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Asymmetric surface plasmon resonances revisited as Fano resonances
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Attenuated total reflection spectra of planar metal-dielectric structures obtained in the Otto and Kretschmann
configurations exhibit resonance dips due to excitation of surface-plasmon polaritons. Although the dips have
asymmetric line shapes, the asymmetry has not received much attention and the Lorentzian symmetric line
shape has commonly been used in the spectral analyses. We analyze the reflectivity spectra of two- and three-
layer plasmonic systems based on the electromagnetic and coupled-mode theories, and demonstrate that the
asymmetric line shapes can be regarded as the Fano line shapes. In the resonance region, the spectra calculated as
Fano line shapes using our approximate expressions are in excellent agreement with those obtained by rigorous
electromagnetic calculations. The present formulations of the reflectivity allow us to gain insight into physical
origins of characteristic behavior of the plasmonic resonances.
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I. INTRODUCTION

An increasing number of studies in nanophotonics is
focused on excitation of different eigenmodes in optical
structures. The associated resonance effects such as the field
enhancement and narrow resonance features in spectral line
shapes are of great interest for both the fundamental and
applied sciences. The early studies of the resonance effects
in planar multilayer structures were performed on planar
plasmonic structures that support surface-plasmon polaritons
(SPPs) [1,2]. The plasmonic resonances are characterized by
considerably large dissipative losses and low-Q factor that
simplifies their experimental observation and analysis. With
the increasing demands on high-precision measurements and
large field enhancements, the research focus was shifted to
high-Q resonances in high refractive index dielectric structures
[3]. The research was further extended to metal-dielectric
structures that support hybridization of the plasmonic and
waveguide modes [4]. This approach allowed engineering of
sharp Fano resonances of the required quality factor and line
shape [5,6]. Presently, the design and tuning of narrow reso-
nances in plasmonic structures remain demanding tasks that
require the development of relevant models for the underlying
physical processes.

The studies on the near field enhancement and resonance
response at metal-dielectric interfaces are important for a
variety of applications, for example creating nanoscale lo-
cal light sources and generating guided single plasmons in
integrated optical circuits [7], enhancement and quenching
of fluorescence of single molecules placed in the vicinity
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of a metal surface [8], and resonant enhancement of the
emission rate of optical emitters into the surface plasmons
in thin metal films [9] and metal-dielectric-metal slabs [10].
Owing to these resonance properties, simple planar plas-
monic structures [11–13], such as insulator-metal-insulator
[14] and metal-insulator-metal structures [15], and coupled
SPP-waveguide mode structures [6,16–20], are applied to
metal-dielectric waveguides [21], sensors [22–25], platforms
of surface-enhanced spectroscopies [26–28], and elements for
optical computing and imaging [29,30]. In the last decade,
the spatial control of SPP modes propagating along metal-
dielectric interfaces has been the subject of intensive studies to
realize light concentration and scattering suppression [31–34].

It is well known that a metal-dielectric interface can support
so-called surface-plasmon polaritons; an SPP is a coupled
mode of collective oscillation of free electrons in metal and
electromagnetic oscillation that propagates along the interface
and decays exponentially away from the interface [1,2]. Ac-
cording to rigorous electromagnetic theory based on solution
of Maxwell equations [1,2,35], SPP modes are classified into
TM modes and can be excited by p-polarized light. Due to
their hybrid nature, SPP modes propagate along the interface
with phase velocities lower than that of propagating waves in
free space [36]. Therefore, the direct excitation of SPP modes
by propagating waves is prohibited and the excitation can be
done by waves of reduced phase velocities, such as evanescent
waves.

A well-known technique for exciting SPPs in planar struc-
tures by light is based on generation of evanescent waves under
attenuated total reflection (ATR) conditions [37]. The ATR
approaches for exciting SPPs at metal-dielectric interfaces
using high-index prisms, which are placed in a close proximity
to the metal-dielectric system, were introduced by Turbadar
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[38,39] in 1959, and by Otto [40] and Kretschmann and Raether
[41] in 1968. In the Otto and Kretschmann configurations,
which celebrate the 50th anniversary, a p-polarized light beam
is incident in the prism under angles larger than the critical
angle of total reflection; evanescent waves are generated in
both the metal and low-index dielectric layers and coupled to a
SPP mode at their interface. The coupling efficiency depends
on the proximity of the phase velocity of an evanescent wave to
that of the SPP mode and takes its maximal value at a certain
incidence angle, which is referred to as a resonance angle.
Losses induced by the SPP mode lead to the appearance of a
resonance dip in the ATR spectra.

The resonance properties of SPP modes and optical prop-
erties of the media are efficiently characterized by the ATR
spectra in the planar plasmonic structures. Experimental and
theoretical angle-scan ATR spectra of the planar plasmonic
structures reported in the literature usually exhibit strongly
asymmetric resonance line shapes [1,2,35]. However, surpris-
ingly little attention was paid to the asymmetry in the resonance
spectra obtained in the Kretschmann and Otto ATR configu-
rations. Using exact electromagnetic theory based on solution
of Fresnel equations, Kretschmann [42] obtained a symmetric
Lorentzian approximation for the reflection coefficient spectra
in a three-layer system in 1971 that was later summarized by
Raether [35] in 1988. Despite the discrepancy with theoretical
and experimental asymmetrical spectra, this approximation
provided a framework for many later studies on SPP modes
[26,29,34]. It was only in 2002 that an asymmetric curve-fitting
equation for the SPP resonance was derived using a more
precise approximation of the three-layer Fresnel equations
[43].

Asymmetric resonances are common for many oscillating
physical systems [44]. The appearance of asymmetry in the
resonance profiles was first explained by Fano in terms of
the interference of responses from discrete and continuum
states of the systems [45,46]. The interference leads to the
resonant enhancement and suppression that correspond to the
maximum and minimum in spectral line shapes, respectively.
A broad variety of more or less complex plasmonic nanostruc-
tures and metamaterials have been reported to exhibit Fano
resonances due to mode interaction [47–50]. In plasmonics,
Fano resonances in dielectric and metallic nanostructures have
also been described using an analogy with a classical system
of two coupled mechanical oscillators [5,48,51] and by a
formalism of the coupled-mode (CM) theory [52,53]. The CM
theory is generally used to describe field and energy flows in
resonant systems, such as resonant gratings [54] and plasmonic
and photonic structures [29,34,55,56], to provide a deeper
insight into the general Fano-like phenomena of mode cou-
pling. Despite recent extensive experimental and theoretical
studies on Fano resonances in plasmonic nanostructures and
metamaterials, for the angle-scan ATR spectra obtained in the
Kretschmann and Otto configurations, no attempt has been
made so far to attribute the asymmetry in the line shapes to
the Fano resonance. Since the planar ATR configuration is one
of the most elemental and fundamental plasmonic structures,
understanding of origins of the asymmetric line shapes is of
primary importance to further extend its applications.

