhanced; in the SAW setup, the
values calculated in Sec. III B have been derived assuming a
magnetoelastic constant # = 10 T and strain amplitudes &,, =
2 x 10~*, which both may be elevated further in experiment,

wyo = 118 MHz x
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yielding even higher Rabi frequencies than the ones given in
Table I.

V. SUMMARY AND OUTLOOK

To summarize, we have proposed magnetic traps and scal-
able lattices for electrons in semiconductors. First, we have
derived a general theoretical framework fit to characterize the
traps and parameter regimes in which they can be operated
under realistic experimental conditions and at dilution-fridge
temperatures. Second, we have described two possible plat-
forms suitable for an experimental demonstration of thermally
stable magnetic traps and, eventually, coherent lattice physics
in scalable arrays of magnetic traps. The developed model
which is based on a periodically modulated ac Stark shift
induced by magnetic rf fields is reminiscent of the working
principle of optical lattices; moreover, very much in analogy to
experiments performed with ultracold atoms in optical lattices,
the SAW setup offers similarly attractive features such as in situ
tunable system parameters and favorable scaling properties.
Furthermore, the applicability of the derived results is not
limited to electron traps, but is more general; in principle, all
generalizations to quasiparticles with an internal level structure
that can be used to realize the model from Eq. (1) are candidates
for a realization of the proposed magnetic traps. Quantitatively,
the projected trap depths should allow for the implementation
of thermally robust and low-loss magnetic traps with state-of-
the-art technology and high g-factor materials such as InAs,
InSb or dilute magnetic semiconductors. With the possibility
to reach yet-unexplored parameter values, especially in the
low-temperature and strong-interaction regime of the Fermi-
Hubbard model, solid-state magnetic lattices may constitute a
novel platform for studying superfluidity, quantum magnetism,
and strongly correlated electrons in periodic systems.

Finally, we discuss possible future research directions. (i)
By contrast with effectively one-dimensional systems dis-
cussed in this work, two-dimensional lattices with vastly
different geometries might be studied. Due to the flexibility
of SAW-based setups, these lattice geometries could be al-
tered during an experiment. By dynamically modulating the
lattice, this may allow for the investigation of intricate band
structures or resonant coupling between different Bloch bands,
akin to experiments with shaken optical lattices [69-72]. (ii)
Instead of considering electrons with two Zeeman-split internal
spin states, quasiparticles with a richer internal energy-level
structure might be examined (e.g., spin-3/2 holes). Here,
one interesting prospect could be the realization of tunable
subwavelength potential barriers for quasiparticles on the
nanoscale, in close analogy to dark-state optical lattices with
subwavelength spatial structure [73,74]. (iii) Apart from the
two possible implementations studied in this work, other
implementations may be considered, either as stand-alone
alternatives or in combination with, e.g., SAWs. Specifically,
nanoengineered vortex arrays have been considered in the
past, both for magnetic atom traps [18] and strong magnetic
modulations of Bloch electrons in 2DEGs [75]. (iv) Since we
have only considered one-dimensional lattices, anisotropies of
system parameters were negligible so far. In contrast, in two-
dimensional systems, anisotropic effective electron masses or
g factors can lead to strongly nonuniform potential landscapes

and anisotropic tunneling matrix elements. Besides that, SOI
can itself be a strongly anisotropic interaction, thus modulating
the SOI-induced hopping amplitude 7} (A = agr,Bp in the
presence of Rashba or Dresselhaus SOI, respectively) in a way
that it becomes anisotropic. In this way, the effect of anisotropic
hopping on the phase diagram of a (spin-dependent) Fermi-
Hubbard model might be studied, inheriting its rich physics
from a number of versatile material properties.
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APPENDIX A: BEYOND THE RWA

A fundamental limitation in the above discussion stems
from the condition 29 < @ necessary for the RWA to be
justified. Due to this restriction, Rabi frequencies, and hence
ultimately the trap depths, are limited to values much smaller
than the driving frequency w. One way to lift this built-in
restriction is to drop the RWA, keeping counter-rotating terms
xQ(2)o et in the Hamiltonian (1), which can be written
in a rotating frame as

Q(Z Q(Z ; :
H = Ac? + %o_x + %(04—621@ + O_—e—let). (Al)
If we now consider the corresponding time-evolution operator
evaluated at stroboscopic times t, =ty +n7T/2 with T =
21 /w,

1,

' drH(t)i|, (A2)

