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We study theoretically the low-energy hole states in Si, Ge, and Ge/Si core/shell nanowires (NWs). The NW core
in our model has a rectangular cross section, the results for a square cross section are presented in detail. In the case
of Ge and Ge/Si core/shell NWs, we obtain very good agreement with previous theoretical results for cylindrically
symmetric NWs. In particular, the NWs allow for an unusually strong and electrically controllable spin-orbit
interaction (SOI) of Rashba type. We find that the dominant contribution to the SOI is the “direct Rashba spin-orbit
interaction” (DRSOI), which is an important mechanism for systems with heavy-hole–light-hole mixing. Our
results for Si NWs depend significantly on the orientation of the crystallographic axes. The numerically observed
dependence on the growth direction is consistent with analytical results from a simple model, and we identify a
setup where the DRSOI enables spin-orbit energies of the order of millielectronvolt in Si NWs. Furthermore, we
analyze the dependence of the SOI on the electric field and the cross section of the Ge or Si core. A helical gap
in the spectrum can be opened with a magnetic field. For this gap, we obtain the largest g factors for magnetic
fields applied perpendicular to the NW and parallel to the electric field.
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I. INTRODUCTION

In recent years, there have been several novel trends toward
spin-based quantum information processing with quantum dots
(QDs) [1,2]. One of these trends is the shift to group-IV
materials such as Ge and Si [3–14]. Both Ge and Si can be
grown nuclear-spin-free, which is beneficial for implement-
ing qubits with long dephasing times [7,8,15–18]. Besides
group-IV materials, qubits based on hole states, i.e., unfilled
valence-band states, have attracted a lot of attention [19–36].
Furthermore, various nanostructures such as nanowires (NWs)
[37–43] or hut wires [44,45] are studied with great efforts.
Semiconducting quantum wires are also promising platforms
for, e.g., spin filters [46] and topological quantum computing
with Majorana fermions [47–51].

Hole states in Si- and Ge-based NWs, such as Ge/Si
core/shell NWs [52–67], comprise the mentioned trends and
are interesting for many reasons. Besides the possibility to
cancel the hyperfine interaction with nuclear spins by isotopic
purification, there is no valley degree of freedom in the
topmost valence band of bulk Ge and bulk Si. Furthermore,
the spin-orbit interaction (SOI) of Dresselhaus type is absent
because Ge and Si are bulk inversion symmetric [68]. However,
structure inversion asymmetry remains a source of SOI and
can be controlled externally. In fact, an unusually strong
“direct Rashba spin-orbit interaction” (DRSOI) [69] has been
predicted for the holes in Ge/Si core/shell NWs, which is an
electric-field-induced mechanism that is not suppressed by the
fundamental band gap of the semiconductor (in stark contrast
to the standard Rashba SOI for electrons and holes, which
is obtained in the third order of a multiband perturbation
theory [68]). Thus far, the discovered DRSOI is consistent
with experiments [60,65,66]. The absence of Dresselhaus SOI
and the presence of the DRSOI enable high electrical control,

because the SOI can be switched “on” and “off” with moderate
electric fields of only a few volts per micrometer [69,70].
Control over the SOI is desirable because, on the one hand,
SOI can be an unwanted source of relaxation and decoherence
for spin qubits [71–75], but on the other hand, just to name a
few examples, SOI enables one-qubit operations via electric-
dipole-induced spin resonance (EDSR) [38–43,70,76–78],
long-distance two-qubit operations via superconducting res-
onators [38,41,70,79–81] or floating gates [82,83], and the
realization of the previously mentioned spin filters [46] and
Majorana fermions [47–51].

Very recently, qubits have successfully been implemented
with holes in Si NWs, using an industrial-level complementary
metal-oxide semiconductor (CMOS) platform for the sample
fabrication [84–86]. Such Si NWs are now routinely fabri-
cated [87–89] and it has been demonstrated that even Ge/Si
core/shell NWs with a compressively strained Ge core can be
realized with a CMOS-compatible process [59]. Depending
on the details of the fabrication process, the cross sections of
the NWs can, e.g., be approximately circular or rectangular
[87–89]. For instance, the Si NW in the setup of Ref. [84]
has an almost square cross section, with a side length of
approximately 10 nm.

