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Interplay of the Kondo effect with the induced pairing in electronic
and caloric properties of T-shaped double quantum dots
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We examine the influence of the superconducting proximity effect on the transport properties of a T-shaped
double quantum dot strongly coupled to two normal, nonmagnetic or ferromagnetic leads. We show that the two-
stage Kondo screening may be suppressed or enhanced by the presence of pairing correlations, depending on the
specific geometric arrangement of the device. We explain our results by invoking an effective decrease of Coulomb
interactions by the proximity effect and find a qualitatively correct description in many cases, although the spin-
filtering effect stemming from spin-dependent Fano-Kondo interference is surprisingly vulnerable to the presence
of induced superconducting pairing correlations. The results are obtained within the numerical renormalization
group framework in the limit of large superconducting gap, which allows for a reliable examination of the
low-temperature subgap properties of the considered system. Nevertheless, finite-temperature effects are also
taken into account.

DOI: 10.1103/PhysRevB.97.235449

I. INTRODUCTION

The two-stage Kondo effect in double quantum dots (DQDs)
or double magnetic impurities has been studied for over a
decade, both theoretically [1–10] and experimentally [11,12],
in various contexts. In particular, its relation to the Fano-like
interference [13–15] was precisely established [6] and the
spin-dependent variant of this effect for DQDs in an external
magnetic field [16] or coupled to ferromagnetic leads [17] was
proposed as a method for obtaining electrically tunable spin-
polarized currents. Moreover, the Andreev transport properties
of T-shaped DQDs coupled to superconducting (SC) and
normal leads have also been considered [18–23]. In such hybrid
systems, for low temperatures and voltages smaller than the
superconducting energy gap, transport occurs due to Andreev
reflection processes [24–26]. However, while most studies
dealt with transport between normal and superconducting
electrodes, the normal electronic and caloric transport through
T-shaped DQDs coupled to two normal (ferromagnetic) leads
and proximized by the third, superconducting electrode, has
hardly been examined so far. Therefore, in this paper, we
perform a detailed and accurate analysis of such a case.

To begin with, it is instructive to notice that similar studies
of a single quantum-dot case unveiled an intriguing interplay
between the Kondo physics [27,28] and the pairing induced
by the superconducting contact [29–32]. A hallmark of this
interplay is a quantum phase transition between the Kondo-
screened singlet and the BCS-like singlet states, as the ratio
of the Kondo temperature to the superconducting energy gap
is varied [31,32]. At the Kondo side of the transition, the
Kondo temperature was found to be enhanced with increasing
the coupling strength to the superconducting lead [33,34]. At
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the other side, Yu-Shiba-Rusinov-like bound states [35–37]
are formed, which have already been explored experimentally
with the Andreev bias spectroscopy [38]. The quantum phase
transition is present only in the absence of the normal leads and
gets smeared to a crossover otherwise. Nevertheless, even in
the latter case, around the critical value of the quantum-dot–SC
coupling, the BCS-like expectation value 〈d↑d↓〉 for spin-σ
quantum dot annihilation operators dσ becomes nonzero [34].

In this paper, we show that the interplay of the supercon-
ducting proximity effect and correlations giving rise to the
Kondo effect is even more interesting if a single quantum
dot is substituted by a T-shaped DQD; see Fig. 1. In this
geometry, one quantum dot (QD1 in Fig. 1) is embedded
between two normal (ferromagnetic) leads and coupled to
the second quantum dot (QD2). We consider two possible
scenarios, in which the superconductor is coupled to either
the first or the second quantum dot. Then, depending on which
quantum dot is proximized and what is the strength of the
coupling to SC lead, different interesting effects take place,
as described in the following. They include, among others, an
enhancement and a destruction of any of the two screening
stages of the Kondo phenomenon.

Since one of the most experimentally accessible physical
quantities of such a system is its conductance, we base
our discussion on the dependence of conductance on model
parameters, gate voltages, and temperature. This allows us to
thoroughly examine the influence of induced superconducting
pairing on the two stages of the Kondo effect. Moreover,
further information is gained from the analysis of the See-
beck coefficient, the so-called thermopower, whose sign and
magnitude change between different Kondo states [10,39–44],
while temperature dependence allows for recognizing metallic
and hoppinglike transport regimes [44,45].

We note that the subgap transport through hybrid double
quantum-dot systems is currently undergoing an extensive
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FIG. 1. Schemes of possible realizations of the considered sys-
tem. The first quantum dot (QD1) is coupled to the left and right
normal (ferromagnetic) leads with coupling strength �rσ , where
r = L/R for the left/right lead. The two dots are coupled via hopping
matrix elements t . The superconducting electrode can be attached
either to (a) the first (i = 1) or (b) the second (i = 2) quantum dot,
with the corresponding coupling strength �Si .

exploration. This has been stimulated by impressive exper-
iments demonstrating controllable splitting of Cooper pairs
in DQDs with both dots attached to a superconductor [46].
This has also provided great motivation to many researchers
to analyze hybrid DQDs in terms of their Cooper pair splitting
efficiency. This is an undoubtedly interesting direction; how-
ever, here we focus on completely different geometry, with
only one quantum dot directly coupled to the SC lead. While
being less useful as a Cooper pair splitter, this system exhibits
very interesting strongly correlated physics. Simultaneously,
recent rapid experimental advances in the field [47–54] give
hope for a possibility of fabricating the device considered here.
From this point of view, our results are expected to stimulate
further research in hybrid T-shaped DQDs as well as to be of
assistance in understanding future experimental observations.