U(t,) = T—exp |:z/

a Magnus expansion [76] up to second order in 1/w yields

Ul(ty,10) = exp (—i Hrl1InT /2), (A3)
with the stroboscopic Floquet Hamiltonian Hy given by
Hp = HY + Hp + HY + -, (Ad)
with the three lowest-order contributions
A Q2 ,
HY = Eaz + =50, (A5)
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FIG. 6. Numerical simulation of the dynamics generated by
the time-dependent (i.e., without any RWA) Hamiltonian (1) for
Q(2) = Qy = 0.1w (blue solid line) and Q4 = 0.5 (black solid
line), respectively. The corresponding dashed (dotted) lines refer
to the dynamics generated by the time-independent zeroth-order
(second-order) Floquet Hamiltonian Hj, with dots highlighting the
results according to the second-order Floquet Hamiltonian Hy at
stroboscopic times #, = nT /2. The initial state has been setas |¥), =
[4). Other numerical parameters: A /o = 0.2.
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Numerical results of the dynamics generated by the zeroth-
and second-order results are compared with the dynamics
generated by the full time-dependent Hamiltonian [the internal
Hamiltonian 4 in Eq. (1), without RWA] in Fig. 6. From
the numerical results, we conclude that the (stroboscopic)
characterization of the system dynamics by Hp works well
only if Q¢ < w. In this regime, even at higher orders, we still
obtain a time-independent periodic Hamiltonian which allows
for the implementation of magnetic (super)lattices.

APPENDIX B: SPIN-FLIP TRANSITIONS IN MAGNETIC
TRAPS AND LATTICES

Based on Ref. [35], we investigate undesired spin-flip losses
from a magnetic trap. We consider the model

)
H= 5_ + woo® + Q(2) cos(wt)o ™, (BD
m

which, in a rotating frame and within a rotating-wave approx-
imation, can be written as

AD Q(; .
H="" 1 Asit ﬁa* =T+ h(2), (B2)
2m 2

where T = p? /(2m) and

o1 A Q(2)
h(Z) = §<Q(2) —A)I (B3)

We introduce a unitary operator U (2) = exp(—i %2 7) acting

2
on the internal states such that

I+)o = URIT),
I=)o = URN).

Note that UT(2) rotates the effective magnetic field to be
parallel to the z axis. The transformed Hamiltonian H takes
the form

H=U'®HU®)
=T+ U GTUE) - T1+ U'GhEIUE)

(B4)

=T 4+ AT + &(2)6%, (BS)
where AT = [UT(0)TU(x) — T1,6(2) = /A% + Q2(2),and
6% = |+)(+| — |=)(—|. The adiabatic approximation amounts

to neglecting the contribution which stems from AT [35].
This is justified provided that x = wyo/|A| K 1, i.e., that the
potentials defined by ¢ and —¢ are sufficiently separated in
energy.

APPENDIX C: SPIN-FLIP-ASSISTED TUNNELING
PROCESSES IN MAGNETIC LATTICES

In Eq. (5), we present an extended Hubbard model which
includes both next-nearest (spin-conserving) neighbor hopping
[~ t., compare with Eq. (4)] and nearest-neighbor (spin-flip-
assisted) hopping (~..) processes. In the following, we show
how this Hamiltonian and, more specifically, the additional
hopping term ~¢, can be constructed with the aid of additional
rf driving fields.

Starting from Eq. (1), we consider two auxiliary time-
dependent fields in addition to the field B(r,w?): (i) The driving
field B4 () = By cos(w;1)X, a second rapidly oscillating trans-
verse field, is weaker than the rf field B (r,wt) which provides
the lattice and detuned from it so as to be resonant with the
energy difference between the two local spin directions. (ii)
The third time-dependent field B; = Bj; cos(wst)Z is slowly
varying and parallel to the constant field B, which provides
the Zeeman splitting; its purpose is to (partially) compensate
the longitudinal components that By, acquires in the adiabatic
frame.