In this paper, we consider these recently fabricated
nanostructures and study theoretically the spectrum and the
SOI of holes in NWs with rectangular cross sections. For this,
we use the Luttinger-Kohn (LK) Hamiltonian [90,91], rect-
angular hard-wall confinement, and a numerical approach to
find the low-energy eigenstates. Since the Luttinger parameters
γ2 and γ3 differ greatly in Si [92], a spherical approximation
[93,94] does not apply and it turns out that the results de-
pend strongly on the orientation of the crystallographic axes.
Remarkably, we find that the DRSOI in Si NWs allows for
spin-orbit energies of several millielectronvolts, controllable
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with electric fields, provided that the growth direction is
changed compared to recent setups [84–87]. We study the
dependence on the NW dimensions, on the orientation of
the crystallographic axes, and on the applied fields in detail
and identify setups that are highly promising for applications
that rely on a strong and electrically controllable SOI. Our
numerical results for Si NWs are consistent with a simple
analytical model that explains the significant dependence on
the growth direction. Furthermore, we use the numerical
approach to study Ge and Ge/Si core/shell NWs and find very
good agreement with the effective model of Ref. [69]. For NWs
with a thin Ge core, we show that a spin-orbit energy above
10 meV is feasible due to the DRSOI.

The paper is organized as follows. In Sec. II, we introduce
and discuss the DRSOI, followed by the explanation of our
model and the numerical approach in Sec. III. In Sec. IV,
we consider hole states in Ge/Si core/shell NWs with square
cross sections. We show that our model reproduces previous
theoretical results for cylindrical Ge and Ge/Si core/shell NWs
and study the dependence of the SOI on various parameters,
such as the strength of the electric field. Our numerical and
analytical results for Si NWs are analyzed in Secs. V and VI,
respectively, followed by a discussion about the accuracy in
Sec. VII and concluding remarks in Sec. VIII. Details of the
theory are appended.

II. DIRECT RASHBA SPIN-ORBIT INTERACTION

We start by analyzing in detail the DRSOI [69] and explain
why it is a pronounced feature of systems with strong heavy-
hole–light-hole (HH-LH) mixing. For this, it is instructive to
compare the standard regime of a two-dimensional (2D) system
with that of the NW quantum confinement considered in the
present work. In the following, we assume that magnetic fields
are absent (unless otherwise stated) and discuss the effect of
an applied electric field. To set the notation for later use, we
need to first review briefly the standard theory of electrons and
holes in bulk and low-dimensional systems.

A. Electrons

Many semiconductors with a zinc-blende lattice, such as
GaAs and InAs, have a conduction-band minimum at the �

point. Their leading-order Hamiltonian for bulk electrons near
the � point is

H el
0 = h̄2

2meff

(
k2
x + k2

y + k2
z

)
, (1)

where h̄kj is the momentum operator for the j axis and meff

is the effective electron mass [68]. An applied electric field E
results in a force −eE on the electron, with

H el
dir = eE · r (2)

as the corresponding Hamiltonian. The elementary positive
charge is denoted by e and r is the operator for the position of
the electron. We note that H el

0 + H el
dir is independent of the spin,

and so the direct coupling H el
dir to the electric field cannot lift

the spin degeneracy. However, in the presence of E there are
higher-order corrections that provide a coupling to the electron
spin. The most prominent mechanism is the standard Rashba

SOI [68,95–98]

H el
R = ᾱel E · (σ × k), (3)

where h̄k = h̄(kxex + kyey + kzez) is the vector operator for
the momentum, σ = σxex + σyey + σzez is the vector of Pauli
matrices for the spin, and ej is a unit vector along the j axis.

If we consider the special case of a NW along z and an
electric field E = Exex along x, the dominant effect of the
Rashba SOI on the low-energy states is described by the term

H el
R � ᾱelExσykz. (4)

When other mechanisms are negligible, the two subbands of
lowest energy in the NW can be modeled with the effective
Hamiltonian

H el
1D = h̄2k2

z

2meff
+ ᾱelExσykz. (5)

We refer to H el
1D as one-dimensional (1D) because it does not

contain the operators kx and ky for the motion of the electron
in the transverse directions of the NW. The resulting spectrum
[47,95,96] comprises two parabolas that are shifted along the
kz axis and that cross at kz = 0. These parabolas are associated
with opposite spin states, i.e., with the two eigenstates of the
operator σy . We briefly mention that H el

1D may also be written
in an explicit 2 × 2 matrix form, of course, since σy can be
represented by a Pauli matrix.