It is interesting to note that the interplay between the Kondo
correlations and superconductivity has also been considered in
the case of the Anderson model with attractive on-site Coulomb
interactions [55]. In such a case, the charge Kondo effect may
occur, manifesting itself in the electronic [56], caloritronic
[57], and spin-caloritronic [58] properties. Moreover, intensive
theoretical and experimental investigations have clearly shown
that in Tl-doped PbTe, the negative-U centers induce super-
conductivity in the otherwise normal host, while the charge
Kondo effect takes place in the system [59–63]. The charge
Kondo effect is, however, not present in our system. Instead of
attractive-U center influence on the normal host, we examine
the influence of the BCS superconductor on a DQD struc-
ture. Furthermore, recent experiments have also demonstrated
the possibility of fabricating quantum dots with attractive
Coulomb interactions, which persist both below and above

the critical temperature for the superconducting transition in
the leads [64,65]. This gives rise to an interesting interplay
between the electrostatic attraction and pairing, which leads
to suppression of the supercurrent through the device in
the crossover region between the weak-coupling and strong-
coupling unitary transmission regimes [66]. Moreover, unlike
the spin Kondo effect, its charge counterpart may become
enhanced under nonequilibrium spin bias [67]. Although in this
paper we focus on the repulsive-U case, our work shall con-
tribute to the general understanding of the interplay between
Kondo correlations with the superconducting proximity effect.

The paper has the following structure. In Sec. II, a detailed
description of the model is provided. Section III briefly
summarizes the role of the magnitude of Coulomb interactions
for further reference. The results for the case of QD1 (QD2)
coupled to the SC lead are then presented in Sec. IV (Sec. V),
respectively, and the paper is summarized in Sec. VI.

II. MODEL

In the present paper, we consider the T-shaped double
quantum dot (DQD) coupled to two metallic (in general
ferromagnetic) leads, and proximized by one superconducting
electrode. We analyze two possible realizations of such system,
in which the SC lead is attached either to the first [Fig. 1(a)]
or to the second [Fig. 1(b)] quantum dot. In both cases, the
Hamiltonian of the system can be written in the general form
H = HDQD + HL + HR + HT + HS + HTS, where the subse-
quent parts describe the isolated DQD, left and right leads,
tunneling between DQD and these leads, superconductor, and,
finally, the tunneling between SC and DQD, respectively.

We assume that the normal leads contain quasifree elec-
trons, Hr = ∑

kσ εrkσ c
†
rkσ crkσ , with r ∈ {R,L} and crkσ de-

noting the annihilation operator corresponding to the electron
in lead r possessing pseudomomentum k and spin σ . HT has
a form of spin-preserving local hopping between QD1 and the
electrodes, HT = ∑

rkσ vrkd
†
1σ crkσ , where diσ annihilates the

spin-σ electron at QDi. Assuming the wideband situation, for
the hybridization function between QD1 and lead r we take a
constant within the energy cutoff ±D around the Fermi level,
�rσ = πρrσ |vkr |2, where ρrσ is the (spin-resolved) normalized
density of states in the lead r at the Fermi level. With these
approximations, the ferromagnetism of normal leads can be
taken into account through the spin dependence of �rσ =
�r (1 + prσ ), where pr is the spin polarization in the lead
r , provided their magnetization is parallel. We also assume
symmetric couplings, �r = �/2, and pL = pR = p.

In the present paper, we focus on the low-temperature
physics. Therefore, having written HS in the BCS form,
HS = ∑

kσ εSkc
†
Skσ cSkσ + ∑

k(�kc
†
Sk↑c

†
S−k↓ + H.c.), we as-

sume isotropic pairing amplitude, �k = � > 0, and integrate
out the single-electron states of the superconductor lying out-
side the energy gap 2|�|, to finally take the limit of |�| → ∞
[29,30]. In this way, we obtain an effective Hamiltonian Heff =
HSDQD + HL + HR + HT, with SC-proximized DQD part

HSDQD =
∑

iσ

εiniσ +
∑

i

Uini↑ni↓ + U ′(n1 − 1)(n2 − 1)

+ t
∑

σ

(d†
1σ d2σ + H.c.) − �Si(d

†
i↑d

†
i↓ + H.c.), (1)
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where εi is the energy level of QDi, Ui denotes the respective
Coulomb interaction strength, U ′ measures interdot Coulomb
interactions, t is the interdot hopping matrix element, and �Si

describes the coupling to the superconductor of QDi (i = 1 or
2, depending on geometry). The operatorni = ni↑ + ni↓, while
niσ = d

†
iσ diσ . Henceforth, we use the detuning δi = εi + Ui/2

from the particle-hole symmetry point of each dot to specify
the energy levels of the QDs. The coupling �Si is related to
the hopping matrix element vSi between QDi and SC, and
the normalized density of states of SC in the normal state,
ρS, through �Si = πρS|vSi |2, and it is assumed to be energy
independent, similarly to the normal leads case. The negative
sign in front of �Si corresponds to the choice of real and
positive� in the bulk superconductor Hamiltonian. The second
quantum dot QD2 is, by assumption, coupled to the normal
leads only indirectly, through QD1; compare Fig. 1. Through
an even-odd change of basis of the leads states [68], the model
at equilibrium can be exactly mapped onto an effective single-
band system, possessing an effective coupling � and a spin
polarization p.