In this paper, using the exact electromagnetic theory and the
CM theory, we study analytically the asymmetric resonances

in the spectra of planar two- and three-layer structures that
support SPP modes. We show that the reflection coefficients
can be decomposed into a nonresonant continuum and a
resonant component associated with the SPP excitation, and
demonstrate that the Fano line shape arises due to the inter-
ference of these components. We derive the same analytical
approximations for the Fano resonances from both the exact
electromagnetic and CM theories. We analyze field transfer
processes in the structures by the CM theory and demonstrate
their role in the Fano resonance shifting. The theoretical
results are illustrated by rigorous numerical calculations of
plasmonic structures based on silver (Ag) and aluminum
(Al) at the wavelength of 632.8 nm, which is typical for
sensing applications. The revealed fundamental mechanisms
of field coupling and field transfer in the Fano-resonant planar
plasmonic structures are crucial to analyze and design the
structures of higher complexity that support modes of different
nature. Our theoretical models based on analytical approaches
will be useful for further numerical investigations of resonance
structures and can lead to revisiting the traditional approaches
for resolving light-matter interactions.

II. FANO RESONANCES AT SINGLE INTERFACES

Since SPPs at single planar dielectric-metal interfaces
can be excited by evanescent waves, the fundamental char-
acteristics of SPPs have been investigated using the ATR
configurations. The well-known Kretschmann and Otto ATR
configurations owe their popularity partly to their structural and
implementation simplicity. To reveal the underlying physics
associated with the excitation of the SPP modes in these con-
figurations, first we focus on a single dielectric-metal interface,
which is the most elemental structure that supports the SPP
modes. We study the behavior of the reflection coefficient at
the single interface assuming generation of evanescent waves
in both the metal and dielectric media, because this process is
encountered in these ATR configurations. A key issue of the
present analysis is to demonstrate that the reflection coefficient
spectra at the single interfaces exhibit the Fano line shape.
Although the coefficient itself cannot be measured in this case,
its theoretical analysis is indispensable as the first step to
demonstrate the Fano resonance in the Kretschmann and Otto
configurations.

A. Electromagnetic theory

We start with a brief derivation of a reflection coefficient
at a single interface introducing notations used in this paper.
Let us consider a general case of a p-polarized plane wave
incident on an interface I12 (z = 0) between two semi-infinite
homogeneous layers L1 and L2 with permittivities ε1 and
ε2, respectively, as shown in Fig. 1. Let us suppose that the
structure is uniform in the x and y directions. In the coordinate
system shown in Fig. 1, the harmonic magnetic fields in
the structure can be written as H(j ) = (0,H

(j )
y ,0) exp(−iωt),

where the index j denotes the layer number, e.g., j = 1 for
the dielectric and j = 2 for the metal, and ω is an angular
frequency. Electromagnetic waves are assumed to propagate
in the x-z plane, therefore the total field ψ = H

(j )
y (x,z) is

uniform in the y direction. The steady-state wave equation
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FIG. 1. Reflection and refraction of light at an interface between
two semi-infinite layers.

for the complex amplitude ψ of the total field is represented
by a scalar Helmholtz equation

∂2ψ

∂x2
+ ∂2ψ

∂z2
+ k2

0ε(z)ψ = 0, (1)

where k0 = ω/c = 2π/λ0 is the free-space wave number, c is
the speed of light in vacuum, andλ0 is the wavelength in the free
space. The equation for the incident plane wave propagating in
L1 can be written as Hy(x,z) = u exp [ik0(αx + β1z)], where
u is the complex amplitude of the incident wave, and the z

component of the propagation constant β1 is given by β1 =√
ε1 − α2. For a propagating wave incident at an angle θ to the

surface normal, β1 = √
ε1 cos θ and the x component of the

propagation constant is given by α = √
ε1 sin θ . For a plane

wave propagating along the x direction with α2 > ε1, β1 has
a nonzero imaginary part that results in the exponential decay
of the wave amplitude in the z direction. Such plane waves are
referred to as evanescent waves.

When a plane wave is incident on the interface I12, two
outgoing plane waves are generated. One is reflected back to
L1, and the second is transmitted to L2. The total field ψα(x,z)
for a particular α being a solution of Eq. (1) is represented by
a sum of the incident and reflected waves in L1 and by the
transmitted wave in L2 as

ψα(x,z) =
{

H (x,z) + Hr (x,z),z � 0,

Ht (x,z),z � 0.
(2)

Therefore, the fields of the reflected Hr and transmitted Ht

waves are written as Hr (x,z) = r12(α)u exp [ik0(αx − β1z)]
and Ht (x,z) = t12(α)u exp [ik0(αx + β2z)] with the complex
coefficients r12 and t12, respectively. These complex coeffi-
cients can be interpreted as responses of the optical system to
the external excitation. In experiments, reflectance or transmit-
tance spectra are obtained by measuring the intensities of the
reflected and transmitted light as a function of the incidence
angle or the in-plane propagation constant.

Let us define an operator M̂ corresponding to Eq. (1) by

M̂ψ =
[

∂2

∂z2
+ k2

0ε(z)

]
ψ.

In general, if M̂ has a discrete spectrum, a discrete eigen-
mode of M̂ numbered by integer index l is defined as ψl(x,z) =
ψl(z) exp (iγlk0x) that satisfies the eigenvalue equation

M̂ψl(x,z) = (γlk0)2ψl(x,z), (3)

where ψl(z) and (γlk0)2 are the discrete eigenvector and
eigenvalue, respectively. It can be easily demonstrated that
the response of a discrete mode with propagation constant γl

excited by the incident plane wave H with the propagation
constant α has an asymptotic resonance behavior expressed as
(γ 2

l − α2)
−1

H [48].
In the case of metal-dielectric system Re {ε1} Re {ε2} <

0 and Re {ε1 + ε2} < 0, SPP modes ψSPP(x,z) are discrete
eigenmodes of M̂ with the eigenvalue (γSPPk0)2, where mag-
netic fields associated with the mode can be written as
ψ

(j )
SPP = exp(ikSPPx) exp(−bj |z|). The SPP dispersion rela-

tion between the wave vector kSPP = γSPPk0 and ω is given
by kSPP = (ω/c)[ε1ε2/(ε1 + ε2)]1/2. Moreover, bj given as

bj = (ω/c)[−ε2
j /(ε1 + ε2)]

