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Double refraction and spin splitter in normal-conductor/hexagonal-semiconductor junctions
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In analogy with light refraction at optical boundary, ballistic electrons also undergo refraction when propagating
across a semiconductor junction. Establishing a negative refractive index in conventional optical materials is
difficult, but the realization of negative refraction in an electronic system is conceptually straightforward, which
has been verified in graphene p-n junctions in recent experiments. Here, we propose a model to realize double
refraction and double focusing of electric current by a normal-conductor/hexagonal-semiconductor junction. The
double refraction can be either positive or negative, depending on the junction being n-n type or p-n type. Based
on the valley-dependent negative refraction, a spin splitter (valley splitter) is designed at the p-n junction system,
where the spin-up and spin-down electrons are focused in different regions. These findings may be useful for
the engineering of double lenses in electronic systems and have an underlying application of spin splitter in
spintronics.
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I. INTRODUCTION

The propagation of electrons has many similarities with
the propagation of light [1,2]. In two-dimensional electron gas
(2DEG), where the mean free path is larger than the size of
the system, ballistic electrons propagate following straight-line
trajectories which is analogous to light rays. When the ballistic
electrons transmit across a semiconductor junction, electrons
should undergo refraction in analogy with light refraction at
optical boundary with different refractive indexes [3–6]. Such
phenomena can be understood simply in terms of Snell’s
law, where the refractive index of photons is replaced by
the wave vector of electrons. Thus it is possible to manipu-
late electrons like photons and electron optics has attracted
worldwide attention because of its underlying applications.
Electron focusing, diffraction, and double-slit interference
experiments are examples of electron optics which have been
clearly observed in 2DEG systems [7,8].

In conventional 2DEG systems, electrostatic lenses have
been demonstrated in high mobility GaAs about 30 years
ago [3,4]. Since then, many works have been undertaken to
obtain various electron optical devices like mirrors, prisms,
lenses, and splitters [9–20]. One interesting topic of electron
optics is the negative refraction [21–23], which is challenging
to achieve in conventional optical systems. For photons, this
behavior can be realized in optical metamaterials [24,25]. In
electronic systems, negative refraction can be achieved quite
straightforwardly [9,26]. For example, when electrons transmit
across a p-n junction, in order to conserve the transverse
component of momentum, the transverse group velocity has
to change a sign between the valence bands in p region and
the conduction bands in n region, hence leading to the negative
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refraction. Graphene has a unique band structure with a linear
dispersion relation of low-lying excitations, which gives rise
to many peculiar properties [27,28]. Because of the vanishing
band gap and the high intrinsic mobility, graphene has also
been considered as an attractive platform for studying the
electron optics [9–12,29–32]. Recent experiments have clearly
demonstrated the negative refraction in graphene p-n junctions
[26,31]. This negative refraction can be used to design a perfect
lens and has many other potential applications.

In optics, a beam of light at the anisotropic crystal interface
exhibits the double refraction effects. Recently, monolayer
transition-metal dichalcogenides (TMDs) have been success-
fully fabricated in experiments [33–37]. The TMDs (e.g.,
NbSe2, MoS2) exhibit Ising pairing in superconducting phase
at sufficiently low temperature, with an in-plane upper critical
field far above the Pauli paramagnetic limit [33–36]. This un-
usual behavior is attributed to the intervalley pairing protected
by Zeeman-type spin-valley locking against external magnetic
fields [34]. This out-of-plane Zeeman-type spin polarization
of the valleys can be used to achieve double refraction in
electron optics. Motivated by this, in this paper, we propose a
model to realize double refraction and double focusing of elec-
tric current by a normal-conductor/hexagonal-semiconductor
junction. Although the electron refraction and focusing have
been investigated in many previous works [9–16], the study of
double refraction and double focusing effects are still scarce at
present. Our model is based on a hexagonal lattice system (like
graphene or TMDs), but breaks the A-B sublattice symmetry.
By introducing a spin-orbit interaction into the system, the
two valleys in the Brillouin zone are no longer equivalent.
When an electron is incident from the normal conductor,
double refraction and double focusing occur, and the electron
transmits to two different modes. The two modes have different
refractive indexes due to the two valleys being inequivalent.
We investigate electron optics in both the n-n junction and p-n
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FIG. 1. Lattice diagram and band structures. (a) The schematic
diagram of the normal-conductor/hexagonal-semiconductor junction
in the lattice model. (b) Brillouin zone of the hexagonal lattice. (c)
Energy bands along the dashed line in (b) with ky = 0. Dashed red
lines denote the energy bands of spin-up electrons, while the blue lines
are the spin-down bands. (d) Zoom-in figure of the energy bands of
the dotted box in (c). The parameters are εR = −6.2, tR = −8, β = 4,
and βs = −0.03.

junction below. In particular, the incident electron undergoes
double negative refraction in the p-n junction. We also show
that by double negative refraction with elaborately tuning the
chemical potential of the system, the p-n junction can work as a
spin splitter (valley splitter), which may be useful in spintronics
(valleytronics).