The standard Rashba SOI of Eqs. (3) and (4) enables the
implementation of spin filters [46], Majorana fermions [47],
EDSR [38–42,76,77], and is the basis for many other useful
effects and applications [99]. Since it is a higher-order effect,
however, the Rashba coefficient ᾱel is relatively small in most
materials. A perturbative analysis shows that ᾱel depends
strongly on the band structure parameters and is particularly
small in semiconductors with a large fundamental band gap
[68,98].

The units of the Rashba coefficient ᾱel are those of a
quantity “length2 × charge.” For instance, in this paper we
will use the units nm2e when we list values of ᾱel. However,
with the abovementioned E = Exex , Eq. (3) may also be
written as H el

R = αelex · (σ × k) = αel(σykz − σzky). Analo-
gously, ᾱelExσykz in Eqs. (4) and (5) may be written in
the compact form αelσykz. In these examples, the Rashba
coefficient (often also referred to as Rashba parameter [99])
is αel = ᾱelEx . In stark contrast to ᾱel, the units of αel are those
of a quantity “energy × length,” namely, eV Å, for instance.
Moreover, αel is the only quantity in the effective SOI term
that depends on the strength of the electric field, which again
contrasts sharply with ᾱel. In the present paper, both for the
conduction and the valence band, we use the symbol α or ᾱ

(plus suitable subscript) whenever a Rashba coefficient is of the
type “energy × length” or “length2 × charge,” respectively. In
order to avoid confusion, however, we wish to mention that
often a bare α is also used in the latter case in the literature
[46,69,97].

B. Holes

The situation in the valence band differs strongly from
that in the conduction band. In semiconductors such as GaAs
or InAs (zinc-blende lattice) and Ge (diamond lattice), the
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hole spectrum near the � point is well described by the LK
Hamiltonian [90,91]

Hh
0 = h̄2

2m

[(
γ1 + 5

2
γs

)
k2 − 2γs(k · J)2

]
, (6)

where m is the bare electron mass, γ1 is a Luttinger parameter,
J = Jxex + Jyey + Jzez is the vector of spin-3/2 operators,
and k2 = k · k = k2

x + k2
y + k2

z . For simplicity, we used here
the spherical approximation [93,94]. That is, the original
Luttinger parameters γ2 and γ3 were replaced by one parameter
γs , leading to invariance under arbitrary rotations of the
coordinate system. In stark contrast to Eq. (1) for electrons, the
leading-order Hamiltonian for holes [Eq. (6)] already provides
a coupling between the momentum and the spin.

The abovementioned coupling between the momentum and
the spin has notable effects on the dispersion relation of holes
in bulk. Considering |3/2〉, |1/2〉, |−1/2〉, and |−3/2〉 as the
eigenstates of the spin operator Jz, with

Jz |±3/2〉 = ± 3
2 |±3/2〉 , (7)

Jz |±1/2〉 = ± 1
2 |±1/2〉 , (8)

one finds

Hh
0 eik̃zz |±3/2〉 = h̄2k̃2

z

2mHH
eik̃zz |±3/2〉 , (9)

Hh
0 eik̃zz |±1/2〉 = h̄2k̃2

z

2mLH
eik̃zz |±1/2〉 , (10)

where

mHH = m

γ1 − 2γs

(11)

is the HH mass and

mLH = m

γ1 + 2γs

(12)

is the LH mass. We used here the z axis as an example. Due
to the spherical approximation, i.e., the rotational invariance
of Hh

0 in Eq. (6), analogous results are obtained when one
considers an arbitrary spatial axis. That is, the effective mass
of the hole depends strongly on the spin state and is large (HH)
when the spin is parallel to the direction of motion.

We wish to point out that the tilde of k̃z in Eqs. (9) and
(10) was added because k̃z is a wave number, in contrast to
the previously introduced kz which is an operator. For the sake
of a simple notation, however, we will write kz for both the
operator and the wave number in the remainder of this paper
(analogous for all axes).

1. Holes in 2D-like systems

Quantum wells [100,101], lateral QDs [2,74,102], and many
self-assembled QDs [26,32,33] feature one special axis of very
strong confinement and are therefore prominent examples for
2D-like quantum systems. Before we can discuss electric-field-
induced effects, it is important that we remind us of several
key properties of hole states in such 2D-like systems [68,94].
Therefore let us assume for simplicity that the confining
potential V (r) = V‖(x,y) + V⊥(z) for the holes comprises a

narrow hard-wall potential of width Lz along the z axis,

V⊥(z) =
{

0, 0 < z < Lz,

∞, otherwise, (13)

and a much weaker in-plane confinement V‖(x,y) for the axes
x and y. In order to find the low-energy eigenstates of the
Hamiltonian Hh