1/2
takes positive values in metal-

dielectric systems. The SPP field amplitude has its maximum at
the interface I12, exponentially decays with the distance from
the interface in both media, and disappears at |z| → ∞, as
schematically shown in Fig. 1. Taking the mode attenuation
into account, the complex propagation constant is represented
as γSPP = γ ′

SPP + iγ ′′
SPP. The real part γ ′

SPP characterizes the
mode phase velocity, and γ ′′

SPP is the extinction coefficient.
To study the response of the two-layer system associated with
the excitation of an SPP mode, we concentrate on generation
of evanescent waves in both media under the conditions α2 >

Reε1,Reε2.
To discover the resonance behavior of the response of the

considered two-layer system, the propagation of evanescent
waves is studied in the vicinity of SPP propagation constant
γ ′

SPP. The generalized Fresnel coefficients can be found using
the 2 × 2 transfer-matrix method [57] based on the steady-state
solution of a system of linear equations for the complex
amplitudes of plane waves propagating in a stratified medium.
The equations represent continuity conditions for the magnetic
field ψα(x,z) and its derivatives along interfaces between
layers. The forward and backward reflection coefficients, rij

and rji , and transmission coefficient tij are given for some
adjacent layers Li and Lj as

rij = βi/εi − βj/εj

βi/εi + βj/εj

, rji = −rij , and tij = 1 + rij . (4)

For α2 > Re εi, Re εj , both βi and βj have nonzero imag-
inary parts and the incident, reflected, and transmitted plane
waves are evanescent in the z direction in both layers. For
this reason this spectral region is hereafter referred to as an
evanescent region. In contrast to the case of a propagating
wave, in which the magnitude of the wave is constant with
distance, the complex amplitudes of the generated evanescent
waves are defined by the reflection and transmission coeffi-
cients at the interface. Thus, |rij |2 and |tij |2 may be regarded
as the coefficients of near field enhancement along the x axis
for the generated evanescent fields at the frontal (in respect
to the incoupling wave) and outer interfaces, respectively. In
the evanescent region, the energy is not transferred in the
z direction, whereas the evanescent waves are capable of
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generating a field in a dense medium placed in the vicinity. This
phenomenon of a field transfer process is described in optics
as an evanescent-field coupling, where the coupling degree is
characterized by the reflection and transmission coefficients.

In the experiments, the spectra of reflectivity |rij |2 and
transmission |tij |2 of the propagation waves can be registered
by a detector. In the evanescent region, the direct estimation
of the near field enhancement of the evanescent waves is

not possible. To characterize the near field enhancement, the
generated evanescent fields can be converted to propagating
waves in other media by the use of coupling devices. This
approach transforms the spectra of the near field enhancement
based on the in-plane propagation constant into the angular
spectra of the intensity of propagating waves.

In the evanescent region, rij can be written using Eq. (4) in
the form

rij =
γ 2

SPP(εi + εj )2 − (
ε2
i + ε2

j

)
α2 + 2εiεjα

2
√

1 + (εi + εj )
(
γ 2

SPP − α2
)
/α4

(εj − εi)(εi + εj )
(
γ 2

SPP − α2
) . (5)

Under the assumption that the difference betweenα andγSPP

is small and (γ 2
SPP − α2)/α4 → 0, rij can be approximated in

the vicinity of resonance α → γ ′
SPP as well as in the limit α →

∞ using lower-order terms of a Taylor series for the square root
in Eq. (5). This approximation results in the decomposition of
rij as

r̃ij = rc
ij + rSPP

ij = rc
ijχ, (6)

where

rc
ij = εj − εi

εi + εj

+ εi + εj

εj − εi

γ 2
SPP

α2
(7)

corresponds to a broad continuum component originating
from the nonresonant reflection by the interface, in which the
amplitude and phase are slowly changing near α = γ ′

SPP, and
the component rSPP

ij = 2γSPPpij /(γ 2
SPP − α2) is characterized

by fast changes of the amplitude and phase and corresponds
to the resonant outcoupling from the discrete SPP modes. A
single evanescent wave excites two SPP modes of propaga-
tion constants γSPP and −γSPP that propagate in x and −x

directions, respectively. As a result, the component rSPP
ij is

composed of the responses from these two SPP modes as
rSPP
ij = pij /(α + γSPP) − pij /(α − γSPP), where

pij = 2γ 3
SPP(εj − εi)

−1 (8)

is the complex amplitude of a single SPP mode response.
Using Eq. (6), the ratio χ of the total optical response of a

two-layer system to the continuum response is found as

χ = r̃ij /r
c
ij = 1 + dij

γ 2
SPP − α2

(9)

with

dij = 2γSPPpij /r
c
ij = 4wα2γ 4

SPP

(εj + εi)
(
α2 + wγ 2

SPP

) ,

and w =
(

εj + εi

εj − εi

)2

, (10)

where dij is the ratio of response from the discrete SPP
modes to the continuum component. Assuming γ ′′

SPP � γ ′
SPP

and neglecting the second-order contribution, Eq. (9) can be
rewritten as

χ = 1 + q

k + i
(11)

where k = [(γ ′
SPP + 
)2 − α2]/� is the reduced frequency,


 = −γ ′′2
SPP/(2γ ′

SPP) is the shift in the resonance position
caused by the damping of the discrete mode, � = 2γ ′

SPPγ
′′
SPP is

the resonance width, and q = dij /� is given by the ratio of the
normalized amplitude of the discrete mode to the width �. In
the general case of complex q = q ′ + iq ′′, the squared module
of the ratio of total and continuum responses is given by the
resonance factor

σ = |χ |2 = (k + q ′)2 + (1 + q ′′)2

1 + k2
, (12)

which comprises a sum of Fano and Lorentzian functions that
depend on losses in the materials [46,48]. The parameter dij is
supposed to change slowly with α, so q ′ and q ′′ can be consid-
ered as constants in the region of resonance. The Lorentzian
term influences the interference contrast. This influence can
be minimized by finding optimal material parameters. For
instance, when q ′′ = −1 and q ′ is nonzero, the overall response
of the system is determined only by the discrete mode at the
resonance. In this case, the Lorentzian term disappears, and
σ is described by the Fano function with maximal contrast of
the line shape. For the lossless case (γ ′′

SPP = 0), the resonance
width is zero (� = 0), and σ = ∞ at the resonance. If there
is no interaction with the discrete mode or it has no response,
i.e., q = 0, no resonance interference can be observed, and the
response becomes σ = 1.