The rest of this paper is organized as follows. In Sec. II, we
present the model Hamiltonian and the corresponding band
structures of the normal-conductor/hexagonal-semiconductor
junction, considering both the effects of A-B sublattice sym-
metry breaking and spin-orbit interaction. In Sec. III, we
investigate the positive double refraction in n-n junction and
the negative double refraction in p-n junction. In Sec. IV, a spin
splitter is designed based on the negative double refraction.
Finally, a brief summary is presented in Sec. V. Appendixes
A and B show that the double refraction and double focusing
effects are not affected by the coupling Hamiltonian and the
normal conductor. Some calculation details are presented in
Appendixes C–E.

II. MODEL HAMILTONIAN AND BAND STRUCTURES

In the following, we introduce the model Hamiltonian and
demonstrate the corresponding band structures. Figure 1(a)
is the lattice model of the normal-conductor/hexagonal-
semiconductor junction, which consists of a square lattice at
the left side and a hexagonal lattice at the right side. The
nearest-neighbor distance of the hexagonal lattice is set to be
a and other lattice parameters are labeled in Fig. 1(a). The
Hamiltonian of the whole system can be written as

H = HL + HR + HT , (1)

where HL, HR , and HT are the Hamiltonians of the normal con-
ductor, hexagonal semiconductor, and the coupling between

them, respectively. For the normal conductor, we consider
the square lattice model with the dispersion relation of its
carrier being quadratic. In the tight-binding representation, the
Hamiltonian HL is of the form [38,39]

HL =
∑
iσ

εLa
†
iσ aiσ +

∑
〈ij 〉σ

tLa
†
iσ ajσ , (2)

where aiσ and a
†
iσ are the annihilation and creation operators at

the discrete site i and εL is the on-site energy. The second term
in Eq. (2) is the nearest-neighbor hopping. tL is the hopping
energy, which is positive for valence bands and negative for
conduction bands.

Experimentally, it is possible to break the A-B sublattice
symmetry in a hexagonal lattice like graphene. For example,
isolated graphene/BN bilayers break the chemical equivalence
of graphene A and B lattice sites [40,41]. Graphene growth
on the reconstructed surface of MgO(111) also leads to A-B
sublattice symmetry breaking [42,43]. In addition, spin-orbit
interaction can also play a very important role in some two-
dimensional materials. The emergence of the quantum spin
Hall effect and topological insulators can be attributed to the
rise of the spin-orbit interaction [44–47]. Thus we consider a
general Hamiltonian at the hexagonal lattice side as [48]

HR =
∑
iσ

(εR + λiβ)b†iσ biσ +
∑
〈ij 〉σ

tRb
†
iσ bjσ

+
∑

〈〈ij 〉〉σσ
′
iβsνij s

z

σσ
′ b

†
iσ bjσ

′ , (3)

where biσ and b
†
iσ are the annihilation and creation operators at

the discrete site i of the right side. εR is the on-site energy and β

represents the energy difference between A-B sublattice. Here
λi = ±1 for A(B) sublattice. The second term is the nearest-
neighbor hopping term and tR is the hopping energy. The third
term is the spin-orbit interaction which connects the second
nearest neighbor. The same term also appears in the seminal
work of the quantum spin Hall effect in graphene [44]. sz is a
Pauli matrix representing the electron’s spin and νij = −νji =
±1 depending on the orientation of the two site i to j [44]. The
spin-orbit coupling βs is usually very small compared to tR , but
it can be in the order of meV by the Bi-cluster deposition [49].
The Hamiltonian HT of the coupling between the left and right
lead is [50–52]

HT =
∑
ijσ

tca
†
iσ bjσ + H.c., (4)

where tc is the coupling strength, and we set tc = tL throughout
the work for simplicity. Note that the detailed forms of
HL and HT and the value of tc will not affect the results
(see Appendixes A and B) [50–52]. As long as HL is a
square lattice (normal conductor), the double refraction and
the double focusing effects can always occur in the normal-
conductor/hexagonal-semiconductor junction. Here we as-
sume that the interface of the normal conductor and hexagonal
semiconductor are perfect [see Fig. 1(a)], which means that
the interface is relatively clean and the translational invariance
along the y direction persists in the system. As usual, there are
defects in the real devices and the interface is rough as well.
When the incident and refractive electrons are in the bottom

235425-2



DOUBLE REFRACTION AND SPIN SPLITTER IN … PHYSICAL REVIEW B 97, 235425 (2018)

of the conduction band or the top of the valence band, their
wavelengths are usually very long. As long as the wavelength
is much longer than the defect size and the interface roughness,
the direction of the refraction can be well maintained and the
results are barely affected by the defect and the imperfect
interface. It is worth mentioning that here the square lattice
is coupled to the armchair edge of the hexagonal lattice. If the
square lattice is coupled to the zigzag edge (i.e., the hexagonal
lattice is rotated by 30◦), only the single refraction and single
focusing can occur, because of the anisotropy of the hexagonal
lattice.