Then, the model is solved with the aid of the numerical
renormalization group (NRG) technique [69,70]. We use the
complete basis set [71,72] to construct the full density matrix
of the system [73]. Once the energy spectrum of the discretized
Hamiltonian is known, the spin-resolved transmission co-
efficient Tσ (ω) = −�σ Im〈〈d1σ ; d†

1σ 〉〉ret(ω) is calculated from
the imaginary part of the Fourier transform of the retarded
QD1 Green’s function. The transport coefficients, such as
the linear-response conductance in spin channel σ , Gσ , and
the thermopower S, can be calculated from Tσ (ω) using the
standard linear-response expressions

Gσ = e2

h
L0σ , (2)

S = − 1

eT

L1↑ + L1↓
L0↑ + L0↓

, (3)

with Lnσ = ∑
σ

∫
ωn[−∂fT (ω)/∂ω]Tσ (ω)dω, fT (ω) denoting

the Fermi-Dirac distribution function, e (minus) the electron
charge, and h the Planck constant. The spin-dependent con-
ductance allows for determining the linear-response current
spin polarization through P = (G↑ − G↓)/G, with the total
conductance G = G↑ + G↓. In NRG calculations, at least
2048 states per iteration were kept and the discretization
parameter � = 2 was used, while the quantities of interest
were calculated directly from discrete data [74].

While neglecting the presence of the states of the su-
perconductor lying outside the gap is one of the strongest
limitations of the presented model, one needs to keep in
mind that at low temperatures, these states contribute quite
weakly to the physics of the real systems. Moreover, the device
is coupled to another continuum, namely, to normal leads.
Therefore, one can expect that the effects of the presence of
the gapped continuous part of the spectrum of the SC lead
are only quantitative and rather weak at low temperatures.
Nevertheless, detailed study of a single quantum dot coupled
to a superconductor [75] shows the sign change of the order
parameter at the singlet-doublet transition point, which is
necessarily not captured in our model for the quantum dot
directly coupled to the SC electrode.

III. THE ROLE OF COULOMB INTERACTIONS

One of the most intuitive consequences of the presence of
a pairing potential induced by SC proximity is an effective
reduction of the corresponding Coulomb repulsion. To be
able to analyze the range of validity of this picture, first
we summarize the effects related to the on-dot and interdot
capacitative correlations, Ui and U ′, for further reference.
Therefore, in this section, we consider the system in the
absence of SC lead.

A. Influence on Kondo screening

The essence of the Kondo effect is the screening of the
local moment by the conduction-band electrons [27]. Since
Coulomb interactions are inevitable for the formation of such
a moment, they are clearly necessary for the Kondo physics to
occur. However, it should also be noted that for U � 4�/π ,
which is the most common situation, the Kondo temperature
TK is a decreasing function of U due to its exponential
dependence on �/U [76].

In T-shaped DQDs, the Kondo effect develops in two stages
[4]. When the temperature is lowered, first, the magnetic
moment of QD1 is screened by the conduction electrons of
the leads at the Kondo temperature TK . Then, for T 
 TK , the
resulting Fermi liquid serves as a band of the halfwidth ∼TK

for the second quantum dot (QD2), the magnetic moment of
which is screened at the second stage of the Kondo effect, with
the corresponding Kondo temperature [4]

T ∗ ∼ TK exp(−TK/J ), (4)

where J is an effective antiferromagnetic exchange interaction
between the two dots,J ∼ t2/U . Note that estimations ofTK or
T ∗, such as Eq. (4), possess rather an order-of-magnitude pre-
cision and for qualitative comparison of Kondo temperatures in
different systems, a more precise definition is necessary. Here,
we follow the convention of defining TK as a temperature at
which the conductance increases to half of its maximal value as
the temperature is lowered, such that G(TK ) = Gmax/2, with
Gmax being the global maximum of G(T ). Moreover, in this
paper, by TK we mean in fact the Kondo temperature in the case
of t = 0. Furthermore, in a similar fashion, we can define T ∗
as the temperature below TK at which G(T ) drops to Gmax/2
again (this happens only for t = 0).

The picture of the two-stage screening presented above does
not include the influence of capacitive coupling between the
two dots, U ′, which will be discussed now. Figure 2 demon-
strates how finite values of U ′ influence the Kondo physics in
the considered nanostructure, depending on detuning of QD1
δ1 from the particle-hole symmetry (PHS) point, δ1 = 0, in
the case of nonmagnetic (p = 0) and ferromagnetic (p = 0.5)
metallic leads. In Fig. 2(a), one can see that the second-stage
Kondo temperature T ∗ is indeed increased by finite U ′. In
fact, the effective exchange coupling J increases by a factor
(1 − U ′/U )−1 for finite capacitive coupling between the dots
[7]. However, qualitative features remain the same. At PHS,
with lowering the temperature, the conductance first increases
at TK and almost reaches 2e2/h. Then, it decreases to 0 for
temperatures below T ∗. This behavior is observed for both
ferromagnetic and nonmagnetic leads, although only at the
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FIG. 2. (a) The conductance G and (b) the Seebeck coefficient
S as functions of temperature T for different detunings δ1, U1 =
U2 = U = D/10, � = U/5, and t = �/4. Here, D is the band
halfwidth used as the energy unit. Solid lines correspond to finite
spin polarization of the leads, p = 0.5, while dashed lines were used
for p = 0. Thick (bright thin) lines indicate the presence (absence)
of interdot Coulomb interaction U ′ = U/10. The inset shows the
dependence of the second-stage Kondo temperature T ∗ on U ′ for
the particle-hole symmetric case and different t .

PHS point. There, the role of the leads’ spin polarization p is
reduced to a change in TK [77] and, thus, the following change
in T ∗; cf. Eq. (4).