Basically, σ represents the near field enhancement normal-
ized to that of the nonresonant continuum. The appearance
of the resonant and nonresonant components in the total
response, which is revealed by the approximation (6), is
intrinsic to metal-dielectric interfaces. Their direct separation
from the observed resonance spectra in two-layer structures
may not be possible. Therefore, σ is an analytical function
that demonstrates the formation of Fano line shape in the total
response spectra.

The near field enhancement of the dielectric-metal interface
around the SPP resonance is determined by the interference of a
sharp resonance response of the discrete SPP mode and a broad
nonresonant continuum, resulting in a Fano-type resonance
spectral line shape:

|r̃ij |2 = ∣∣rc
ij

∣∣2 (k + q ′)2 + (1 + q ′′)2

1 + k2
. (13)
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This expression is similar to the general formula for the
electromagnetic response of a system with losses [48].

In the vicinity of resonance α → γ ′
SPP, assuming γ ′

SPP � 0
we can neglect the response from the SPP mode of the propaga-
tion constant −γ ′

SPP that propagates in the opposite direction.
The following simple approximation for χ is obtained using
the decomposition of Eq. (9) taking into account the response
from the SPP mode propagating in the forward direction only
[50]:

χ̃ = α − γzero

α − γpole
, (14)

where

γpole = γSPP and γzero = γSPP + pij /r
c
ij (15)

are the pole and zero parameters of the function χ̃ , respectively.
Therefore, the approximation (6) is written as

r̃ij = rc
ij

α − γSPP
[
1 + pij

/(
rc
ij γSPP

)]
α − γSPP

. (16)

Using the approximation (16) and assuming complex
γpole = γ ′

pole + iγ ′′
pole and γzero = γ ′

zero + iγ ′′
zero, the near

field enhancement for the dielectric-metal interfaces is repre-
sented in the form of asymmetric Fano formula

|r̃ij |2 = ∣∣rc
ij

∣∣2 (α − γ ′
zero)2 + γ ′′2

zero

(α − γ ′
pole)2 + γ ′′2

pole

. (17)

According to Eq. (15), γ ′
zero is displaced from γ ′

pole that
leads to an asymmetric Fano line shape of |r̃ij |2. Since dij =
dji , the displacement occurs in the same direction for both
the dielectric-metal interfaces (εi > 0, εj < 0) and metal-
dielectric interfaces (εi < 0, εj > 0). Moreover, for most of
the combinations of dielectrics and metals dij takes a negative
value in the visible region and consequently γ ′

zero is displaced
to a value lower than γ ′

pole.
It should be stressed here that the approximations (13) and

(17) imply that the asymmetric Fano resonance line shape is
inherent in the near field enhancement spectra of two-layer
metal-dielectric structures. The Fano resonance appears due
to the interference between a resonant response of the SPP
mode and nonresonant reflection from the metal-dielectric
interface. In what follows, we clarify the underlying physics
of the resonance by establishing an analogy between the
electromagnetic and CM theories.

B. Coupled-mode theory

Optical spectra observed in plasmonic structures can be
obtained by exact electromagnetic theory. The structures con-
sidered in the present paper can be described analytically.
For a variety of more complex structures, numerical methods
should be implemented. In general, numerical methods applied
to electromagnetic field calculations are usually time and
resource consuming. Moreover, the field solutions do not
provide a deep understanding on the dynamics of underlying
processes. Therefore, the CM theory was developed to provide
a general description of energy flows to and from resonators
[52].

The CM approach in optics was implemented for analysis
of Fano resonances in terms of interaction of electromag-
netic fields in the form of discrete normal modes; incident,
reflected, and transmitted plane waves; and diffraction orders
of diffraction gratings [53,54,58]. In the CM models, the
plasmonic resonances are represented as results of energy
transfer in optical processes such as direct field scattering
and incoupling to and outcoupling from SPP modes. These
energy flows are described by parameters of the model. The
CM theory provides numerical methods much faster than
conventional ones and allows us to calculate fields that fit to
those obtained by the exact theory. However, in the numerous
previous implementations of the CM theory to resonant planar
one- and two-dimensional structures [29,34,53–55,58], the
transfer coefficients for the CM models are obtained by fitting
the CM approximations to the numerical calculations by exact
electromagnetic theory. Still, no good analytical representation
for the coupling coefficients has been presented yet.

In this subsection, we develop a one-dimensional spatial
formulation of the CM theory and derive basic equations for the
complex amplitude of a SPP mode propagating along the inter-
face in a two-layer system. As a starting point, consider a field
solution of the mode ψSPP as ψSPP = c(α,x) exp (ik0γSPPx),
where an envelope function c(α,x) is a slowly varying function
defined after removing the fast exp (ik0γSPPx) dependence of
the field. Neglecting the first-order derivative of c(α,x), the
dynamic equation for ψSPP can be approximated as

1

ik0γSPP

∂ψSPP

∂x
= ψSPP. (18)

In contrast to the conventional formulation of the CM theory
[52], the coefficient ik0γSPP is placed on the left-hand side of
Eq. (18) to correctly define coupling with external fields. The
mode ψSPP can be excited by incoupling of an evanescent wave
H :

1

ik0γSPP

dψSPP

dx
= ψSPP + κH, (19)

where κ is a coefficient expressing the coupling strength
between the mode and the incoupling (outcoupling) wave. The
resonant excitation of the SPP mode by the incoupling wave is
fully described by Eq. (19).

The outcoupled evanescent wave Hr is composed of a
nonresonant component generated by the incoupling wave H

with the coupling coefficient rc
ij and a resonant component

as a result of outcoupling of the mode ψSPP with coupling
coefficient −κ . The expression for Hr may be written as
follows:

Hr = rc
ijH − κψSPP. (20)

Assuming that the incoupling wave has a propagation constant
α along the x axis, H ∝ exp(ik0αx), then the mode ψSPP has
the same propagation constant, and we find, from Eq. (19), that
the mode spectrum is represented by a Lorentzian

ψSPP = γSPP

α − γSPP
κH. (21)

According to Eq. (21), the pole of ψSPP is fixed at γSPP,
because the incoupling of an evanescent wave does not perturb
the mode. Therefore, the mode losses are not affected by
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FIG. 2. The resonant behavior of the resonance factor σ for (a) air/Ag and (d) air/Al interfaces. (b, e) Comparison of the exact solution
|rij (α)|2 (dotted lines) with the approximation |r̃ij (α)|2 (solid lines) for (a–c) air/Ag and (d–f) air/Al interfaces. (c, f) The expanded scale near
the resonance region. The filled area corresponds to the evanescent region.