The Brillouin zone of the hexagonal lattice is demonstrated
in Fig. 1(b). We choose each unit cell containing four atoms
[see red box in Fig. 1(a)], which can simplify the calculations
of the transmission coefficients; hence the Brillouin zone is
one-half smaller than the usual Brillouin zone of graphene.
In Fig. 1(c), we plot the energy bands along the dashed line
in Fig. 1(b) with ky = 0. Because of the Brillouin zone being
half smaller, the number of the energy bands is doubled and
each spin orientation has four energy bands. Breaking the A-B
sublattice symmetry induces a big energy gap at the K and
K ′ points. We mainly consider the electron transport near the
Fermi surface and the four lower energy bands can be ignored,
as they are much below the Fermi surface E = 0. In Fig. 1(d),
the zoom-in figure of the energy bands near the K and K ′
points are presented. The spin-orbit coupling can be viewed
as an effective magnetic field B that points in the opposite
directions at the K and K ′ points. At K point, spin-up electrons
have lower energy, while at K ′ point it is the other way around.
Thus, for energy bands with a definite spin orientation, the
energy dispersion relation between the K and K ′ points are no
longer equivalent. In fact, this energy band is the same as that
of TMDs in the normal phase [37]. So a junction consisting
of a normal conductor coupled to the TMDs can be regarded
as a real example of our model. In addition, the present model
can also be realized in a general hexagonal lattice as long as
the sublattice symmetry is broken and in the presence of the
spin-orbit coupling. Double refraction occurs when electrons
incident from normal conductor with square lattice transmit to
the two valleys, as demonstrated in the next section.

III. DOUBLE REFRACTION AND DOUBLE FOCUSING

In this section, we demonstrate how the normal-
conductor/hexagonal-semiconductor junction leads to the dou-
ble refraction and double focusing. Due to the Pauli matrix σz

commuting with the Hamiltonian in Eq. (1), the spin in the
z direction is conserved in the scattering process. So, in the
following analysis, we first consider a spin component, e.g.,
spin-up one. Figures 2(a) and 2(b) respectively illustrate the
band diagrams of the n-n junction and p-n junction for a spin
component and the corresponding equienergy lines in the kx -ky

plane are shown in Figs. 2(c) and 2(d). For an incident carrier
(electron or hole) from the left normal conductor, there are
two beams of outgoing electrons, due to the two nonequivalent
valleys. Notice that the directions of the two beams of outgoing
electrons are usually different. So the double refraction occurs
in this normal-conductor/hexagonal-semiconductor junction.
Because of the transverse translation invariance in the model,
the transverse component of the momentum (ky) is conserved

FIG. 2. Heterojunction band diagrams and schematic of double
refraction. (a) The band diagrams of then-n junction. Incident electron
i transmits to the two valleys with the transmission coefficients T1

and T2. (b) The corresponding p-n junction case. Panels (c) and (d)
are the corresponding equienergy lines in the kx-ky plane for the n-n
junction in (a) and the p-n junction in (b). Here the arrows indicate the
directions of the incident and refraction carriers. (e) Schematic of the
double positive refraction in the n-n junction. Electrons emitted from
the source i are bent different amounts at the n-n junction interface
and two virtual focal spots are formed at the same side of the electron
source. Only one virtual focal spot is plotted in (e). (f) Schematic of the
double negative refraction in the p-n junction. Electrons emitted from
the source i undergo double negative refraction at the p-n junction
interface and two real focal spots are formed at the opposite side of
the electron source.

when electrons transmit across the junction. So the transverse
group velocity preserves the sign between the n-n junction
[see Fig. 2(c)], but changes a sign between the valence bands
in the p region and the conduction bands in the n region
[see Fig. 2(d)]. As a consequence, the double refraction is
positive in a n-n junction, while negative in a p-n junction.
Figures 2(e) and 2(f) are the schematic diagrams of the positive
and negative double reflections, respectively. For the positive
double refraction, the outgoing electrons are bent different
amounts as they pass through the junction and two virtual
focal spots are formed at the same side of the electron source
i. However, in Fig. 2(f), two real focal spots are formed at the
opposite side of the electron source, attributing to the opposite
transverse velocity and the negative refractive index.