In the presence of these additional fields, two new terms
appear in the model of Eq. (1),

ﬁ2
Hy, = — + wpo® + Q(Z) cos(wt)a™
2m
+ Qq4; cos(wrt)a™ + Q3 cos(wst)o?, (CDH

where Qg = y By and Q3 = y Bs. In the following, we require
w,wy > o —wy| =6 = w3 as well as || > ||, |23].
Defining a rotating frame by |y/) = U,|v,) (where |v,)
denotes a solution of the Schrodinger equation in the laboratory
frame) with U; = exp(itwo*®), we obtain the Hamiltonian in

the rotating frame as

) 2 5
. p ., Q@) Q(2) 20
H' = 2+ Ao® + =20 + = ZlIN ([ + Heel
er i i(w+o,
+ P ID ™ + ) + Hee ]
+ Q3 cos(wst)o*. (C2)
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Within a RWA, where we keep only the constant and slowly
oscillating terms, we obtain

ﬁz Q(z) o er

Hy' = 5+ Ac" + — — [N+ He]

+ Q3 cos(wst)o?. (C3)

Now, by employing the unitary transformation U (Z) introduced
in the main text, we can (locally) diagonalize the constant con-
tribution stemming from p?/(2m) + hrwa(2) (see Sec. I1A).
Then, neglecting the nonadiabatic correction due to AT and
simplifying the resulting expressions yields

A2
y p AN ~ er
H=— .

. +&(2)6 +[ >

—2Q3sin ¥ cos ¥ cos(a)3t)i|6"

+ [224; sin ¥ cos ¥ cos(6t)

+ Q3(cos® ¥ — sin’ ) cos(ws1)]57, (C4)

Q) ~7 _

where O = 9(1)/2 = arcsm[m]/ and &%=
[+)(+] = [=){—1, = [+) =]+ [=){(+]. Clearly, in

comparison with Eq. (3), we get additional contributions
due to the additional time-dependent fields.

We now use the fact that the newly introduced driving
fields are relatively weak compared to the fields considered
in the main text and treat these terms as a perturbation to the
tight-binding model in Eq. (4). Furthermore, from Eq. (C4),
it becomes clear that the third driving field B3 can be used
to compensate for undesired (time-dependent) on-site terms
due to By.. At the resonance w3 = é and within a rotating
frame U = exp(i135~), the Hamiltonian (C4) can be further
simplified and a RWA with respect to 2§ can be performed,
given that the off-resonant spin-flip terms oscillate much faster
than their strength. Eventually, we obtain the extended Fermi-
Hubbard model,

Z (CLC]‘S +He)— 1 Z (C;LSCJE + H.c.)
(i ))ss (i,j).s

+ Zl‘l/lﬁ‘nﬂ‘ +ZZUl/le”/CJSC[€CkV s (CS)

5,8’ ijkl

Heysz = —1,

which reduces to Eq. (5) at the resonance § = A. Here,
the nearest-neighbor tunneling is characterized by 7y =
(w;] % cos? & — 2Q3 sin ¥ cos #|w;41) with the Wannier
function w; located at lattice site j.

APPENDIX D: IMPLEMENTATION I:
SUPERCONDUCTING CIRCUIT

In the following, we describe the magnetic field due to
an electric current density J by the Biot-Savart law. Since
we are dealing with ac fields, this description can only be
approximately valid. A more precise picture follows from the
Jefimenkov equations [77]:

r—r

Bac(r,t) = 4 / d’r’ |:J(I‘ fret) X
T r

_r/|3

+ 1 8.](1' 7t1’6t) r— I'
— X s
c ot r —r'|2

DD

where the right-hand side of the equation is evaluated at the
retarded time t =t — |r — r'|/c and ¢ denotes the speed
of light in the dielectric medium. However, since the time
dependence of the current density J(r',t) ~ exp(iwt), the
correction term in Eq. (D1) is expected to be of the order of
Ir — r'|w/c ~ dw/c with the distance d between meandering
wire and 2DEG. The wires are located above the surface at
x = 0. For typical distances d ~ (0.1-1) um and frequencies
w ~ (1-100) GHz, the correction term in Eq. (D1) may be
neglected and the Biot-Savart law is recovered, which then
accurately describes the induced magnetic field due the electric
current density J,

/ 3.0 r—r

Bac(r,t) = d’r Jior't) x ——. (D2)
4 | r/|3

In the following, we assume the spatial extension of the
meandering wire to exceed the relevant size of the 2DEG, i.e.,
the trapping region. This assumption guarantees the absence of
finite-size effects at the turning points of the meandering wire,
i.e., we model each parallel line in the meandering wire as an
infinite wire which induces a magnetic field on its own. Also,
we neglect boundary effects from the border of the 2DEG. In
the case of an infinitely long wire which runs parallel to the y
axis (cf. Fig. 3), the Biot-Savart law simplifies to [77]

ol (2)
€y,
2mp

where [(¢) denotes the current in a single wire. In the presence
of many parallel wires (whose current flow alternates between
the +y and —y directions), which is the situation that accu-
rately describes the setup sketched in Fig. 3, the magnetic field
at point r is given by