0 + V , one can exploit the strong confinement
along z and focus first on the 1D Hamiltonian Hh

0 (kz) + V⊥(z),
where

Hh
0 (kz) = h̄2

2m

(
γ1 + 5

2
γs − 2γsJ

2
z

)
k2
z (14)

is obtained from Eq. (6) by omitting all terms with kx or ky . As
evident from Eq. (14), Hh

0 (kz) simplifies to h̄2k2
z /(2mHH) when

the spin state is |3/2〉 or |−3/2〉 and to h̄2k2
z /(2mLH) when the

spin state is |1/2〉 or |−1/2〉. Consequently, given the example
of V⊥(z) in Eq. (13), it turns out that the states |�±3/2

n 〉 and
|�±1/2

n 〉 with position-space representations

〈
z | �±3/2

n

〉 =
⎧⎨
⎩

√
2
Lz

sin

(
nπz
Lz

)
|±3/2〉 , 0 < z < Lz,

0, otherwise,

(15)

〈
z | �±1/2

n

〉 =
⎧⎨
⎩

√
2
Lz

sin

(
nπz
Lz

)
|±1/2〉 , 0 < z < Lz,

0, otherwise,

(16)

are the eigenstates of Hh
0 (kz) + V⊥(z) with

EHH
n = n2 h̄2π2

2mHHL2
z

, (17)

ELH
n = n2 h̄2π2

2mLHL2
z

(18)

as the respective eigenenergies. The n ∈ {1,2, · · · } in Eqs. (15)
to (18) is a quantum number. We note that the HH-LH splitting

�HH−LH = h̄2π2

2L2
z

(
1

mLH
− 1

mHH

)
(19)

is a large energy in our 2D-like system because Lz is relatively
small.

Product states that consist of |�±3/2
n 〉 or |�±1/2

n 〉 and suitable
orbital parts for the x-y plane form a set of basis states that can
be used to analyze Hh

0 + V . As the HH-LH splitting �HH−LH

provides a relatively large energy gap between the basis states
with |�±3/2

n 〉 and those with |�±1/2
n 〉, it turns out that the

low-energy eigenstates of Hh
0 + V feature almost exclusively

the spin states |3/2〉 and |−3/2〉. We wish to emphasize that
the tiny admixtures of basis states with spin |±1/2〉 can nev-
ertheless have substantial effects on characteristic properties
such as the g factors [32,45].

The above-discussed example highlights two major features
of low-energy hole states in 2D-like systems (for possible
exceptions, see Sec. II B 4). First, the involved spin states
are almost exclusively |3/2〉 and |−3/2〉, which are the two
spin states parallel to the axis of strong confinement. Second,
there is a strong connection between the spin states |±3/2〉
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(|±1/2〉) and the HH mass mHH (LH mass mLH). Consequently,
the hole states with spin |3/2〉 or |−3/2〉 in 2D-like systems are
commonly referred to as HH states, whereas those with spin
|1/2〉 or |−1/2〉 are commonly referred to as LH states. This
nomenclature is equivalent to the bulk case. We note, however,
that the spin projections ±3/2 and ±1/2 refer here to the axis
of strong confinement instead of the direction of motion in
bulk.

The result from the simple Hamiltonian Hh
0 + V‖(x,y) +

V⊥(z) that the low-energy hole states of a 2D-like system
with strong confinement along z [Eq. (13)] contain nearly
exclusively the spin states |3/2〉 and |−3/2〉 has remarkable
consequences. Mathematically, these consequences are evi-
dent from the identities

〈±3/2| Jz |±3/2〉 = ± 3
2 , (20)

〈±3/2| Jx,y |±3/2〉 = 0, (21)

and

〈3/2| Jμ |−3/2〉 = 0, (22)

〈3/2| JμJν |−3/2〉 = 0, (23)

which hold for any μ,ν ∈ {x,y,z}. For instance, the Zeeman
term 2κμB B · J [68,91] becomes inefficient when the mag-
netic field B lies in the x-y plane. Indeed, the measured
g factors usually exhibit a pronounced anisotropy, where
small (large) values are observed when B is applied in-
plane (out-of-plane) [26,45,100,103]. Besides the g factors,
also the SOI is affected by the HH character of the low-
energy states. For an electric field E = Ezez along the axis
of strong confinement, the standard Rashba SOI for holes
[68,97,104]

Hh
R = ᾱh E · (k × J) (24)

reduces to

Hh
R = ᾱhEz(kxJy − kyJx). (25)