To further investigate the nature of the double refraction,
we calculate the transmission coefficients and the refractive in-
dexes for both cases in detail. By applying the nonequilibrium
Green’s function method to the tight-binding Hamiltonian H in
Eq. (1), the transmission coefficients T1 and T2 can be obtained
quite straightforwardly by following the same procedure as in
Refs. [53,54]. Figure 3 displays the case of the double positive
refraction in a n-n junction, where (a) and (b) are the transmis-
sion coefficients and (c) and (d) are the refractive indexes. For
small incident angle, the transmission coefficient T1 is nearly
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FIG. 3. Transmission coefficients and refractive indexes for the
n-n junction. Panels (a) and (b) are the transmission coefficients T1

and T2 at the two valleys as a function of the incident angle θ for
different incident energy E. Panels (c) and (d) are the corresponding
refractive indexes. The parameters are εL = 7, tL = −8; others are
the same as those in Fig. 1.

a constant and is insensitive to the incident energy E. As the
incident angle increases,T1 rapidly reduces andT2 significantly
increases. For large incident angle, both T1 and T2 drop to zero,
attributing to the absence of the corresponding transmission
modes at the n side. Thus electrons undergo total reflection
at large incident angle. Note that T1 dominates the whole
scattering process for a large range of parameters. The increase
of the incident energy enhances T1 at large incident angle,
but meanwhile suppresses the transmission coefficient T2. The
total transmission probability T = T1 + T2 ≈ 1 indicates that
the n-n junction is almost transparent for electrons. Meanwhile,
the two transmission modes have different refractive properties
as shown in Figs. 3(c) and 3(d). Here the refractive index is
defined as ni = sin θ/ sin θi , where θ is the incident angle and
θi (i = 1,2) is the refraction angle of transmission mode i (for
details, see Appendix C). The refractive index n1 is insensitive
to the incident energy and increases as the incident angle grows.
We emphasize that n < 1 for a large range of parameters;
hence the electronic refraction at this valley serves as an
optically thinner medium in optics. For a perfect virtual focus,
the refractive index n obeys the law n2 = c + (1 − c) sin2 θ

(see Appendix D), where the parameter 0 < c < 1 in optically
thinner medium. The refractive indexn1 approximately follows
this law; hence this virtual focus is nearly perfect [see Fig. 2(e)].
For the refraction at the other valley, the refractive index n > 1
for a large range of parameters; hence electronic refraction at
this valley serves as an optically denser medium in optics.
Here c > 1 in the optically denser medium. Although n2 is
sensitive to incident energy, it also approximately matches
the law n2 = c + (1 − c) sin2 θ . Therefore, the second virtual
focus is also relatively good [the second virtual focal spot is
not plotted in Fig. 2(e)].

Next, we focus on the p-n junction in which the double
negative refraction occurs, as illustrated in Fig. 4. The main
features of the transmission coefficients are basically the same

FIG. 4. Transmission coefficients and refractive indexes for the
p-n junction. Panels (a) and (b) are the transmission coefficients T1

and T2 at the two valleys versus the incident angle θ for different
incident energy E. Panels (c) and (d) are the corresponding refractive
indexes. The parameters are εL = −7, tL = 8; others are the same as
those in Fig. 1.

as those in positive refraction, except the status of T1 and T2 are
exchanged. In this case, T2 dominates the scattering process
[see Figs. 4(a) and 4(b)], but T1 is not very small and it has
the same order of T2. As for the refractive indexes shown in
Figs. 4(c) and 4(d), n1 and n2 become negative and almost
have a mirror symmetry with the positive refractive indexes in
Figs. 3(c) and 3(d) about the axis n = 0. Contrary to the n-n
junction case, two real focal spots are formed at the opposite
side of the electron source and the focusing performance of the
incident electrons is pretty good [see Fig. 2(f)].

The spin-down electrons show similar refractive behaviors
at the two valleys. The double refraction is positive for a n-n
junction and negative for a p-n junction, and the absolute
value of the refractive index |n| > 1 at one valley and |n| < 1
at the other. Because of the time reversal invariance of our
Hamiltonian, the scattering matrix of the spin-up and spin-
down electrons satisfies the relation sT

↑ = s↓, which indicates
that T1↑ + T2↑ = T1↓ + T2↓.