Baclr = (0,¢,y),t] = (D3)

Y ol @),
Baclr = (x,y,2)] = — 2,,: . X r_,%
_ ol cos(er) i 1y g )
27 (z — na)?* + x2 ’
Z —na

with the center of the wires positioned at x = 0 and given a
time-dependent current amplitude /(¢) = [y cos(wt) in each
wire and the position vectors r, which denote the position
at which the field is evaluated relative to the nth wire. An
exemplary field distribution Bac(r,# = 0)is showninFig. 3(b).
Due to the translational symmetry along the axis parallel to the
wires, Eq. (D4) enables us to write the spin Hamiltonian, in
the presence of an additional external magnetic field, as

H = VBAC(f',t) -0+ VBextUZ
_ yrolo Z (=D"x
2 1 22 —2naz +n2a? + x2

Vitoly <
010
27 ;22

+¥ Bexi0®.

o” cos(wt)

(=D"(E —ma)

Z
o° cos(wt
—2maz 4+ m?a? + x2 (@)

(D5)

The induced electric field due to a time-dependent magnetic
field is described by Faraday’s law, V x E = —9B/dt. By
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(anti)symmetries of the straight long wire and its magnetic
field—translations along the y axis, rotations about y axis, and
the reflection y — —y—the induced electric field points in a
direction parallel to the wire, i.e., along y. Hence, the induced
electric field should not affect the magnetic lattice along z.
The motional DOF along y could experimentally be frozen
out, e.g., via the implementation of an etched channel.
We define wy = gt Bext and rewrite (D5) as

H = [wo + Q) cos(wt)]|o? + Q(2) cos(wt)a™.  (D6)

Next, we take a closer look at the spatial profiles of the Rabi
frequencies () and €3(2) in Eq. (D6). The time-dependent
field amplitudes in Eq. (D6) can be exactly expressed via the
Digamma function /- (logarithmic derivative of the I" function;
[78,79]). Denoting the two sums appearing there as b, and b,,
respectively, settinga = 1 andusing& = —z + ix,itholds that

b +ib, = —%F{$/2+L(N—1)/2J +1}+%F(§/2)

1 1
+5FAE+ 12+ IN/2D) = SFE+11/2)

N—o0

1
= E{F(S/z)—F([EJrl]/Z)}- D7)

For N > z > 1, the real and imaginary parts of this function
are (approximately) periodic with period 1 and have zeros
at integer (half-integer) values of z, respectively. For an odd
number of wires, the z (x) field components are antisymmetric
(symmetric) with respect to the axis z = z; = (N — 1)/2 (for
even N, B, is symmetric and B, antisymmetric). The fields are
well approximated by b, + ib, o exp(—imz), with errors less
than 0.1% but not approaching zero as N > z — o0o. Using
properties of the Digamma function, we can write

| IN/2]—1 |
b, +ib, = = _
‘ 2 ; I+E+1)/2

N-1)/2
1 L((N-1)/2]

_EZ

=0

1
1+&/2

(D)

As shown in Fig. 7, the spatial dependence of §(2)
and Q§(x) (not shown) can (depending on the choice of
parameters) be well described by a sine function. Hence, we
can approximately write

(T
H = |:a)0 + € sin (—2 + <p) cos(wz‘)]aZ
a
. N
+QF sin (—z) cos(wt)o™, D9)
a
where ¢ denotes a phase shift between 5 (2) and Q§(Z2).

In the center region, where finite-size effects are negligible,
the Rabi frequencies 2§ and €2f are approximately given by

T (=101 +1/2)
%=rie 2 ariprraar OO
v dpolo (="

N 2 @ O

<l 0.4
I8
N 02 j
xXO I
G E
> ] :'
9 00 :.
O I
=
@ -0.2 ]
e youoy
._g

—0.41— - :
o 25 35 45

Position z (a)

FIG. 7. Spatial pattern of Rabi frequency (at given time) com-
pared to A(x) in Sec. II. Black (solid): calculated from Eq. (D5);
green (dashed): sin-fit. At the ends of the meandering wire, i.e., at
the edges of the lattice, finite-size effects become apparent, but in the
center of the lattice, A(Z) is well described by the sinusoidal fitting
curve. Parameters: d = a and N = 50 wires.