A small detuning from the PHS point results in only
quantitative changes for p = 0, yet it completely changes the
situation for finite p. As clearly visible in Fig. 2(a), G(T )
does not drop to 0 at low temperatures for finite δ1. However,
the residual conductance is quite small even for relatively
large detunings in the case of p = 0, while for finite p, the
conductance remains large at low T . This is caused by the
exchange field induced by the ferromagnetic leads [9,78].
This exchange field strongly depends on the position of the
quantum-dot levels and vanishes precisely at the PHS point
[9,78]. Once the exchange field becomes larger than T ∗ (which
is in fact very small), the second stage of the Kondo effect is
blocked and the conventional (i.e., single-stage) Kondo effect
is restored. On the other hand, for large detunings [compare
the curve for δ1 = U/6 in Fig. 2(a)], the exchange field is
comparable to TK and also the conventional Kondo effect
becomes blocked.

In the inset of Fig. 2, the dependence of T ∗ on U ′ is
presented for a few values of t and p = 0 (dashed lines) as

well as p = 0.5 (solid lines). It was extracted from G(T )
dependences calculated for different U ′. As reported earlier
by Ferreira and co-workers for the case of nonmagnetic
leads [7], the capacitative coupling between the dots tends
to increase J and leads to exponential increase of T ∗ in the
physically relevant regime of U ′ < U . This remains true also
for ferromagnetic leads. Actually, the presence of Coulomb
correlations between the dots reduces the difference between
the cases of finite p and p = 0, which is an interesting result
at the PHS point, where the only influence of p is the TK (p)
dependence.

Additional information about the relevant regimes can
be extracted from the temperature dependence of the ther-
mopower S [10,40]. However, to achieve finite values of the
Seebeck coefficient, one needs to tune the system from the PHS
point, where S = 0. Let us now inspect this in more detail for
the line corresponding to p = 0, δ1 = U/6, and U ′ = U/10
shown in Fig. 2(b). At high temperatures, the system is in the
hopping transport regime [44,45], characterized by S ∼ T −1.
The negative sign of S is caused by the fact that positive
frequencies host more spectral weight. Then, with decreasing
the temperature, S exhibits first a local minimum and then,
while cooling the system further, its sign changes twice,
before another minimum occurs. The narrow region of positive
thermopower corresponds to the Coulomb blockade regime,
which is hardly present due to relatively strong coupling � =
U/5 used in Fig. 2. The second minimum in S is a consequence
of asymmetric Kondo peak near the Fermi level. Despite the
fact that TK depends on p [77], the position of the minimum
related to the Kondo effect is practically independent of p.
Moreover, it also hardly depends on U ′; cf. Fig. 2(b). This is
not the case for the position of the maximum in thermopower,
which is present at even lower temperatures and is related to the
second stage of screening. One can also see that the maximum
is completely absent for p = 0.5, which is due to the fact that
for assumed parameters, the exchange field is larger than T ∗
and the second stage of screening is suppressed; compare with
Fig. 2(a). Furthermore, as far as the effect of U ′ is concerned,
the shift of the maximum in S due to capacitive coupling
can be visible and it results from the corresponding change
in T ∗, which can be seen in the temperature dependence of the
conductance.

Finally, it is worthwhile to note that the maximum of
S at T ∼ T ∗ is much more pronounced as compared to
the minimum at T ∼ TK . This is caused by the fact that
good thermoelectric materials are characterized by sharp and
asymmetric features in the spectral density near ω = 0 [79,80].
For the parameters considered in Fig. 2, the Kondo temperature
TK is quite large and the Kondo peak in the spectral density is
relatively broad. On the contrary, T ∗ is indeed cryogenic, and
the dip in T (ω) corresponding to the second stage of screening
is very sharp.

B. Influence on Fano interference and its spin dependence

The Fano effect is a consequence of the quantum inter-
ference between a resonant level and the continuum of states
[13]. It is therefore also present in DQD systems (even nonin-
teracting) and manifests itself through an antiresonance in the
conductance as a function of DQD energy levels [14]. Finite
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Coulomb correlations can modify the conditions for Fano in-
terference and result in other interesting phenomena. Primarily,
the Fano physics is obtained only at the zero-temperature limit,
which may be experimentally irrelevant due to the cryogenic
scale of T ∗ occurring in the system. At finite T , deviations from
the Fano antiresonance curve can be expected and have already
been measured [6,15]. In fact, the antiresonance itself may be
seen as the consequence of the second stage of the Kondo
effect, which leads to the suppression of the conductance at
T 
 T ∗ [6]. Moreover, when U2 > 0, a spin splitting of the
conductance antiresonance occurs in T-shaped DQD coupled
to ferromagnetic leads without applying an external magnetic
field [17].

The Fano-like antiresonance is visible in Fig. 3(a), where
the conductance is plotted against detuning of the QD2 energy
level for a few values of the Coulomb interaction strengths
of QD1, U1. Clearly, for all considered values of U1, the
minimum in G(δ2) is present (note the logarithmic scale
on the vertical axis). The total conductance does not drop
to 0 due to the spin splitting of the resonance condition,
which can be recognized from the plot of conductance spin
polarization P in Fig. 3(b). The latter varies continuously
between P = −1 (for δ2 corresponding to the antiresonance
in the majority spin channel) and P = 1 (for antiresonance in
the minority channel). Qualitatively, this situation is hardly
changed by finite Coulomb interactions in QD1 U1 or the

interdot capacitative coupling U ′. It can be seen that U1 slightly
changes the position of the antiresonance and affects its width
and depth. On the other hand, U ′ only shifts the minima, not
affecting their depth or spin splitting significantly, as can be
seen from comparison with the U ′ = 0 case, which is plotted
in Fig. 3 with bright lines.