The double negative refraction and double focusing effects
can be well demonstrated by plotting the distribution of
the local conductance [55,56], as shown in Fig. 5. Let us
consider a normal-hexagonal nanoribbon with the interface
being located at x = 0. Two electrodes (or STMs) respectively
couple to the normal and hexagonal regions as the source and
detecting electrodes. We assume that the source electrode and
the nanoribbon are in contact with four lattices [see the blue
area in Fig. 1(a)]. The response signal can be extracted by
coupling a detecting electrode locally in the n region, and the
detecting electrode is assumed to contact six lattices [see the
red area in Fig. 1(a)]. The source electrode in the p region is
added a small bias V . The biases of the left terminal (normal
conductor), right terminal (hexagonal semiconductor), and
detecting electrode are set to zero. Electron flow is injected
into the normal conductor from the source electrode located
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FIG. 5. Distribution of the local conductance in the n region with
the p-n interface being located at x = 0. The source flow is injected
from the square unit cell at (−150a,0). (a) Spin-up electrons undergo
double negative refraction when propagating across the junction and
are focused in different locations at the n side. Panel (b) is for incident
spin-down electrons. The ribbon width is W = 100 × 3a and the
Fermi energy E = 0. Other parameters are the same as those in Fig. 4.

at (−150a,0) in the p region. The injected electrons spread
in all directions and the left-going electrons finally escape
because of the open boundary condition. The right-going
electrons undergo double refraction and are focused in different
locations when propagating across the p-n junction. Below,
we study the local conductance flowing from the source
electrode to the detecting electrode. The calculation details
are presented in Appendix E. As shown in Fig. 5(a), the
incident spin-up electrons undergo double negative refraction
when propagating across the p-n junction and are focused in
different locations at the n side. For the transmission mode 1,
the electrons are focused around the spot located at (25

√
3a,0)

and the focusing performance is pretty good, while for the
transmission mode 2, the electrons are focused around the
area located at (130

√
3a,0). The refractive index of each

mode can be estimated as n1 ≈ −25
√

3a/150a = −0.29 and
n2 ≈ −130

√
3a/150a = −1.50, which are consistent with

the above theoretical results [see Figs. 4(c) and 4(d)]. The
conductance strength of mode 2 is well above that of mode
1, in line with theoretical expectation [see Figs. 4(a) and
4(b)]. For incident spin-down electrons in Fig. 5(b), the local
conductance pattern shows similar behaviors. The double
negative refraction also occurs and the refractive index |n| < 1
at one focal spot and |n| > 1 at the other. Note that, besides the

FIG. 6. Spin splitter based on the normal-hexagonal p-n junction.
Panel (a) is the band diagrams of the spin splitter. Here the Fermi
energy E is located between the energy bands of the spin-up and spin-
down species in the n region. Panel (b) is the schematic diagram of
the electrons’ trajectories in the spin splitter. Electrons with different
spin are separated in real space and are focused in different regions.

focal spots (red regions), there is also an interference pattern
(blue wave pattern) shown in Fig. 5. This interference pattern
is due to the interference between the two outgoing modes.
In a word, the local conductance patterns clearly confirm
the double refraction and double focusing effects and all the
results are consistent with the theoretical results. In addition, in
Appendixes A and B, we also show that the double refraction
and double focusing effects are very robust and they are not
affected by the coupling Hamiltonian and the parameters of
the normal conductor.

IV. SPIN SPLITTER AND DETECTIVE DEVICE

Spin-orbit coupling modifies the electronic band structures
at the two valleys and the double refraction becomes spin
dependent as mentioned above. Thus, for spin nonpolarized
incident electrons from the left side, the outgoing electrons
on the right side will be spin polarized, i.e., the normal-
conductor/hexagonal-semiconductor junction can be used as
a spin splitter. Below, as an example, we consider the p-n
junction system and the energy bands are shown in Fig. 6(a).
Here the red lines denote the energy bands of spin-up electrons
in the n region, while the blue lines denote spin-down ones,
and the green lines are the bands in the p region where
the spin-up and spin-down electrons are degenerate. In order
to clearly illustrate the physical picture of the spin splitter,
the Fermi energy E is located between the red line and
blue line [see Fig. 6(a)]. In this case, the incident spin-up
electrons can only get through the junction via valley K

at the state T1↑, while the spin-down electrons via valley
K ′ at the state T2↓. Notice the states T1↑ and T2↓ are not
mutually the time-reversal states and the dispersion relations
at the two valleys εK↑(k − K) 
= εK ′↓(k − K′), although the
system possesses the time-reversal symmetry with the disper-
sion relations εK↑(k − K) = εK ′↓(−k − K′). So the refractive
indexes of the two valleys are different, leading to the fact that
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FIG. 7. Transmission coefficients and refractive indexes of the
spin splitter. Panels (a) and (b) are the transmission coefficients T1↑
and T2↓ for spin-up and spin-down electrons, respectively. Panels (c)
and (d) are the corresponding refractive indexes. The parameters are
εR = −4.2, tR = 8, β = 4, βs = −0.1, εL = −7, and tL = 8.

