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Thermal control of graphene morphology: A signature of its intrinsic surface tension
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The surface tension σ of free-standing graphene is studied by path-integral simulations as a function of the
temperature and the in-plane stress. Even if the applied stress vanishes, the membrane displays a finite surface
tension σ due to the coupling between the bending oscillations and the real area of the membrane. Zero-point
effects for σ are significant below 100 K. Thermal cooling drives the membrane from a planar to a wrinkled
morphology. Upon heating the change is reversible and shows hysteresis, in agreement with recent experiments
performed on supported graphene.
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I. INTRODUCTION

Graphene, in contrast to the complex lipid bilayer mem-
branes, is an ideal system to understand physical effects of a
two-dimensional (2D) layer fluctuating in 3D space [1,2]. Sev-
eral experiments have shown that the morphology of graphene
can be reversibly changed from a wrinkled configuration at low
temperature to a planar one at high temperature, typically in a
range of 100–600 K [3–9]. This change has been qualitatively
explained by the presence of an underlying substrate. The
mismatch between the expansion coefficients of the substrate
and graphene should produce mechanical stresses that drive
the morphology change. Wrinkles found in the experiments
were periodic and static, with amplitudes several orders of
magnitude larger than those arising from thermal fluctuations
[3]. Such a planar-to-wrinkled transition may, however, be
a pure thermal effect and equally appear in free-standing
graphene, in the absence of any substrate. In fact, for graphene
under a small compressive stress, the planar symmetry is
broken, so that wrinkles appear to stabilize the system at
relatively low temperatures [10,11]. Rising the temperature
introduces thermal fluctuations in the system that can help to
reduce the effective stress suffered by the graphene layer and
thus to recover the planar phase. This uncommon behavior is
investigated here by atomistic simulations.

II. SIMULATION METHOD

Quantum path-integral and classical simulations of
graphene, performed with an in-house code, are presented as
a function of temperature (T ) and in-plane stress (τ ). Our goal
is to show that, under a constant applied stress τ , a planar
free-standing layer wrinkles by lowering the temperature.
Wrinkling is a direct consequence of a mechanical instability
in the bending of the planar layer [12]. In the thermodynamic
limit, this instability (spinodal point) [13] corresponds to a
vanishing surface tension (σ ≡ 0) of the layer. Our analysis
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will provide insight into the dependence of the surface tension
σ of graphene with the applied stress τ and the temperature.

The implementation of path-integral (PI) molecular dy-
namic (MD) simulations is based on an isomorphism between
the quantum system and a fictitious classical one, in which
the quantum particle (here a C nucleus) is described by a ring
polymer composed of NT r (Trotter number) beads [14–18].
This becomes exact in the limit NT r → ∞. NT r was taken
here proportional to the inverse temperature, NT rT = 6000 K,
a condition that makes the numerical error of solving the
path integral nearly temperature independent. The classical
limit is achieved just by setting NT r = 1. The empirical
interatomic LCBOPII model was employed for the calculation
of interatomic forces and potential energy [19]. This empirical
potential has been used in the past to study the elastic behavior
and the out-of-plane crumpling of graphene [20–22]. The
phonon dispersion curves of graphene and graphite in the
harmonic limit, as derived from the diagonalization of the
dynamical matrix with the LCBOPII model were presented
in Fig. 1 of Ref. [23]. The phonon dispersion of graphite
displays a reasonable overall agreement with experimental
data, considering that the potential was not specifically fitted to
reproduce the force constants of graphite [23]. The largest dis-
agreement was found for the bending rigidity κ , that amounts
to 0.7 eV in the harmonic zero-temperature limit, while the
best fit to available theoretical and experimental data reported
by Lambin amounts to 1.6 eV [11]. According to previous
simulations [24–28], the original LCBOPII parametrization
has been slightly modified to increase the zero-temperature
bending constant of graphene to 1.5 eV [29]. For the improved
potential, the phonon dispersion curves of graphene remain
unchanged for the in-plane modes [23], while the improved
optical (ZO) and acoustic (ZA) out-of-plane modes were
presented in Fig. 1(b) of Ref. [24]. We have also compared
the improved ZA and ZO harmonic dispersion curves of
the LCBOPII model with those corresponding to a density-
functional-based tight-binding (TB) model [30], that has been
previously employed to study the out-of-plane wrinkling of
graphene [31]. We find that the long wavelength limit of the
ZA branch is nearly identical for both methods.
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The simulations have been performed in the NτT ensemble.
The simulation cell contains N carbon atoms and 2D periodic
boundary conditions were applied with translation vectors
defining the (x,y) plane. The area of the 2D simulation
cell is NAp. The in-plane stress τ is the lateral force per
unit length at the boundary of the simulation cell [32]. It is
defined as one half of the trace of the in-plane stress tensor
(τxx + τyy)/2. The estimator employed for τxx and τyy can
be found in Refs. [24] and [27] for classical and quantum
cases, respectively. Cells sizes with 960 atoms were studies,
and typical NτT simulations consisted on 106 MD steps for
equilibration and 8 × 106 steps for the calculation of ensemble
average quantities. The analysis of the simulation trajectories
was performed in subsets of 16 000 different configurations,
stored at equidistant times along the simulation run. Error bars
were derived by averaging results obtained from at least two
independent full trajectories. The time step of the simulations
was 1 fs. Further technical details are identical to those already
published in our previous studies of graphene [24–28].