Based on these observations, one could naively think that
a weak coupling of SC lead to QD1, effectively resulting in
a reduction of U1 to Ũ1 =

√
U 2

1 − 4�2
S1, should only quanti-

tatively influence the Fano effect and its spin dependence. As
shall be shown in Sec. IV C, this conjecture is not true.

Summing up this section, we have found that the presence
of capacitive correlations between the two quantum dots does
not change the qualitative features of the presented results.
However, the quantitative changes can be relatively strong due
to the exponential dependence of T ∗ on U ′. Therefore, to make
the analysis more realistic, from now on we assume U ′ =
U/10, which is a reasonable value for typical experimental
setups [81], and discuss its influence on the results whenever
important.

IV. EFFECT OF PAIRING INDUCED IN THE FIRST
QUANTUM DOT

In this section, we describe the properties of T-shaped
DQD, in which the first quantum dot is proximized by the
superconductor; see Fig. 1(a). In Sec. IV A, we analyze how the
superconductor proximity affects the two-stage Kondo effect
in the considered system. Then, in Sec. IV B, we examine
the influence of the interdot hopping on the phase transition
in QD1 [34]. The interplay between the spin-dependent Fano
interference and the pairing induced by the SC lead is discussed
in Sec. IV C.

A. Influence of pairing correlations
on the two-stage Kondo effect

The influence of the superconductor proximity on the two-
stage Kondo effect can be understood by resorting to the
single-quantum-dot case, for which it was shown that finite �S1

(�S2 = 0) results in an enhancement of the Kondo temperature
[33,34]. One can thus expect, through exponential dependence
of T ∗ on TK [cf. Eq. (4)], that even a small increase in TK should
give rise to much larger changes in T ∗. This can be clearly seen
in Fig. 4(a), which presents the conductance plotted against T

for a few representative values of �S1. Indeed, while increasing
the strength of coupling to the superconductor results in a slight
enhancement of TK , the second-stage Kondo temperature
exhibits a strong suppression with raising �S1. Additionally,
for �S1 < U/4, one finds G(T = 0) ≈ α�2

S1/U 2, with α ≈ 3.
Moreover, the local maximum in G(T ) is slightly lowered
as �S1 increases. This can be understood by referring to the
case of a proximized quantum dot, where the low-temperature
value of the conductance was found to be suppressed due to the
coupling to the superconductor [33,34]. We also note that both
the low-temperature conductance as well as the local maximum
in G(T ) are rather independent of U ′, although for U ′ = 0 the
minimum is achieved at slightly lower T , due to smaller T ∗;
see Fig. 4(a).
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Figure 4(b) presents how the finite value of coupling �S1

affects the thermopower of the system. The most visible feature
is that unlike the conductance, the Seebeck coefficient is very
sensitive to the presence of SC correlations. Already, as small
a pairing potential as the one induced by �S1 = U/10 leads to
the reduction of the maximal value of S to less than a half of the
value for �S1 = 0. One could claim that at low temperatures,
the thermopower is proportional to T and this reduction can be
understood as a consequence of the decrease of T ∗. However,
usually the lower T ∗ corresponds to the sharper dip in the
spectral density, which compensates for the decrease of T ∗. In
fact, when reducing the second-stage Kondo temperature T ∗
by decreasing the hopping between the dots t , the maximum
in S remains almost constant for t < �/2 [10]. Moreover,
according to Fig. 4, the decrease caused by neglecting U ′ also
does not lead to the suppression of S, despite the fact that the
corresponding decrease of T ∗ is practically identical to the one
caused by �S1 = U/10; cf. Fig. 4(a). One can conclude that
the suppression of the thermopower by the SC proximity effect
cannot be explained by the effective reduction of the Coulomb
interactions and can be seen as a manifestation of the sensitivity
of caloric properties against the pairing correlations.

The values of thermopower at higher temperatures are much
smaller than at T ∼ T ∗, as already explained in Sec. III A.
However, the zoom of S in this regime (see the inset in

Fig. 4) unveils further interesting properties. First of all, as
can be intuitively understood through the effective reduction
of U1, the positive peak of S(T ) corresponding to the Coulomb
blockade regime is quickly suppressed with increasing �S1.
Furthermore, the negative peak related to the Kondo regime
is enhanced and, for strong �S1, ultimately merges with the
negative peak corresponding to the thermal accessibility of
the Hubbard peaks; see the curve for �S1 = U . This behavior,
clearly different from that for the second stage of screening,
shows that the competition between the SC correlations and
good thermoelectric properties is not a general rule.

B. Influence of interdot hopping on the phase transition

For negligible interdot hopping t = 0, the system consid-
ered here is reduced to the case of a single quantum dot
proximized by the SC lead, which has been studied, e.g., in
Ref. [34], in the context of the phase transition between the
Kondo singlet and the singlet being a superposition of empty
and doubly occupied states of the dot, where the expectation
value 〈d1↑d1↓〉 becomes nonzero. This transition is a sharp
quantum phase transition in the limit � → 0 only, while in the
presence of normal leads it becomes a smooth crossover of
the width ∼�. In the following section, we analyze the effect
of finite hopping t between the two dots on this crossover.
To achieve this, we analyze the dependence of conductance,
Seebeck coefficient, and the order parameters 〈d1↑d1↓〉 and
〈d2↑d2↓〉 as functions of the coupling to the SC lead, which are
shown in Fig. 5. The coupling of QD1 to the normal leads �

was reduced in comparison to Fig. 4 to prevent the crossover
from becoming very wide. In this way, we can make reference
to the physics of the quantum phase transition, which only gets
smeared due to finite �. We also use the cryogenic yet finite
temperature T = 10−9U , instead of T = 0, because for small
values of t the second-stage Kondo temperature T ∗ can be even
smaller, which is experimentally completely irrelevant.