the electrons with different spin are separated in real space and
are focused in different regions. By detailed calculation of the
incident and refraction angles, we plot the schematic diagram
of the electrons’ trajectories in Fig. 6(b). Spin-up electrons are
focused around a small spot, while spin-down electrons are
focused in a relatively large area. The electron’s outgoing area
can be divided into three regions. In region 1, both spin-up and
spin-down electrons can be observed, but spin-down electrons
are in the majority. In region 2, only spin-up outgoing electrons
could be observed. In region 3, we can hardly detect any
outgoing electron. In particular, at two focal spots the density
of the spin-up and spin-down outgoing electrons is very high,
which can be detected by using ferromagnetic STM. Note that
here the spin-up and spin-down electrons are at the valleys K

and K ′, respectively. So the spin splitter also serves as a valley
splitter.

Let us study the transmission coefficients and refractive
indexes of the spin splitter. Figures 7(a) and 7(b) are the
transmission coefficients T1↑ and T2↓ of the two transport
channels. The two transmission coefficients are in fact identical
for various incident energy. This is because for each spin
there is only one transmission mode and the general relation
T1↑ + T2↑ = T1↓ + T2↓ reduces to T1↑ = T2↓ in the present
case. T1↑ and T2↓ are the maximum when the incident angle
θ = 0. With the increase of θ , they decrease. At large θ , T1↑ and
T2↓ rapidly drop to zero. However, due to the band structures
at the two valleys being not completely the same, the refractive
indexes present different behavior, as illustrated in Figs. 7(c)
and 7(d). With larger incident angle, the refractive index n1

decreases, while n2 shows opposite behavior. The refractive
index n1 approximately follows the asymptotic behavior of
perfect lens and the spin-up electrons are focused around a
small spot. However, n2 obviously do not follow the law and the
spin-down electrons are focused in a relatively large area. Note

FIG. 8. Distribution of the local conductance in the n region
with the p-n interface being located at x = 0. The source flow is
injected from the square unit cell at (−300a,0). (a) Spin-up electrons
are focused around the spot located at (53

√
3a,0). (b) Spin-down

electrons are focused in a relatively large area near (100
√

3a,0). The
ribbon width is W = 100 × 3a and the Fermi energy E = 0. Other
parameters are the same as those in Fig. 7.

that by changing the spin-orbit coupling constant βs , different
types of focusing patterns can be realized.

To confirm the effectiveness of the spin splitter device,
we also present the distribution of the local conductance in
the n region, as shown in Fig. 8. Nonpolarized electrons
are injected from an electron source located at (−300a,0) at
the normal-conductor side, and they are focused in different
locations for different spin orientations. In Fig. 8(a), the spin-up
electrons are focused around the spot located at (53

√
3a,0).

The corresponding refractive index n1 can be estimated as
n1 ≈ −53

√
3a/300a = −0.30, which is in accord with the-

oretical results [see Fig. 7(c)]. However, in Fig. 8(b), the
spin-down electrons are focused in a relatively large area
near (100

√
3a,0). The corresponding refractive index n2 is

approximately n2 ≈ −100
√

3a/300a = −0.58, in line with
expectations [see Fig. 7(d)]. Therefore, the local conductance
patterns are excellently coincident with the schematic diagram
discussed in Fig. 6, which strengthens our conclusions of the
spin splitter device. Note that in the previous works of spin lens
devices, electrons with a certain spin direction are focused,
while electrons with other spin directions diverge [14,15].
Here, due to the novel spin-valley locking band structures of the
hexagonal lattice, the spin splitter can focus both spin-up and
spin-down electrons in different locations in real space. We
also notice that, in a recent work [57], the authors proposed
the birefringent electron optics in circular doping-controlled
graphene in the presence of Rashba spin-orbit interaction.
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However, their device cannot be used as a spin splitter because
of the possible spin-flip process.

V. SUMMARY

In conclusion, we have proposed a model to realize dou-
ble refraction and double focusing of electric current us-
ing a normal-conductor/hexagonal-semiconductor junction.
By breaking the A-B sublattice symmetry and introducing
the spin-orbit interaction, a large energy gap is formed and
spin-up and spin-down electrons experience opposite effective
magnetic field at the two valleys. Incident electrons transmit
to the two valleys and result in the double refraction at the
hexagonal lattice side. The double refraction can be either
positive or negative, depending on the junction being n-n
type or p-n type. The two valleys reveal different types of
refractive behaviors. The absolute value of the refractive index
|n| > 1 at one valley and |n| < 1 at the other. Additionally,
the p-n junction can be used as a spin splitter (valley splitter),
which could be verified by the ferromagnetic STM. We also
present the local conductance patterns to strengthen the above
conclusions. Our results may be useful for the engineering
of double lenses in electronic systems and have underlying
applications in spintronics.
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APPENDIX A: EFFECT OF THE SQUARE LATTICE AND
COUPLING HAMILTONIAN ON THE DOUBLE