Because of Eq. (22), one finds

〈3/2| (kxJy − kyJx) |−3/2〉 = 0, (26)

and so Eq. (25) does not provide a k-linear coupling be-
tween states of pure HH type. The SOI for holes in 2D-
like systems therefore requires a detailed analysis, and many
interesting and insightful results have already been obtained
[22,68,94,97,103,105–109]. For a comparison with Sec. II B 2,
it is essential to note that

〈3/2| Hh
0 |−3/2〉 = 0 (27)

due to Eq. (23). Hence we can conclude that the DRSOI, which
will be explained in detail below, is strongly suppressed in the
2D-like systems discussed here because of the large HH-LH
splitting. Remarkably, one also obtains

〈1/2| Hh
0 |−1/2〉 = 0 (28)

since 〈1/2| (JμJν + JνJμ) |−1/2〉 = 0 for any μ,ν ∈ {x,y,z}.

2. Holes in NWs and elongated NW QDs

When there are two axes of strongest confinement, which,
in particular, is the case for NWs with square or circular cross
sections, a simple separation between HH and LH states as
in Sec. II B 1 is no longer possible, i.e., even the low-energy
eigenstates of such 1D-like hole systems may exhibit a strong
mixing of HH and LH states [110,111]. This fact can enable
novel effects that are negligible in 2D-like systems. In the
following, we want to recall key elements of the effective model
of Ref. [69] for low-energy hole-states in Ge/Si core/shell
NWs, because Ref. [69] showed that the combination of an
applied electric field and a potential with two (or three, see
Sec. II B 3) axes of strongest hole confinement results in an
unusually strong SOI that is not suppressed by the fundamental
band gap, referred to as the DRSOI.

When the NW axis is z and an electric field E = Exex

is applied along x, the low-energy hole spectrum in Ge/Si
core/shell NWs is well described by the 4 × 4 Hamiltonian

H eff
4x4 =

⎛
⎜⎜⎜⎜⎜⎝

h̄2k2
z

2mg
0 eUEx −iCkz

0 h̄2k2
z

2mg
−iCkz −eUEx

eUEx iCkz
h̄2k2

z

2me
+ � 0

iCkz −eUEx 0 h̄2k2
z

2me
+ �

⎞
⎟⎟⎟⎟⎟⎠,

(29)
where mg = 0.043m and me = 0.054m are effective masses,
C = 7.26h̄2/(mR) and U = 0.15R are inversely and di-
rectly proportional to the core radius R, and � = �BP +
0.73h̄2/(mR2) is an energy gap that results from the shell-
induced strain and the confinement, for which a cylindrically
symmetric hard wall was assumed at the core-shell interface,

V (x,y) =
{

0,
√

x2 + y2 < R,

∞, otherwise.
(30)

Equation (29) is obtained when the Hamiltonian Hh
0 +

V (x,y) − eExx is projected onto the low-energy subspace
spanned by |g+〉, |g−〉, |e+〉, and |e−〉, which are the four
basis states of the shown matrix. Static strain caused by
the shell, if present, is accounted for by the Bir-Pikus (BP)
Hamiltonian [112] and simply rescales the energy gap �

via �BP [113,114]. The four basis states are eigenstates
of the Hamiltonian Hh

0 (kx,ky) + V (x,y), where Hh
0 (kx,ky)

corresponds to Eq. (6) with kz = 0. The states |g+〉 and |g−〉
are the two degenerate ground states of Hh

0 (kx,ky) + V (x,y),
whereas |e+〉 and |e−〉 are the two degenerate excited states
with second-lowest eigenenergy. The subscript “+” (“−”)
refers to a spin block, meaning here that the state contains
the two spin states |3/2〉 and |−1/2〉 (|−3/2〉 and |1/2〉),
and we recall that the |jz〉 with jz ∈ {3/2,1/2,−1/2,−3/2}
are the eigenstates of Jz and satisfy Jz |jz〉 = jz |jz〉. The
basis states |g+〉, |g−〉, |e+〉, and |e−〉 were derived with an
approach similar to that of Refs. [110,111], and details on their
explicit form are provided in Ref. [69] and the Supplemental
Information (SI) of Ref. [70]. If one studies an infinitely long
NW, the wave function that accounts for the z direction is
simply a phase factor of type eikzz, where kz is a wave number,
and so the operator kz in Eq. (29) becomes a continuous
parameter [115].
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FIG. 1. The basis states of Eq. (29) and their couplings. At
kz = 0 and Ex = 0, the states |g±〉 and |e±〉 are the two ground
states and first excited states, respectively, of the Hamiltonian. They
differ in energy by � and the contained spin states are shown in
parentheses. The couplings proportional to Ex result directly from the
electric-field-induced shift −eExx (spin conserving) in the potential
energy and therefore cannot occur between states that have different
spins. The cross couplings proportional to kz result from the LK
Hamiltonian. The combination of the shown couplings within the
low-energy subspace results in an unusually strong SOI of Rashba
type, the DRSOI [69]. The cross couplings would be absent if the spin
states for “+” and “−” were solely |3/2〉 and |−3/2〉, see Eq. (27)
[or solely |−1/2〉 and |1/2〉, see Eq. (28)], and so in many 2D-like
systems the DRSOI is strongly suppressed by a large HH-LH splitting.
The additional energies h̄2k2