coupling processes and include only the SPP intrinsic losses
γ ′′

SPP. The overall coupling coefficient r̃ij ≡ Hr/H of the
system can be evaluated for an arbitrary incoupling wave by
substituting Eq. (21) into Eq. (20):

r̃ij = rc
ij

α − γSPP
(
1 + κ2

/
rc
ij

)
α − γSPP

. (22)

According to Eq. (22), r̃ij depends on the mode propaga-
tion constant, nonresonant coupling coefficient, and coupling
coefficient κ . The solution (22) can be represented in a form
consistent with Eq. (16). Here, the zero and pole parameters
of a two-layer system are γ CM

zero = γSPP(1 + κ2/rc
ij ) and γ CM

pole =
γSPP, respectively. Hence, comparing γ CM

zero and γ CM
pole with those

in Eq. (15), we find an expression for κ as

κ = √
pij /γSPP = γSPP

√
2

εj − εi

. (23)

Thus, κ is proportional to the SPP propagation con-
stant. Neglecting small imaginary parts of the permittivi-
ties and propagation constant, κ takes imaginary values for
dielectric-metal interfaces (εi > 0, εj < 0) and real values for
metal-dielectric interfaces (εi < 0, εj > 0). The phase of κ

determines a phase shift brought by the coupling process.
The above reformulation of the conventional CM descrip-

tion of incoupling dynamics of a SPP mode in the form
(19) provides a general expression for the two-layer system

response given by Eq. (22). This general expression coincides
with Eq. (16) obtained analytically using the exact electromag-
netic theory.

C. Comparison of numerical results

To verify the validity of the approximation given by
Eq. (13), numerical results for the air/Ag and air/Al interfaces
at λ0 = 632.8 nm are presented in Fig. 2. Permittivities of
air, Ag, and Al were taken as 1.0, −15.886 + 1.074i, and
−51.410 + 18.446i, respectively [59,60]. Figures 2(a) and
2(d) show the dependence of the resonance factor σ on α,
when α is changed from zero to two refractive index units
(RIU). As can be seen from the figures, σ exhibits a sharp
Fano-like line shape for both the air/Ag and air/Al interfaces.
In Figs. 2(b), 2(c), 2(e), and 2(f), results obtained by the exact
solution |rij (α)|2 [Eq. (5)] are compared with those obtained
from the approximate expression |r̃ij (α)|2 [Eq. (13)]. In the
evanescent region (α > 1 RIU), we observe overall good fits
of the approximation to the exact solution. Note that |r̃ij (α)|2
exhibits a Fano line shape modulated by the slowly varying
|rc

ij (α)|2 coefficient. The positions of the peak and minimum
in the approximation curves coincide with those of σ spectra.
In the evanescent region, the maximum values of near field
enhancement of 3108.1 and 126.7 are achieved for air/Ag and
air/Al cases, respectively, due to the resonant excitation of SPP
modes, whereas the values of continuous response |rc

ij (α)|2 are
4.1 and 3.8, respectively.
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TABLE I. Fano resonance parameters for the air/Ag and air/Al interfaces.

γpole = γSPP γzero αpeak Peak value αdip Minimum value �

(RIU) (RIU) (RIU) (RIU) (RIU)

Air/Ag 1.03288 + 0.00233i 0.9720 − 0.0018i 1.0330 765.1 0.9700 0.001 0.00481
Air/Al 1.00871 + 0.00317i 0.9914 − 0.0030i 1.0093 31.9 0.9910 0.029 0.00630

The propagation constants for the SPP modes, resonance
width �, pole γpole, and zero γzero parameters are summarized
in Table I. The lower imaginary part of γpole in the air/Ag
case results in a narrower width. The peak position αpeak and
minimum position αdip of exact solutions are approximated
very well by γ ′

pole and γ ′
zero, respectively. The amplitude of

the Fano line shape defined by the difference between the
maximum and minimum values is smaller by two orders of
magnitude for the air/Al case as compared to the air/Ag
case due to higher attenuation of the mode. In the radia-
tive region (α < 1 RIU), the exact solution exhibits entirely
different and strongly nonresonant behavior. In this region,
Eq. (5) is not valid, as the square root in Eq. (5) is ex-
pressed to correctly treat the negative values in the evanescent
region.

From the results presented above, it is clear that in the
evanescent region the near field enhancement spectra obtained
from the exact calculations are very well approximated by the
Fano resonance line shapes. The minimum values in σ spectra
for the considered metals are located outside the evanescent
region, and only the resonance peaks are observed in the spectra
of exact solutions.

The difference in the approximated and exact data that we
observe in Fig. 2 is originated from the sum of higher-order
terms of a Taylor series for the square root in Eq. (5) that was
discarded in the approximation (6). According to Eq. (5), this
sum is proportional to both permittivities of materials in the
two-layer structure. As the permittivity of Al is around three
times as high as that of Ag, the approximation in the Ag case
is much better.

III. FANO RESONANCES IN THE KRETSCHMANN AND
OTTO CONFIGURATIONS

In the previous section, we demonstrated that the resonance
response of a single dielectric-metal interface exhibits the
asymmetric line shape as a result of Fano interference between
the nonresonant and resonant components of the reflection
coefficient. The appearance of the resonant component is
straightforward: it is based on resonant excitation of the
SPP mode. Analysis of field transfer processes by the CM
theory showed that the nonresonant component arises in-
dependently from the resonant one to fulfill off-resonance
boundary conditions. Based on the approaches developed
for the single interface, we will discover the physical in-
terpretation and underlying transfer processes for the SPP
excitation in the conventional planar three-layer structures in
the Otto and Kretschmann configurations to verify the con-
formity of their asymmetric ATR resonances to the Fano line
shapes.

A. Electromagnetic theory

Under the ATR conditions, SPPs are excited by evanescent
waves generated by a high-index prism placed in the vicinity of
a metal-dielectric two-layer structure. There are two possible
ways of interconnecting the prism with the two-layer structure.
If the prism is placed at the side of the dielectric layer,
the hybrid structure is referred to as the Otto configuration.
If the prism is attached to the metal layer side, the hybrid
structure is referred to as the Kretschmann configuration. Both
configurations can be represented schematically by three-layer
structures, in which the prism and environment are denoted as
semi-infinite layers L0 and L2, respectively; the spacer layer
of a finite thickness h separates the layers L0 and L2 and is
denoted as L1 as depicted in Fig. 3. Therefore, the spacer layer
L1 is a dielectric in the Otto configuration and a metal in the
Kretschmann configuration.