III. LAYER MORPHOLOGY

An example of the different morphologies found for
graphene is given in Fig. 1. These configurations were obtained
by path-integral simulations under isotropic compressive in-
plane stress (τ = 0.025 eV/Å2), but at different temperatures
of 100 and 300 K, respectively. The wrinkled and planar
morphologies of graphene display different values of the
projected in-plane area NAp, while the real surface areas NA

are similar (see Fig. 1). The real surface area per atom A is
larger than Ap, if the layer is not strictly flat. This area NA

was calculated by triangulation, with six contiguous triangles
filling each hexagon of the layer. They share a common vertex
located at the barycenter of the hexagon and each triangle

(b)  T = 300 K

(a)  T = 100 K

FIG. 1. Morphology of free-standing graphene derived from
PIMD NτT simulations at the uniform compressive in-plane stress
τ = 0.025 eV/Å2. The equilibrium configuration is wrinkled at 100 K
(a) but planar at 300 K (b). Wrinkles are more easily formed along
the armchair direction.

has a CC bond as a side. An ongoing discussion in biological
membranes is that their thermodynamic properties should be
described using the notion of a real surface A rather than
an in-plane projection Ap [33]. The contrast between the
extensive variables, NAp and NA [34,35], can be translated
to their conjugate intensive ones, namely the in-plane stress
τ and the negative of the surface tension −σ, respectively
[32,36,37]. In the following, we will show that the increase
of the surface tension σ with raising temperature drives the
change from the wrinkled to the planar morphology. This effect
is a counterintuitive property of the solid membrane. Liquid
surfaces, say water, behave in the opposite way, their surface
tension σ decreases as temperature increases [38].

IV. SURFACE TENSION

The calculation of the surface tension σ has been performed
by two routes. The first one is based on the Fourier analysis
of the amplitude of the out-of-plane atomic fluctuations in the
planar morphology,

H (k) = 1

N

N∑

j=1

hje
−ikuj . (1)

k is a 2D reciprocal vector commensurate with the employed
simulation cell. In the case of a classical MD simulation
rj = (uj ,hj ) are the atomic positions, with uj a 2D vector
in the (x,y) plane and hj the height of the atom with respect
to the mean layer plane. In the case of a quantum simulation
rj are centroid coordinates, which represent the center of mass
of the cyclic paths associated with a given nucleus [39]. The
estimation of H (k) using centroid coordinates, instead of bead
coordinates, is justified because the centroid density represents
the static response of the quantum system to the application
of an external force [40]. Thus, the mean-square amplitude
H̄ 2 = HH ∗ can be related to the dispersion relation, ρω2, of
the acoustic ZA modes as

〈H̄ (k)2〉 = kBT

Apρ[ω(k)]2
, (2)

where the angle brackets indicate an average over the whole
trajectory, kB is the Boltzmann constant, and ρ is the density
of the layer. This relation between spatial centroid fluctuations
〈H̄ 2〉, and vibrational wave numbers ω has been applied
in PI simulations to study anharmonic shifts in the vibra-
tional frequencies of solids and molecules [41–43]. The long-
wavelength limit of the ZA modes is well described by the
dispersion relation