For t = 0, the conductance smoothly changes from almost
G = 2e2/h at �S1 = 0 due to the conventional Kondo effect
(the value is slightly lower due to small detuning from PHS) to
G ≈ 0 for strong �S1, where the Kondo resonance at the Fermi
energy is destroyed by the pairing correlations. As far as the
thermopower is concerned, one could expect a negative peak at
T ∼ TK . However, at low temperatures, S ∼ T [40], as follows
from the Sommerfeld expansion, and for the considered very
low temperature, one gets S ≈ 0. The crossover of the order
parameter at QD1 in the case of t = 0 from 〈d1↑d1↓〉 = 0, in
the absence of the SC lead, to the universal limit 〈d1↑d1↓〉 =
1/2, for �S1 → ∞, can be seen in Fig. 5(c). Obviously, at
the decoupled QD2, 〈d2↑d2↓〉 = 0. We note that the above
discussed results are also valid for finite t , as long as the
hopping is small enough, so that T ∗ 
 T . Otherwise, the
landscape changes significantly.

For � = U/20, as assumed in Fig. 5, a finite value of
hopping of the order of t = �/25 = U/500 is already large
enough to result in almost full development of the second
stage of screening for �S1 = 0 at the considered temperature.
However, finite �S1 increases TK and, consequently, decreases
T ∗ [compare Eq. (4) and Fig. 4], leading to the restoration
of the conventional Kondo effect (suppression of its second
stage of screening) for some critical �S1; see the curves for
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t = �/25 and t = �/10 in Fig. 5(a). This critical value of �∗
S1

corresponds to T ∗(�S1 = �∗
S1) = T . As explained in Sec. IV A,

for T ≈ T ∗, one can expect a large, positive peak in S(T ).
This condition is fulfilled around �S1 = �∗

S1 and, therefore,
the corresponding peak of S(�S1) can be observed in Fig. 5(b).
Again, for t � U/40, the couplings �S1 � U/2 lead to the
crossover to the Shiba state and the suppression of the Kondo
effect, with almost unaffected 〈d1↑d1↓〉(�S1) dependence and
very small values of 〈d2↑d2↓〉. In this sense, the crossover
is qualitatively unaffected by the presence of QD2, provided
t 
 �.

Finally, let us analyze what happens for stronger values of
hopping t � �. Then, for �S1 = 0, the local singlet inside the
DQD is formed and the Kondo effect is completely suppressed
[4]. The transport is governed by the spectrum of HSDQD and
the matrix elements of d1σ between its eigenstates. When �S1

is increased, at the critical value of �S1, the ground state of
HSDQD becomes a spin doublet. In the limit of small t , this
doublet corresponds to a single electron in QD2 and QD1
in the superconducting singlet state. Therefore, the doublet
is practically decoupled from the leads and the Kondo effect
is suppressed. However, interdot hybridization restores the
matrix element of d1σ between the aforementioned doublet
and the excited states. Then, the Kondo effect is always
present, although the corresponding Kondo temperature T̃K

vary strongly with �S1. In particular, when the singlet-doublet
splitting becomes very large, the relevant Kondo scale is
strongly suppressed. This is visible in Fig. 5(a) for t = U/5. On
the other hand, for �S1 ∼ 0.75U , the Kondo effect is restored,
as seen also in the inset, where the temperature dependence of

conductance for such a case is plotted. Higher values of �S1

correspond to larger singlet-doublet splitting, hence the drop
of TK below the temperature assumed for calculations in the
figure. We note that a similar suppression of the Kondo effect
due to singlet-doublet splitting was also reported in the case of
DQDs in a Cooper pair splitting geometry [82].

It seems worth emphasizing that the restoration of the
Kondo effect for large t does not have the nature of suppressing
the second stage of the Kondo effect. On the contrary, it
happens rather at QD2, while QD1 only mediates the coupling
to the leads. This resembles the situation when QD1 is
very far from particle-hole symmetry, described in Ref. [8].
Interestingly, the positive peak of S(�S1) is only diminished but
not completely suppressed in this regime. However, it no longer
coincides with the maximum of the G(�S1) slope. Moreover,
for strong t , the order parameter at QD2 becomes nonzero;
see Fig. 5(d). As long as the ground state of HSDQD is a spin
singlet, 〈d2↑d2↓〉 > 0, i.e., the order parameter in the second
dot has the same sign as 〈d1↑d1↓〉. However, 〈d2↑d2↓〉(�S1)
changes sign at critical �S1, corresponding approximately to
the singlet-doublet transition in a DQD isolated from the
normal leads. The critical values for the transition are indicated
in Fig. 5 by vertical lines. The sign change of the pairing
expectation value may be understood by recalling the fact that
this is in fact expected beyond the � → ∞ approximation,
i.e., when quasiparticle states in SC are also available [75].
Since QD2 is proximized by the continuum of states formed by
QD1 and the leads, exhibiting also pairing correlations, the sign
change of its order parameter at the singlet-doublet transition is
visible. The difference between the zero of 〈d2↑d2↓〉(�S1) and
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the value of �S1 corresponding to the singlet-doublet transition
is a consequence of renormalization of DQD levels due to finite
coupling to normal leads �.