In general, the overall reflection coefficient r012 of a three-
layer system for α = √

ε0 sin θ is given by [35]

r012 = r01 + r12 v2

1 + r01 r12 v2
, (24)

where r01 corresponds to the complex coefficient of the direct
plane-wave reflection at the prism-spacer layer interface, and
v = exp (ik0β1h) can be regarded as a coefficient that char-
acterizes the decay of evanescent waves excited under ATR
conditions in the layer L1 with distance between the I01 and
I12 interfaces. The decay is expected to be stronger when the
layer L1 is thicker.

In both configurations, an optical response of the SPP
mode ψSPP excited in three-layer structures by p-polarized
light is observed as a surface-plasmon resonance (SPR) dip in
reflectivity spectra. The dip appears as a result of light energy
redistribution to ψSPP propagating along the metal-dielectric
interface I12 by means of the evanescent waves coupling. As
we showed in the previous section, the resonance response r12

of SPP mode excitation at the metal-dielectric interface can

FIG. 3. Reflection and refraction processes at interfaces in three-
layer systems.
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be represented in the form of Eq. (6) using the Fano formula
given by Eq. (11) as r̃12 = rc

12[1 + q(k + i)−1]. By substituting
r12 ≈ r̃12 into Eq. (24) the total reflection coefficient r012 is thus
approximated as

r̃012 = rc
012χ3, (25)

where a resonance factorχ3 is written for the three-layer system
as

χ3 = k + i + a/�

k + i + b/�
(26)

with

a = 2γSPPv
2p12

(
r01 + rc

12v
2
)−1

,

b = 2γSPPr01v
2p12

(
1 + r01r

c
12v

2
)−1

, (27)

rc
012 = (

r01 + rc
12v

2
)
/
(
1 + r01r

c
12v

2
)
.

Here, rc
012 is a complex amplitude of the continuum response

from the three-layer structure as a result of nonresonant field
transfer in the structure.

The approximation of reflectivity for the three-layer stack
|r̃012|2 is obtained using Eq. (25) as a sum of asymmetric Fano
and symmetric Lorentzian functions:

|r̃012|2 = ∣∣rc
012

∣∣2 (k3 + q ′
3)2 + (1 + q ′′

3 )2

k2
3 + 1

, (28)

where k3 = [(γ ′
SPP + 
)2 − α2 + b′]/(� + b′′) is the reduced

frequency for the three-layer stack, q3 = (a − b)/(� + b′′) ,
b = b′ + ib′′, and q3 = q ′

3 + iq ′′
3. From Eq. (28) we see that

compared to a two-layer metal-dielectric system the resonance
position [(γ ′

SPP + 
)2 + b′]1/2 and width � + b′′ of the three-
layer structure are modified by b′ and b′′, respectively. As
follows from Eq. (27), b is proportional to v2 when |v2| � 1.
Theoretically, we can predict that the width can be brought
to zero, when the parameters of the structure are selected
to realize b′′ = −�. The Fano component arises from the
interference between a response of the discrete SPP mode
and a continuum response from the three-layer structure. To
increase the resonance contrast, the Lorentzian component can
be tuned to zero by optimizing h that affects v2 to achieve
q ′′

3 = −1.
Under an assumption of γ ′

pole � 0, the approximation χ̃3 of
χ3,

χ̃3 = α − γ3,zero

α − γ3,pole
, (29)

obtained from Eq. (26) gives the pole γ3,pole and zero γ3,zero

resonance parameters:

γ3,pole = (
γ 2

SPP + b
)1/2

,

γ3,zero = γ3,pole + (a − b)γ −1
3,pole

/
2.

(30)

In the case of small decay coefficient v or small nonresonant
component rc

12, the approximations of γ3,pole and γ3,zero can be
found as

γ̃3,pole = γSPP + r01v
2p12,

γ̃3,zero = γSPP + v2p12/r01.
(31)

Additionally, the continuum component rc
012 in Eq. (27)

is mainly determined by the reflection coefficient at the first
interface and can be approximated by r̃ c

012 ≈ r01. In this case,
the total reflectivity is given by r̃012 = r01χ̃3. For the Otto
configuration, |r01|2 = 1.0 in the ATR region that simplifies
Eq. (28) to r̃012 = χ̃3. According to Eq. (31), an increase of
the decay v2 leads to increases of shifts of zero γ̃3,zero and
pole γ̃3,pole resonance positions. The final approximation of
the total reflection coefficient r̃012 spectra around α = γ ′

SPP
can be expressed using Eq. (29) as

r̃012 = r01

α − γSPP
(
1 + v2p12

r01γSPP

)
α − γSPP

(
1 + r01v2p12

γSPP

) . (32)

This approximation of SPR spectra exhibits an asymmetric
Fano line shape, when its zero and pole resonance parameters
defined by Eq. (31) have different real parts. The differences
between the resonance parameters, as well as between their
shifts from γSPP, are governed by r01 �= 1 and losses of the
SPP mode. Kretschmann [42] and Raether [35] obtained a
symmetric Lorentzian approximation by assumptions Re r01 =
Re r−1

01 and Im r01 = − Im r−1
01 , which are correct only in the

Otto configuration when |r01|2 = 1. In this case, the nonzero
imaginary part of r01 induces different changes to the real parts
of the zero and pole resonance parameters only for nonzero
γ ′′

SPP. In their treatments, the neglect of the SPP mode losses
resulted in the equal real parts of the zero and pole resonance
parameters and in the Lorentzian line shape of SPR dip. In the
Kretschmann configuration, incident light energy dissipates at
the prism-metal interface due to losses and gives |r01|2 < 1.
According to Eq. (31), this fact unconditionally implies the
difference in the real parts of the pole and zero parameters.
Therefore, the losses in the system play the main role in
generating an asymmetric Fano line shape.

Under ATR conditions, the decay coefficient v decreases
with increasing spacer layer thickness h, and v2 → 0 for
large h. According to Eq. (31), the zero γ̃3,zero and pole
γ̃3,pole resonance parameters approach the γSPP value that
results in χ̃3 → 1. In this case, r̃012 → r01, and the resonance
dip disappears. When h decreases, the difference between
γ̃3,zero and γ̃3,pole increases, forming a resonance dip. The
shift of the resonance from the original resonance position
γSPP experimentally observed with decreasing h is due to the
increase in v2.

According to Eq. (31), the direction of displacements of
the resonance parameters from the original SPP propagation
constant γSPP is mainly determined by the sign of parameter p12

defined by Eq. (8). In the Otto and Kretschmann configurations,
the parameters pO

12 and pK
12 are defined for the dielectric-metal

and metal-dielectric interfaces, respectively. For the same set
of materials pO

12 = −pK
12. According to Eq. (8), the real parts of

pO
12 and pK

12 are negative and positive, respectively. Therefore,
the resonance shifts to lower values in the Otto configuration
and to higher values in the Kretschmann configuration.