ρ[ω(k)]2 = σk2 + κk4, (3)

where σ is the surface tension, κ the bending constant of the
layer, and k = |k|. Numerical details of the fit of the simulated
amplitudes 〈H̄ 2〉 to the dispersion relation ρω2, to obtain the
parameters σ and κ , are given in Ref. [24]. In particular,
Fig. 1(b) of this reference shows that this numerical approach
accurately reproduces, in the classical low temperature limit,
the analytical dispersion curve of the ZA modes derived by
diagonalization of the vibrational dynamical matrix of the
employed potential. The dispersion relation in Eq. (3) assumes
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FIG. 2. Surface tension of free-standing graphene as a function
of temperature. Results derived from NτT simulations with isotropic
cell fluctuations at in-plane stress τ = 0. Quantum results are shown
as open circles. Classical results are displayed by open triangles. Lines
are guides to the eye.

spatial isotropy in the 2D k space, being accurate for k �
0.5 Å−1 [24].

The surface tension, σ0 ≡ σ (τ = 0), in the quantum and
classical cases has been derived from NτT simulations with
isotropic cell fluctuations and vanishing in-plane stress (τ = 0)
as a function of temperature. The results for N = 960 atoms are
presented in Fig. 2. The classical limit of σ0 is somewhat larger
than that presented in Ref. [24]. The latter was derived with
full (i.e., nonisotropic) cell fluctuations [44], allowing for an
additional relaxation of the surface tension. Finite size errors in
σ0 are small for the employed simulation cell [24]. The surface
tension vanishes in the classical T → 0 limit as the absence
of bending implies that A ≡ Ap and −σ ≡ τ . According to
Eq. (3) the value σ = 0 represents the limit for the mechanical
stability of a flat layer. For σ < 0, the long-wavelength ZA
modes (k → 0) become mechanically unstable, as there appear
imaginary wave numbers in ω(k) [10,45]. The classical surface
tension σ increases with temperature, implying that the planar
morphology is stabilized [46], as the dispersion relation moves
away from the mechanical instability at σ = 0.

Quantum effects in σ0 are significant at temperatures below
100 K. Zero-point vibrations imply a small but finite bending
of the layer in the T → 0 limit. The extrapolation indicates
a finite surface tension of σ0 ∼ 2.5 meV/Å2 as T → 0. This
positive value of σ0 implies that quantum zero-point vibrations
stabilize the planar morphology of the layer with respect to the
classical limit.

Our nonperturbational results for σ0 are in good agreement
with recent analytical work based on a perturbational treatment
of anharmonicity in a continuous model of the solid membrane
[47–50], although this term is absent in other perturbation the-
ory treatment [51]. A surface tension σ implies a finite acoustic
sound velocity v = (σ/ρ)1/2 for the out-of-plane modes. The
surface tension at 300 K is σ0 = 8.7 ± 0.8 meV/Å2, that
translates into an acoustic sound velocity of 0.4 km/s.

In contrast to our MD results for σ0, previous Monte Carlo
(MC) works claim that such a term should not be present
[20,52]. Both MD and MC methods should provide identical
results. The origin of this disagreement is not clear, but it
might be due to inaccuracies in the sampling of the sluggish
long-wavelength modes. Several general considerations on
the appearance of a finite surface tension in an unstressed
layer are appropriate. The difference between the real and
projected areas of a flat layer, A and Ap, has been demonstrated
experimentally by their different stress-strain curves [35],
elastic constants [25,53], and thermal expansion coefficients
[34]. It seems physically reasonable that when the extensive
variables (NAp,NA) are different, their conjugate intensive
ones, (τ, − σ ), might be also different. Time reversal symmetry
in the dynamical vibrational matrix implies that the ZA phonon
dispersion satisfies ω2(k) = ω2(−k). Equation (3) represents
the first terms of the Maclaurin series of an analytical even
phonon dispersion with coefficients depending on (τ,T ). The
simulations in Refs. [20,52] were fitted to a model following
a nonanalytical dispersion relation, ω2(k) ∝ k4−η, with the
anomalous exponent η ∼ 0.82. The theoretical basis of this
model is the self-consistent screening approximation (SCSA)
applied to an unstressed membrane. This model also predicts
a negative Poisson ratio ν [54]. However experimental data
[55] and computer simulations [21] show that ν ∼ 0.16 for
graphene. A finite term σ0 is believed to be prohibited for a
continuous unstressed membrane, since it violates the rota-
tion invariance [56]. However, in a more realistic atomistic
description of a membrane a finite σ0 is possible without loss
of rotational invariance [57].