C. Influence of pairing correlations
on the spin-dependent Fano effect

From the discussion in previous sections, one can see that in
many cases, the main effect of the presence of a weakly coupled
superconducting lead is an effective decrease of the relevant
Coulomb interaction. However, this is not always the case, as
argued in this section. As shown in Sec. III B, in the case of fer-
romagnetic leads and U2 = 0, the spin-dependent Fano effect
is present irrespective of the Coulomb interaction strength in
the first quantum dot, U1. Nevertheless, even relatively small
values of �S1 result in a practically complete suppression
of the spin splitting of the minimum in conductance. This
is visible in Fig. 6, presenting the conductance and its spin
polarization as functions of δ2 for U1 = U2 = U and for a few
representative values of �S1. Although relatively low values
of coupling �S1 do not suppress the minimum in G(δ2) [see
curve for �S1 = 0.1U in Fig. 6(a)], the spin-filtering effect is
completely suppressed, as presented in Fig. 6(b). Note that such
a suppression effect was not obtained by altering only U1 in
Sec. III B. Moreover, this effect does not depend on U ′ either,
as can be seen by comparison to the case of U ′ = 0 shown with

bright lines in Fig. 6. The fragility of the spin dependence of
the Fano interference to the superconducting proximity effect
is, therefore, a consequence of a nontrivial interplay between
the pairing and the spin correlations.

In the case of stronger coupling �S1, even more dramatic
changes can be expected. Indeed, the Fano antiresonance is
completely removed for �S1 � 0.5U ; see Fig. 6(a). Moreover,
the transition between the singlet and doublet ground states of
HSDQD can give rise to the change of sign of the spin polariza-
tion, as observed in Fig. 6(b); see, for example, the curve for
�S1 = 0.5U at δ2 ≈ 0.22U . Nevertheless, the suppression of
conductance is not complete in any of the spin channels and the
absolute value |P| does not exceed 25% in this regime. One can
thus conclude that superconducting pairing correlations have
a clearly detrimental effect on the spin-filtering properties of
the considered device.

V. EFFECT OF PAIRING INDUCED IN THE SECOND
QUANTUM DOT

In the preceding section, the focal point of the discussion
was the phase transition in QD1 and its influence on the
Kondo physics of the system. Now, in turn, we move to the
analysis of transport properties of a different setup, which
is shown in Fig. 1(b). Even though the physics for small
pairing correlations is in such a case quite similar to the case
of the system presented in Fig. 1(a), there appear significant
differences which are discussed in the following.

In the present section, the analysis of the Kondo effect
is continued for the case of small particle-hole asymmetry,
allowing for a nonzero Seebeck coefficient to occur. The
normal leads are assumed to be nonmagnetic. The Fano-like
interference effects occur to be very similar as in the case
of pairing present in QD1 and are not discussed in detail. In
particular, small values of �S2 lead to the Fano antiresonance
with a suppressed spin-filtering effect, while strong pairing
correlations induced in the second quantum dot destroy the
Fano effect completely.

A. Influence of pairing correlations
on the two-stage Kondo effect

For weak coupling between the second quantum dot and
the SC lead, �S2 
 U , the qualitative understanding of the
proximity effect can be founded on the idea of effective
reduction of U2. Therefore, the Kondo temperature for the first
stage of screening the spin in the first quantum dot, TK , hardly
depends on �S2. Furthermore, from Eq. (4), one immediately
recognizes that T ∗ depends on U2 through J , and grows with
decreasing U2. Thus, for the device shown in Fig. 1(b), T ∗
increases with �S2 in a way similar to TK increasing with �S1

for the one presented in Fig. 1(a). Note that this is opposite
to what happens to T ∗ then. This is illustrated in Fig. 7(a) for
a few representative values of �S2. The corresponding change
in the Seebeck coefficient peak position can be observed in
Fig. 7(b).

The physics changes, in comparison to pairing induced at
QD1, for stronger interdot hopping t . Here, the change of the
HSDQD ground state corresponds to the formation of a singlet
in QD2, which suppresses the second stage of the Kondo effect
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for �S2 above the critical value �∗
S2 ≈ U/2. This is reflected

in the perfect conductance and lack of the thermopower peak
at low temperatures for �S2 > �∗

S2 (for t > 0 and � > 0, the
transition is in fact a quite sharp crossover, as explained in the
following section). Interestingly, an additional sign change of
S(T ) occurs at T ∼ TK for �S2 close to this critical value, as
illustrated in the inset of Fig. 7(b). This may be accounted for by
the splitting of the Kondo peak by a residual dip corresponding
to the second stage of screening. In fact, T ∗ increases with �S2

quite strongly and becomes only slightly smaller than TK for
�S2 ≈ 0.4U . Then, the slope of the QD1 spectral function at
ω = 0 changes and implies the sign change of S. Nevertheless,
for even stronger �S2, the second stage of the Kondo effect
becomes finally suppressed. Interestingly, the width of the dip
in QD1 spectral density corresponding to the second stage of
screening (which can be taken as a measure of T ∗) is in fact still
finite and even growing further, and only its depth vanishes,
and so does the related positive peak of S(T ) together with the
two corresponding sign changes.