The expressions (D10) and (D11) become exact in the limit
of infinitely many wires, N — oo. For all practical purposes
considered in this work, Qf is very small such that Qf < wp
and it may be safely neglected.

APPENDIX E: IMPLEMENTATION II: SURFACE
ACOUSTIC WAVES

1. Magnetization dynamics and effective magnetic field

Constitutive relations for magnetoelastic couplings. The
governing constitutive relations for magnetostriction [80] read

T; = cijuttss — hyij Hy, (E1)

Bari = hijruix + wijHj, (E2)

where T, By, H, and & denote the stress tensor, the magnetic
induction, the magnetic field (intensity vector) generated by a
magnetoelastic wave, and the effective piezomagnetic tensor,
respectively. 1 is the magnetic permeability and the strain field
is defined as uy;(x) = (Jur/0x; + duy/0x)/2.

Given Eq. (E2), we provide an estimate for the effective
driving field in the ferromagnet,

U
Bu N hkU = 2mh—. (E3)

where h denotes the magnetoelastic constant, k is the wave

vector, and U denotes the amplitude of the displacement field.
For small strain-field amplitudes kU ~ 10~® and a magnetoe-
lastic constant 2z = 10 T, this magnitude can be estimated as
Bdr,l ~ 25 uT [46].

At ferromagnetic resonance, the effective magnetic field
can be significantly enhanced. The response of a ferromagnet
to small time-varying magnetic fields can be described with
the aid of Eq. (7). The resulting dynamical component of the
magnetization m is given by

tolmgm = ¥ By, (E4)
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where ¥ denotes the Polder susceptibility which describes
the magnetic response of a ferromagnet to small time-varying
magnetic fields perpendicular to the magnetization equilibrium
direction [46]. In practical terms, this means that the resulting
effective magnetic field can be enhanced by about two orders
of magnitude.

In a next step, the field at the 2DEG is then calculated
from the field distribution at the ferromagnetic thin film by
discretizing the field distribution at the film and summing up
the dipole fields of these volume elements. At high strain
amplitudes kU ~ 10741073 and a magnetoelastic constant
h = (10-25) T, the relevant magnitude of the field at the 2DEG
can be numerically estimated as B; ~ (10-100) mT. In our
numerical calculations, the amplitude of the displacement field,
the magnetoelastic coupling constant, and the wave vector are
input parameters which determine the microwave field strength
at the ferromagnetic layer.

2. Strain-induced potentials

Starting from Eq. (8) and in a suitable rotating frame, we
obtain

AD

H}f% = 5 + Vsaw cos(kz) cos(wt) + 70
Q . .
+ (Z) (O’x + eletO_+ + 672”‘)[0'7), (ES)

2

witho™ = |1 {{|and 6~ = |} )(?]|. Following the procedure

outlined in Refs. [51,52] and using results from [17], we derive
an effective time-independent Hamiltonian up to second order
in 1/w, which reads

£f P’ q r 2
Hyy, = o +&8(2)6° + <§Es + ZIA|> sin“(kz), (E6)
with 8(2) = 1V/Q2(2) + A2, = |A| + Q3/(8Es),

g = Vsaw/Es, and r = Q3/(4EsA). For typical parameter
values r < 1, ¢?/8 < 1, and Q) < |A|, we obtain the
simplified form

lA] Via Q5 ..

HeffN— Gt —SAW "0 57| sin®(k2), (E7

wo N o T g T aa” SR ED

which coincides with the result given in Eq. (9). Writ-

ing Eq. (E7) in the form Hlfyff) = p?/2m + |A|/267 +

Viwb sin(k2), we find that the spin-dependent potential am-
plitudes read

Qg
Vi ~ 0 g
(+1Viybl+) A8 S
92 q2
—— — —FEg

S 41A] 8
The resulting trap depths are depicted in Fig. 5.

(E8)
(=1 Vhyp|—) =~

3. Stability analysis of hybrid magnetic and strain-induced traps

The discussion in this section completes the discussion of
hybrid magnetic and strain-induced traps and is devoted to
the stability analysis of such traps, meaning whether or not
electrons can be trapped in time-dependent trapping potentials
of the kind featured in Eq. (8).

Starting from Eq. (8), we would like to predict whether or
not a given set of parameters {m, o, @y, Vsaw, 20} gives rise to
a stable (hybrid strain-induced and magnetic) trap. To this end,
we first derive the coupled Heisenberg equations of motion for
the set of observables {(z),(p),(c"),(c”),(c?)} within a RWA.