The consideration that σ is the thermodynamic variable
conjugate to the real area, NA, suggests a second route to
calculate σ from computer simulations [33,58]. The average
value of the area A as a function of τ is presented in Fig. 3(a)
at 300 K. The real area A in the planar morphology decreases
when the in-plane stress increases from tensile (τ < 0) to
compressive (τ > 0) ones. We have checked that the stress-
strain curve derived from Fig. 2(a) is in good agreement with
those derived from Raman spectroscopy in Refs. [35,59]. The
planar morphology becomes unstable for the in-plane stress
displayed by a vertical broken line in Fig. 3(a). The change
in morphology affects the area A, and one observes that the
slope of A(τ ) changes its sign when the layer wrinkles. The
2D modulus of hydrostatic compression B [60] is the inverse
of the compressibility of the real area A. It has been derived
from the fluctuation formula [25]

B = kBT 〈A〉
N (〈A2〉 − 〈A〉)2

, (4)

and is displayed as a function of τ in Fig. 3(b). The results for
A(τ ) and B(τ ) can be combined to obtain the surface tension
σ by numerical integration of the formal relation between
the compressional modulus and the Hooke’s law of elasticity
[33,58]:

dσ

dA
= B

A
. (5)

As integration constant we used the value σ0 = 8.7 meV/Å2

at τ = 0 (see Fig. 2). By combining the integrated function
σ (A) and A(τ ), one gets the function σ (τ ) in Fig. 3(c) (solid
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FIG. 3. (a) Dependence of the real area A of graphene with the
in-plane stress τ as derived from PIMD simulations at 300 K. The
solid line is a guide to the eye. The vertical dashed line indicates
the transition from a planar to a wrinkled morphology of the layer.
(b) The corresponding 2D compressional modulus B as derived from
the fluctuations of the real area A. The broken line is a guide to the
eye. (c) The full line displays the surface tension σ obtained from the
numerical integration of B/A according to Eq. (5). The full circles
are obtained from the analysis of the ZA amplitudes by Eqs. (2) and
(3). The surface tension σ is minimum (σm = −24 meV/Å2) when
the layer changes its morphology.

line). The surface tension attains its minimum value (σm) when
the layer becomes wrinkled. Note the similar behavior of the
conjugate variables, σ and A, with the in-plane stress τ in
Figs. 3(a) and 3(c). An independent derivation of σ from
the Fourier analysis of the ZA fluctuations is shown as full
symbols for several values of τ in Fig. 3(c). The agreement
between both methods is excellent. For the planar morphology
at a constant temperature, the surface tension and the in-plane
stress are related as σ = σ0 − τ [25]. This relation is not valid
for the wrinkled morphology as the slope of the function σ (τ )
becomes positive. Compressive stresses slightly larger than
those in Fig. 3 produce a collapse of the graphene structure.

The wrinkled morphology of the layer is a consequence of
an instability of the long-wavelength ZA modes [12], whose
dispersion relation is given by Eq. (3). The energy quantum
of the ZA mode with lowest energy, ω(kN ), of a planar
layer is plotted in Fig. 4 as a function of the in-plane stress.
kN = 2π/(NAp)1/2 is the modulus of the k vector closest to
the origin. A mechanical instability appears when ω(kN ) → 0
[10,45]. With the employed simulation cell, this condition is
met at the spinodal in-plane stress τS = 33 meV/Å2, as derived
from the extrapolation in Fig. 4. According to Eqs. (3), the
spinodal in-plane stress (τS) and the spinodal surface tension

FIG. 4. Square of the energy quantum of the ZA mode with lowest
energy ω(kN ) from PIMD simulations with N = 960 atoms. The open
circles were derived at 300 K as a function of the in-plane stress τ . The
broken line is a linear fit to the simulation data with τ � 10 meV/Å2.
ω(kN ) vanishes at the in-plane spinodal stress, τS = 33 meV/Å2 (full
triangle).