B. Phase transition in the second quantum dot

The largest difference between the phase transition at
QD1 and the one at QD2 induced by pairing correlations is

associated with the fact that while QD1 is directly coupled
to the metallic leads, QD2 is coupled only through QD1.
Therefore, the effective broadening of QD2 levels is in the
leading order proportional to �2 ≡ t2/�. To explore the Kondo
correlations, one needs to consider relatively strong coupling
�, which leads to smearing of the transition at QD1. On the
contrary, the transition at QD2 is even sharper for strong
�. The effect is even more pronounced due to the fact that
the interdot hopping t in experimental setups can be quite
small. Therefore, the crossover is in fact quite sharp and the
similarity to the quantum phase transition, which occurs at
t = 0 or � = 0, is even more evident than in the case of QD1.
However, low values of t also imply indeed cryogenic Kondo
temperatures for screening the spin of the second quantum
dot, T ∗, as follows from Eq. (4). This makes the system
vulnerable to perturbations [83] and sets the ground for an
interesting interplay between the Kondo effect and the super-
conducting pairing correlations in the vicinity of the crossover
region.

The main results concerning the influence of the interdot
coupling on the phase transition at QD2 are summarized in
Fig. 8. Similarly to Fig. 5, a finite yet very small T = 10−9U

was assumed in calculations. For t = 0, there is a strict phase
transition, with discontinuous change of the order parameter
〈d2↑d2↓〉 at �S2 = U/2, as shown in Fig. 8(c). At the same time,
there are no consequences of this fact for transport properties
between the normal leads since QD2 remains completely
decoupled from them. Therefore, the conventional, single-
stage Kondo effect takes place and the conductance G = Gmax

does not depend on �S2 (Gmax < 2e2/h due to particle-hole
asymmetry); cf. Fig. 8(a). Similarly, the Seebeck coefficient
S ∼ T ≈ 0, as shown in Fig. 8(b).

For finite hopping t , the second stage of the Kondo effect
develops at energy scales corresponding to T ∗. Nevertheless,
at finite temperature, only for sufficiently strong t does T ∗
exceed the actual T used in calculations. This can be visible
for t = �/6 in Fig. 8(a). Moreover, due to the increase of T ∗
with �S2, the relevant critical value of t , at which T ∗ = T ,
diminishes. Consequently, the conductance is suppressed and
a peak appears in S(�S2) dependence; see Fig. 8(b). However,
unlike in the case of pairing induced in QD1 discussed in
previous sections, the obtained values of S are larger and the
thermoelectric efficiency is enhanced. This is illustrated by the
thermoelectric figure of merit reaching almost ZT = 0.25, as
presented in the inset to Fig. 8(b). This should be compared to
ZT ≈ 0.01 for parameters assumed in Fig. 5 (result not shown
in the figure). Further increase of the coupling to the SC lead in-
duces a crossover to the conventional Kondo regime. Its width
is set up by the effective coupling of QD2 to the normal leads,
�2, as can be deduced from Fig. 8(c). Therefore, for strong �S2,
the conductance is maximized and the thermopower strongly
suppressed.

It is interesting to note that in the geometry considered in
this section, QD2 and the normal leads do not form a common
continuous medium exhibiting pairing correlations, to which
QD1 is coupled. For this reason, the pairing amplitude induced
in QD1 by the coupling to QD2 is always of the same sign and
is simply caused by the hybridization of single-electron states;
cf. inset in Fig. 8(c). Nevertheless, the order parameter 〈d1↑d1↓〉
exhibits a peak at �S2 = �∗

S2.
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Finally, the large-t regime corresponds to the transport
through molecular levels of DQD in the proximity of the SC
lead. The location of the crossover is only slightly shifted
due to the renormalization of the energy levels, but its width
is increased significantly due to large �2. As can be seen

in the inset in Fig. 8(c), 〈d1↑d1↓〉 remains positive, which
is due to the reasons explained above. Consequently, the
strong-t case does not differ quantitatively much from the
case corresponding to weaker interdot hopping, unless caloric
properties are concerned. Then, of course, smoothed crossover
leads to a small slope of the spectral function at ω = 0 and,
consequently, reduced thermopower.

VI. CONCLUSIONS

In the present paper, we have analyzed the transport prop-
erties of a T-shaped double-quantum-dot system proximized
by the superconductor, considering two distinct geometries. In
the first one, the quantum dot directly coupled to the normal
leads was connected to the superconductor, while in the second
geometry, the side coupled quantum dot was proximized. We
have thoroughly examined the subgap physics of both devices
and showed that depending on the superconductor position, the
second-stage Kondo temperature T ∗ may be either enhanced
or decreased by a small coupling to the superconductor. In both
cases, there appears a doublet-singlet crossover around some
critical value of the SC pairing potential and the properties of
the system change completely for strong pairing correlations.
Depending on the device’s geometry, the conventional Kondo
effect may be strongly supported or completely suppressed in
this transport regime. Moreover, the crossover becomes very
sharp for the superconductor attached to side-coupled quantum
dot at the regime of strong coupling to normal leads. We
explain these effects as consequence of the effective decrease
of the corresponding Coulomb interaction and basic properties
of coupled Kondo impurities. Moreover, we show that the
spin-dependent Fano-Kondo interference, which develops in
the considered systems, turns out to be very vulnerable to the
proximity effect. The spin-filtering effects present in T-shaped
DQDs with ferromagnetic contacts can be suppressed by even
small values of the coupling to the superconductor.

The presented results show that the superconductor prox-
imity effect provides additional means for the control of the
two-stage Kondo physics in T-shaped double quantum dots. It
enables one to either strongly favor or completely suppress
each stage of the Kondo screening and obtain interesting
electric or thermoelectric properties. Furthermore, the analysis
of transport properties of hybrid T-shaped DQD systems gives
additional insight into the nature of the interplay between the
Kondo correlations and the superconductivity, which exhibits
a surprising combination of increase of the Kondo temperature
and suppression of the related spectral features. We hope that
our analysis will foster further endeavors in this direction.
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