B. Coupled-mode theory

In the previous subsection, we showed that the asymmetric
line shapes of SPR in the three-layer structures are manifesta-
tions of the Fano interference. In this subsection, we clarify
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FIG. 4. Transfer processes of coupling and self-coupling between
the SPP mode and ingoing and outgoing waves in a three-layer system.

the origins of the interfering flows and provide reasoning
for the zero and pole parameters given by Eq. (31). To elucidate
the observed interference phenomena, we develop a CM model
for the transport processes in three-layer resonance systems.
For simplicity, the nonresonant coupling component rc

12 at the
metal-dielectric interface will be neglected in the following.

As schematically shown by labeled arrows in Fig. 4, the four
following transfer processes occur in a three-layer system for
an incident plane wave H . The arrow labeled by τ corresponds
to the process of incident wave incoupling to the ψSPP mode.
The arrows labeled by η represent a self-interaction of the ψSPP

mode through the back-coupling from the I01 interface. Two
outcoupling processes, which constitute the total reflected field
Hr , include a portion φ of the incident wave reflected back
into the prism layer without interaction with the structure and
a portion ρ of the outcoupled mode field.

Within the CM theory, we can write generalized CM
equations to describe the coupling between the ψSPP mode,
ingoing wave H , and outgoing wave Hr :

1

ik0γSPP

dψSPP

dx
= ψSPP + ηψSPP + τH, (33)

Hr = φH + ρψSPP, (34)

where γSPP is the central propagation constant, η is the coeffi-
cient expressing the degree of self-interaction or self-coupling
of ψSPP mode, τ expresses the degree of incoupling of the
incident wave to the mode, ρ is the coefficient of outcoupling
from the mode to the external field, and φ describes the portion
of the field reflected from the structure without interaction.

The amplitude of ψSPP is obtained from Eq. (33) under H ∝
exp(ik0αx) assumption as a Lorentzian:

ψSPP = γSPP

α − γSPP(1 + η)
τH. (35)

In contrast to the two-layer system, the propagation constant
of the mode excited in a three-layer system is perturbed
by the mode self-coupling η through the spacer layer that
leads to the shift in the propagation constant of the mode
determined by the pole parameter γ CM

3,pole = γSPP(1 + η). The
stronger the self-interaction, the larger the influence on the
propagation constant. The mode self-coupling also influences
the attenuation of the mode defined by the imaginary part of
the perturbed propagation constant.

The reflection coefficient r̃012 ≡ Hr/H is obtained by
substitution of Eq. (35) into Eq. (34):

r̃012 = φ
α − γSPP(1 + η − ρτ/φ)

α − γSPP(1 + η)
. (36)

The position and depth of the SPR dip are determined by
the zero parameter γ CM

3,zero = γSPP(1 + η − ρτ/φ). In addition
to the influence of self-coupling η of the SPP mode, the
resonance dip parameter in a three-layer system is perturbed by
the coupling of external fields with the mode and nonresonant
reflection from the structure.

The coefficients in Eq. (36) are analytically determined for
each transfer process. In the incoupling process, an incident
wave H generates an evanescent wave of complex amplitude
t01H in the spacer layer at the interface I01. Then, the amplitude
of the evanescent wave decays in the spacer layer and becomes
νt01H at the metal-dielectric interface I12. Assuming that the
evanescent wave of the amplitude νt01H incouples to ψSPP with
coupling coefficient κ , the total incoupling degree of H to ψSPP

can be found as τ = κνt01. In the noninteractive reflection, the
portion r01H of the incident wave is reflected back into the
prism layer without interaction with the structure that gives
φ = r01.

The excited mode ψSPP, in turn, generates an outcoupled
evanescent field of the amplitude −κψSPP in the spacer
layer at the I12 interface. The amplitude of the outcoupled
field is attenuated with the decay v becoming −κνψSPP at
the I01 interface. At the I01 interface, the outcoupled field
induces the self-coupling and outcoupling processes. In the
self-coupling process, a secondary evanescent wave of the
amplitude −r10κνψSPP is generated at I01, attenuated again
in the spacer layer with v, and incoupled to the mode with
the coupling coefficient κ . Therefore, the self-interaction
coefficient yields η = −κ2ν2r10. In the outcoupling process,
the evanescent field outcoupled from the mode of the amplitude
−κνψSPP is outcoupled to the propagating wave in the prism
with the coefficient t10 providing the outcoupling coefficient
of ρ = −κvt10.

The reflection coefficient r̃012 for the considered three-layer
systems is obtained by substitution of the aforementioned
transfer coefficients into Eq. (36) as

r̃012 = r01
α − γSPP(1 + v2κ2/r01)

α − γSPP(1 + r01v2κ2)
. (37)

Taking into account the expression (23) for κ obtained
in a two-layer system case, we see that the approximation
(37) for the reflection coefficient derived by the CM theory
coincides with the approximation (32) obtained by the exact
electromagnetic theory, and the expressions for resonance
parameters γ CM

3,zero and γ CM
3,pole are equal to those in Eq. (31).

As we see from Eq. (37), the direction of displacements of
γ CM

3,zero and γ CM
3,pole from the original SPP propagation constant

γSPP is determined by the sign of κ2. Since κ is imaginary
for dielectric-metal interfaces and real for metal-dielectric
interfaces, the Otto and Kretschmann configurations are char-
acterized by negative and positive values of κ2, respectively.
Therefore, the shift of the resonance parameters to lower and
higher values in the Otto and Kretschmann configurations,
respectively, is originated from the π/2 phase difference in
their coupling coefficients κ .

C. Comparison of numerical results

In this subsection, we compare reflectivity spectra for
the Ag- and Al-based three-layer structures obtained by the
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FIG. 5. Fano resonances in exact (dotted line) and approximated
(solid line) spectra of reflectivity by three-layer structures in the (a,
c) Kretschmann and (b, d) Otto configurations based on Ag. (a, b)
The general view and (c, d) the expanded scale near the resonance
region. The filled area corresponds to the ATR angular region (θ >

θc = 41.8◦).

approximation (28) with those obtained by the exact expression
(24) at λ0 = 632.8 nm. In the calculations, we used the
constants of materials generally used in the Kretschmann
(glass/metal/air) and Otto (glass/air/metal) configurations. The
permittivity for the glass layer was taken as ε0 = 2.25. Thick-
nesses of the spacer layers h were optimized in order to
minimize the reflectivities at resonances. The thicknesses h

used in calculations are 50 nm for the glass/Ag/air case, 10 nm
for the glass/Al/air case, and 800 nm for both the glass/air/Ag
and glass/air/Al cases.