REFRACTION AND DOUBLE FOCUSING EFFECTS

In this Appendix, we show that the double refraction and
double focusing effects do not rely on the detailed forms of the
square lattice Hamiltonian HL and the coupling Hamiltonian
HT . In the main text, the nearest-neighbor distance of the
square lattice is 3a/2 and all the atoms of the outermost layer
of the square lattice have a hopping term connecting with the
armchair edge of the hexagonal lattice [see Fig. 1(a)]. Here
we consider the other two lattice diagrams in Figs. 9(a) and
9(b), where the nearest-neighbor distance of the square lattice
is a. The corresponding local conductance patterns for the
incident spin-up electrons are shown in Figs. 9(c) and 9(d).
Detailed formalism for calculating the local conductance is
in Appendix E. The main features of the local conductance
patterns are the same as those in Fig. 5 in the main text.
Two focal spots obviously emerge. One spot is close to the
interface x = 0 with the refractive index |n1| < 1 and the
focusing performance is pretty good. The other spot is located
around (100

√
3a,0) with the refractive index n2 ≈ −1. Here

the refractive indexes and the specific interference patterns
are slightly different from those in the main text, because
of the lattice constant of the square lattice being changed.

FIG. 9. Panels (a) and (b) are the schematic diagrams of two
other types of square-hexagonal-semiconductor junctions. The p-n
interface is located at x = 0. In (a) the source electrode is in contact
with four lattices in the normal conductor, but in contact with six
lattices in (b). (c),(d) Distribution of local conductance calculated
from the lattice diagram in (a) and (b), respectively. The source flow
is injected from the square unit cell at (−175a,0). The ribbon width
is W = 100 × 3a, the coupling strength tc = tL = 8, and the Fermi
energy E = 0. Other parameters are the same as those in Fig. 5.

However, the double refraction and double focusing effects can
always occur. In addition, the local conductance patterns and
the focal spots can always be observed as the coupling strength
tc changes (no shown here). In short, the double refraction and
double focusing effects can well persist and they do not rely
on the detailed forms of HL and HT .

APPENDIX B: EFFECT OF tL AND εL OF THE NORMAL
CONDUCTOR ON THE DOUBLE REFRACTION AND

DOUBLE FOCUSING EFFECTS

In this Appendix, we also show that the double refraction
and double focusing effects do not rely on the detailed values
of tL and εL of the normal conductor. In the calculation of
the local conductance patterns in Fig. 5 in the main text, the
parameters of the normal conductor are set as tL = tc = 8
and εL = −7. Here, we keep the coupling strength tc = 8 and
study the dependence of local conductance patterns on other
values of tL and εL. The results are shown in Fig. 10, and
(a)–(d) correspond to (tL, εL) being (4, −7), (16, −7), (8,
−3.5), and (8, −14), respectively. As tL or εL changes, the
energy dispersion relation of the normal conductor changes
accordingly, which leads to different focal positions at the
hexagonal lattice side [see Figs. 10(a)–10(d)]. However, the
local conductance strength changes little, and the double
refraction and double focusing effects can always be observed.
Note that the hexagonal lattice have the same band structure
with the TMDs [see Fig. 1(d)] and this band structure is totally
different from that in graphene. Thus the insulating behavior in
normal-conductor/graphene/normal-conductor junctions will
not present in our system [50].
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FIG. 10. Effects of tL and εL are present. In the calculation of the
local conductance patterns in Fig. 5 in the main text, the parameters
of the normal conductor are set as tL = tc = 8 and εL = −7. Here,
we keep tc = 8 and display a local conductance pattern of spin-up
electrons for other values of tL and εL, with (tL, εL) being (4, −7), (16,
−7), (8, −3.5), and (8, −14) in (a)–(d), respectively. Other parameters
are the same as those in Fig. 5.