(σS) are related as

σS ≡ σ0 − τS = −κk2
N . (6)

Note that the r.h.s of this equation is a finite size contribution.
In the thermodynamic limit, N → ∞, then kN → 0, and
the spinodal in-plane stress becomes τS = σ0. For finite size
systems the planar morphology is comparatively more stable,
as if kN > 0 then the spinodal surface tension will be σS < 0.
For the employed simulation cell (N = 960), the values of
κ and kN derived from the PIMD trajectory at 300 K and
τ = 0 are κ = 1.6 eV, and kN = 0.123 Å−1, respectively.
Considering the value of τS from Fig. 4, one derives from
Eq. (6) that σ0 = 9 meV/Å2. This new estimation of σ0 at
300 K agrees closely with the value shown in Fig. 2.

V. TEMPERATURE CYCLE

Our simulations can be compared to recent experimental
data that demonstrate the thermal control of the graphene
morphology [3–9]. To this aim we have performed nonequilib-
rium simulations at constant in-plane stress τ with temperature
varying at a uniform rate of 20 K/ns in cycles between 1000
and 25 K. A cycle consists of 108 MD steps. The simulations
are performed in the classical limit, as quantum effects in the
morphology of the layer are significant only below 100 K. The
morphology has been monitored by the value of the projected
area, Ap, along the thermal cycle. The results for three different
in-plane compressive stresses are displayed in Fig. 5. An arrow
pointing down (up) indicates that the temperature is decreasing
(increasing). At high temperature the in-plane area has a value
of Ap ∼ 2.6 Å2/atom, typical of a planar morphology. At
the scale of the figure, the area Ap remains nearly constant
as the temperature decreases. We observe that by cooling
the flat layer becomes wrinkled and the projected area Ap

jumps to a value <2 Å2/atom. The lower the compressive
in-plane stress τ , the lower the temperature of the wrinkling
transition. By cooling down to 25 K the projected area of
the wrinkled morphology decreases monotonically, showing
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FIG. 5. Dependence of the projected area of graphene with tem-
perature in a thermal cycle between 1000 and 25 K from classicalNτT

simulations. Results for three different isotropic in-plane compressive
stresses (τ , in eV/Å2). Small arrows up (down) indicate the heating
(cooling) process of the cycle.

that the lower the temperature the larger the amplitude of the
surface wrinkles of a free-standing layer [61]. The area Ap in
the wrinkled morphology is extremely sensitive to the applied
in-plane stress. Therefore, the strain in the variable Ap for
the wrinkled morphology should be strongly dependent on
external conditions, such as the substrate and the size of the
sample. A comparison to experimental data for this variable is
only sensible in a qualitative level. From an experimental point
of view, there appears an ample range of periodic wrinkling
morphologies, from amplitudes of 1 Å and wavelengths of 8 Å
[31], to amplitudes of 300 Å and wavelengths of 25 μm [3]. In
the reverse cycle, upon heating from 25 K up to 1000 K, one
observes that the change in morphology is reversible and there
appears hysteresis in the transition temperature.

VI. SUMMARY

Summarizing, the surface tension σ of graphene, as the
variable conjugate to the real surface area A has been deter-
mined by three different methods: by analysis of the Fourier
transform of the bending fluctuations, by integration of the
2D compressional modulus associated to the real area A, and
by derivation of the spinodal in-plane stress (τS) in a finite
size sample. The mutual agreement reveals that our analysis is
thermodynamically sound, providing insight into this intrinsic
property. The consideration that the bending of a planar layer
increases its surface tension allows us to rationalize that
quantum zero-point effects as well as a rise of temperature
increase the stability of a planar morphology. Quantum effects
in the surface tension are significant below 100 K.

Our simulations provide insight into experiments showing
a thermal control of the graphene morphology [3–9]. The tem-
perature changes the bending of the layer while the latter mod-
ifies the surface tension. The higher the temperature, the larger
the surface tension, favoring a planar layer. The decrease of the
surface tension with lowering temperature produces wrinkles
when the planar layer approaches its stability limit (spinodal
point). This transition is reversible and shows hysteresis in
agreement to experiments performed on supported graphene
[3–9]. The mechanical instability in the bending of the planar
layer displays a size effect. The cutoff of the long-wavelength
bending modes in a finite size layer implies an increased
stability of its planar morphology. In the thermodynamic limit
N → ∞, the spinodal point of a planar layer corresponds to
a vanishing surface tension. The expectation that a membrane
in thermal equilibrium has vanishing surface tension, because
its free energy should be minimal with respect to the area of
the membrane, is not met for crystalline graphene. This is a
consequence of the coupling between the real surface area and
the bending of the layer.
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