In the Ag case presented in Fig. 5, the results of exact
calculations are reproduced very well by the approximate
calculations in the ATR region (θc > sin−1√1/ε0). It should
be noted that the SPR dip in the Kretschmann configuration
is located at an angle higher than that in the Otto configu-
ration. In fact, the resonance angle θSPP = sin−1(γ ′

SPP/ε
1/2
0 )

corresponding to the SPP wave number for the two-layer
structure of 43.52◦ is located between the resonance angles
θmin corresponding to the minimum values of the SPR dips for
the Kretschmann and Otto configurations.

In the Al case demonstrated in Fig. 6, the fitting is good
for the Otto configuration in the whole ATR region, whereas
for the Kretschmann configuration the region of good fitting is
limited to a narrow region near the resonance (approximately
within ±0.5◦). The resonance angle corresponding to γ ′

SPP of
a SPP mode at a single air/Al interface is found to be θSPP =
42.26◦. Similar to the Ag case, the SPR resonance dips in the
Kretschmann and Otto configurations are shifted to the higher
and lower values from θSPP, respectively.

FIG. 6. Fano resonances in exact (dotted line) and approximated
(solid line) spectra of reflectivity by three-layer structures in the (a, c)
Kretschmann and (b, d) Otto configurations based on Al. (a, b) The
general view and (c, d) the expanded scale near the resonance region.
The filled area corresponds to the ATR angular region (θ > θc).

As shown in the above, the shift of the SPR dips in the ATR
spectra for the considered configurations in opposite direc-
tions is validated by the numerical simulations. According to
Eq. (31), the full width at half maximum (FWHM) of SPR dips
determined by the imaginary part of a pole parameter is also
affected by the SPP mode self-interaction supported by the near
field back coupling from the prism interface. Therefore, the
shape and position of the minimum of a SPR dip observed in the
reflection spectra of the multilayer structures can characterize
the propagation constant of a SPP mode, which is supported by
metal-dielectric interfaces, only indirectly and approximately.

The resonance parameters obtained from the approxima-
tions and exact solutions of reflectivity spectra are summarized
in Table II. The pole γ3,pole and zero γ3,zero parameters are
obtained by Eq. (30). The type of configuration affects the
values of each parameter for a given metal. As discussed
in the previous subsection, Re γ3,pole and Re γ3,zero are lower
and larger than γ ′

SPP for the Otto and Kretschmann config-
urations, respectively. The incidence angles corresponding to
the positions of resonance dips in the approximated θzero =
sin−1(Re γ3,zero/ε

1/2
0 ) and in exact cases θmin agree very well

in both configurations for both metals, although the difference
between them is larger in the Al case. Theoretical values of
the approximate line shape width � + b′′ are calculated using
Eq. (27). They are close to each other for both configurations
and agree well with the FWHMs (in RIU) of exact solution.
In the Al case, the resonance is close to the critical angle in
the Otto configuration that makes the estimation of FWHM
difficult.

Note that the resonance peaks are not apparent for the three-
layer structures as sharp peaks in ATR spectra of two-layer
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TABLE II. Fano resonance parameters for three-layer structures.

Base γ3,pole γ3,zero � + b′′ FWHM
metal Configuration (RIU) (RIU) θzero θmin (RIU) (RIU)

Ag Kretschmann 1.033629 + 0.00434i 1.034452 − 0.000667i 43.60◦ 43.60◦ 0.0084 0.0086
Ag Otto 1.031400 + 0.00407i 1.031652 − 0.000406i 43.45◦ 43.45◦ 0.0090 0.0089
Al Kretschmann 1.009123 + 0.013382i 1.02570 − 0.00064i 43.14◦ 43.09◦ 0.0269 0.0238
Al Otto 1.002061 + 0.00222i 1.00300 − 0.00036i 41.96◦ 41.97◦ 0.044

structures. For the considered three-layer structures Re γ3,pole

and Re γ3,zero are close to each other that causes a strong
interference between the peak and dip resonances. Assuming
the same representation of reflectivity as in Eq. (17), we can
conclude that if | Im γ3,pole| is comparable to or larger than the
distance | Re γ3,pole − Re γ3,zero| between the positions of the
peak and dip, the dip is formed clearly, whereas the peak is not
pronounced as can be seen in Fig. 5.

IV. CONCLUSIONS

In the present paper on the resonance response of pla-
nar plasmonic structures, we revealed a number of notable
phenomena. In particular, near field enhancement spectra
at metal-dielectric interfaces demonstrate asymmetrical line
shapes. According to the approximations of the spectra, the
near field enhancement is composed of resonant and nonres-
onant components. The narrow resonant component is related
to the resonant excitation of SPP modes. The interference
of the nonresonant and resonant components results in the
asymmetric Fano line shape in near field enhancement spectra.
According to the approximations, the position and height of the
resonances are determined by the material properties of the
layers. Therefore, the appearance of Fano resonances in the
near field enhancement spectra of metal-dielectric interfaces
is an intrinsic phenomenon.

For the three-layer structures in the Kretschmann and Otto
configurations, we demonstrated that the asymmetric reso-
nances in ATR spectra commonly regarded as SPP resonances
are actually not a result of trivial excitation of the SPP mode at
the metal-dielectric interface. We derived Fano-type analytical
expressions for spectral line shapes that revealed existence

and origins of interfering nonresonant continuum and reso-
nant components. The remarkable feature of the three-layer
structures is the SPP mode self-interaction, which is supported
by the spacer layer. Notably, the self-interaction, which can be
tuned by the thickness of the spacer layer, results in the shifts of
the SPP resonance dip in opposite directions from the intrinsic
values for the Kretschmann and Otto configurations.

We numerically demonstrated that near the SPP resonance
the approximate Fano expressions reproduce well the spectra
calculated by the exact expressions. Implementation of both
the electromagnetic and CM theories to the resonance response
analysis revealed the role of intrinsic mode losses in the for-
mation of an asymmetric resonance line shape. Another note-
worthy conclusion from the CM models is that nonresonant
components are not originated from the resonant excitation of
SPP modes. The appearance of nonresonant components in the
two-layer case is not yet clear and will be the subject of future
research. The insight into generation of the resonance response
provides a basis for more strict theoretical studies and modeling
and characterization of processes in plasmonic materials and
devices. The obtained results may be utilized in both the
development of numerical methods and the characterization
of experimental results in such fields as material science,
plasmonics, sensing, and enhanced spectroscopies.
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