APPENDIX C: INCIDENT AND REFRACTION ANGLE

In this Appendix, we will elaborate the definition of the
incident and refraction angles in detail. By applying the Bloch
theorem to the tight binding Hamiltonian in Eq. (2), the energy
band of the normal conductor can be readily derived as

ε(kx,ky) = εL + 2tL cos 3
2kxa + 2tL cos 3

2kya, (C1)

where 3a/2 is the nearest-neighbor distance of the square
lattice [see Fig. 1(a)]. The group velocity can be obtained from
the band structure as

vx = 1

h̄

[
∂ε

∂kx

]
ky

= −3atL

h̄
sin

3

2
kxa, (C2)

vy = 1

h̄

[
∂ε

∂ky

]
kx

= −3atL

h̄
sin

3

2
kya. (C3)

Consider a spin-up electron incident from the normal conduc-
tor with energy E and transverse wave vector kin

y ; the wave
vector kin

x can be uniquely determined by the condition vx > 0
and Eq. (C1) as

kin
x

(
kin
y

) = 2

3a
arccos

E − εL − 2tL cos 3
2kin

y a

2tL
. (C4)

Because the incident energy E = 0 is given, kin
x is only

dependent on the transverse wave vector kin
y . The incident angle

θ of the spin-up electron can be defined as

θ
(
kin
y

) = arctan
vin

y

vin
x

= arctan
sin 3

2kin
y a

sin 3
2kin

x a
. (C5)

Note that θ is also only dependent on kin
y . By sweeping kin

y

from −2π/3a to +2π/3a, we obtain different incident angles
of incident electrons.

For the hexagonal-lattice material, the energy bands near
the K (K ′) valley can be solved numerically as εK(K ′)σ (kx,ky),
where σ =↑ , ↓ denotes the electron’s spin. Note that there are
three conservation laws in the present 2D scattering system.
First, there exists the conservation of energy because the
Hamiltonian in Eq. (1) is independent of the time. Then,
the transverse momentum ky is conserved as a result of the
translational invariance along the y direction. Finally, the
spin in the z direction is conserved due to the Pauli matrix
σz commuting with the Hamiltonian. By combining these
conservation laws with the condition vout

x,K(K ′) = 1
h̄

∂εK(K′ )σ
∂kx

> 0,
the wave vector kout

x,K(K ′) at K (K ′) valley can be uniquely
determined from the equation εK(K ′)↑(kx,k

in
y ) = E (kout

x,K(K ′) is
also only dependent on kin

y ). Then, the refraction angle at K

(K ′) valley is given by

θK(K ′)
(
kin
y

) = arctan
vout

y,K(K ′)

vout
x,K(K ′)

= arctan

[
∂εK(K ′)↑/∂ky

∂εK(K ′)↑/∂kx

]
(kx ,ky )=(kout

x,K(K′ ),k
in
y )

. (C6)

Therefore, corresponding to every incident electron with def-
inite transverse wave vector kin

y , we can define the incident
angle θ (kin

y ) and refraction angle θK(K ′)(kin
y ).

APPENDIX D: CONDITION FOR PERFECT FOCUS

Consider an electron source located at (−L,0) in the p

region. Electrons emitted from the electron source undergo
negative refraction at the p-n junction interface, and two real
focal spots are formed at (Li,0) (i = 1,2) in the n region. The
geometrical relationship gives

tan θ

tan θi

= −Li

L
, (D1)

where θ is the incident angle and θi is the refraction angle of
mode i. By using the definition of the refractive index ni =
sin θ/ sin θi , the above equation can be simplified to

n2
i = L2

i

L2
+

(
1 − L2

i

L2

)
sin2 θ. (D2)

By defining c ≡ L2
i /L

2, Eq. (D2) finally reduces to the condi-
tion for perfect focus in the main text.

APPENDIX E: LOCAL CONDUCTANCE

In this Appendix, we present the formalism for calculat-
ing the local conductance. We consider a normal-hexagonal
nanoribbon with a source electrode coupled to the normal-
conductor side and a detecting electrode coupled to the right
hexagonal region [see Fig. 1(a)]. The source electrode is added
a small bias V . The biases of the normal conductor, hexagonal
semiconductor, and detecting electrode are set to zero. By
using the nonequilibrium Green’s function method, the current
flowing from the source electrode s to the detecting electrode
d can be expressed as

Id = e

h̄

∫
dE

2π
Td,s(E)[fd (E) − fs(E)], (E1)
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where Td,s(E) = Tr[�d Gr (E)�s Ga(E)] is the transmission
coefficient from the source electrode to the detecting electrode.
Here, Gr = Ga† is the retarded Green’s function in the scatter-
ing region and�s/d = i(
r

s/d − 

r†
s/d ) is the linewidth function.

fs/d (E) in Eq. (E1) is the Fermi distribution function of the
source and detecting electrodes, with fs(E) = f0(E − eV ),
fd = f0(E), and f0(E) = 1/{exp(E/kBT ) + 1}. In the low
temperature T and small bias V limits, the local conductance

contributed by the source electrode can be written as

G = Id

V
= e2

h
Td,s(EF ). (E2)

By sweeping the detecting probe in the n region, the distri-
bution of the local conductance can be obtained, as shown in
Figs. 5, and 8–10.
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