Equations of motion. In order to determine the equations of
motion (EOMs) of interest, we consider the time evolution
(t = wt/2) of the operators 7 := kZ,p :=dz/dt,0%,07,0°
which is given by the Heisenberg EOMs,

(2) = (p),

L 29 ) Vsa
(p) = Es =2 (sin(2)) cos(2T) + °E

= (sin(2) (o),

N

(6") = —2§(Uy>,

w
(67) = 2%<a*> = B s o),
6% = BV cos() (),

with Eg = m(w/k)*/2 and assuming that there exists no
significant correlation between external and internal DOFs,
i.e., decorrelated expressions such as, e.g., (sin(Z + ¢)o’) ~
(sin(Z + @))(0").

Two limiting cases. We consider the two limiting cases,
(i) Qo =0 and (ii) Vsaw = 0. (i) At @y = 0, we recover a
Hamiltonian which is discussed in great detail in Ref. [17];
in the limit Z < 1, the Heisenberg EOMs yield a Mathieu
equation [81] whose stability diagram in terms of Vsaw and
Eq = mvf /2 is well known, where vy denotes the speed of
sound. (ii) For Vsaw = 0 and in the large-detuning regime
Qo < |A[, an EOM can be derived which corresponds, for a

given spin state, to a Hamiltonian of the form H = p?/(2m) +
1
‘{:\..,,,,
~ : unstable
S 0.81 W\ .o 4
— \\§~~ .o n;l\
2 S
9] NN /
€ \\\:\ ¥
E 06 7 SN \\\\ttx ”'
© NN ~ )
o \\ \§\ ‘i\ 1y
- stab_[e oSy ANSEAN
4 \ X 1 ~
=044 v % WN §§§\ I )
Q L S S ' \
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n v 'y \ R, \\‘\\ ! X
@) i \“ \‘ 8 3 \\ ‘( \\, \\
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DC stability parameter r

FIG. 8. Stability diagram of Eq. (E9) with stability parameters
g = Vsaw/Es and r = Q2/(4EsA). Red areas denote regions of
stable trapping, i.e., stable solutions of Eq. (E9), and white areas, in
turn, denote unstable areas. On the r = 0 axis, the standard Mathieu
equation is recovered which, for a purely time-dependent drive, yields
stable trajectories in the region 0 < ¢ < 0.908. Other numerical
parameters: n = 0.1.
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Qg /(4| Al)sin?(kz). Intuitively, these results agree very well
with our expectation, since case (i) coincides with a result
known from the physics of trapped ions; this is not surprising
since only the electric field contributes. On the other hand,
case (ii) reproduces an effective Hamiltonian which is very
familiar from optical lattices for cold (neutral) atoms [1];
this finding, in turn, underlines the close relation between the
proposed magnetic traps and optical dipole traps, which are
both based on the ac Stark effect. In general, i.e., Vsaw, 20 # O,
the EOM leads to more involved dynamics. By adiabatic
elimination of the internal DOFs, we obtain [corresponding
to the constructive case in Eq. (E8)] an EOM of the form

FH[r+ 2g cos(2t) — rcos(2nt)]Z =0, (E9)

with stability parameters r = Q% /(4Es|Al)and g = Vsaw/Es
and dimensionless quantities ¥ = kx and T = wt /2. The ratio
n = |Al/w is typically small in the RWA regime. Based on

Eq. (E9), we extract stability diagrams [to predict the stability
of solutions to Eq. (E9)] in terms of ¢, r, and n. These
diagrams can have an intricate structure; see also Refs. [82,83].
Here, we are mainly interested in the prediction of parameter
constellations that give rise to stable solutions of Eq. (E9). A
prototypical stability diagram is shown in Fig. 8 forn = 0.1. 1t
canbe seenthatar = OcutinFig. 8 reproduces the well-known
result that stable behavior of solutions to the Mathieu equation
occurs at 0 < ¢ < 0.908 for r = 0. At r > 0, the stability
properties can be rather sensitive to slight changes in g. An
operation in the stable regime therefore requires a balanced
choice of these parameters. However, Fig. 8 shows that several
valuesr > O support arange of stable values ¢, which indicates
that operation in a stable regime is possible for a significant
range of parameters. Moreover, the numerical parameters
used in Fig. 4 give rise to ¢ < 1, which allows for stable
trajectories for many different r. We conclude that even in the
presence of induced electric fields, stable magnetic traps can be
operated.
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