z /(2mg,e) in Eq. (29) are not shown in the
sketch. Details are provided in the text and in Refs. [69,70].

In Eq. (29), the coupling terms proportional to Ex are
obtained when the operator

Hh
dir = −eE · r, (31)

which reduces to Hh
dir = −eExx given E = Exex , is projected

onto the low-energy subspace. The effect of this electric-
field-induced coupling is that the hole is pushed along the
electric field, i.e., towards the boundary of the Ge-core cross
section. Furthermore, Hh

dir preserves the spin and therefore
cannot couple a basis state of type “+” with one of type
“−.” Remarkably, such a coupling between “+” and “−”
is caused by the terms in Hh

0 that are linear in either Jx

or Jy . For instance, JxJzkxkz can couple |g±〉 with |e∓〉.
This is possible since 〈1/2| Jx |3/2〉, 〈−1/2| Jx |1/2〉, and
〈−3/2| Jx |−1/2〉 are nonzero and because the basis states of
type “+” (“−”) contain both |3/2〉 and |−1/2〉 (|−3/2〉 and
|1/2〉) as a consequence of the confinement potential of the
NW. Therefore it is important to note that the off-diagonal
elements proportional to kz in Eq. (29) result from the LK
Hamiltonian Hh

0 . The discussed couplings caused by Hh
dir and

Hh
0 are illustrated in Fig. 1.
The Hamiltonian of Eq. (29) is solely based on the LK

Hamiltonian [Eq. (6)], the confinement of the hole to the NW
[Eq. (30)], the strain (if a shell is present), and the potential
gradient that is caused by an electric field [Eq. (31)]. It turns out
that this Hamiltonian already features a strong SOI of Rashba
type, the so-called DRSOI [69], even though standard terms
for Rashba SOI, in particular Hh

R [Eq. (24)], were not yet
included. The DRSOI becomes particularly evident when we

consider the special case where |eUEx/�| and |Ckz/�| can
be treated as small parameters in a perturbative analysis. In
this case, a Schrieffer-Wolff transformation (quasi-degenerate
perturbation theory [68]) of Eq. (29) yields the effective
Hamiltonian [49,75]

H eff
2x2 =

(
h̄2

2mg

− C2

�

)
k2
z + 2eCU

�
Exσykz (32)

for the two subbands of lowest energy, where σy corresponds
again to a Pauli matrix. Equation (32) is equivalent to the
well-known effective Hamiltonian h̄2k2

z /(2meff ) + ᾱelExσykz

[Eq. (5)] for electrons in a NW with Rashba SOI. Hence, in
the regime where |eUEx/�| 
 1 and |Ckz/�| 
 1, we can
identify ᾱDR = 2eCU/� as the effective Rashba coefficient of
the DRSOI. Using the parameters γ1 = 13.35 and γs = 5.114
for Ge [116], one obtains the aforementioned values for C and
U and therefore CU = 1.1h̄2/m. Considering � = 20 meV,
for instance, which is a realistic subband spacing for typical
Ge/Si core/shell NWs [53,69,113], one finds ᾱDR = 8.4 nm2e.
This value is much greater than the calculated Rashba co-
efficient ᾱel = 0.05 nm2e for electrons in GaAs and even
exceeds ᾱel = 1.2 and 5.2 nm2e for electrons in InAs and
InSb, respectively [68,98]. Furthermore, in stark contrast to
GaAs, InAs, or InSb, Dresselhaus SOI is absent in Ge and Si
because of bulk inversion symmetry. Therefore the DRSOI in
Ge/Si core/shell NWs results in a strong SOI that is highly
controllable with moderate electric fields, and a few volts per
micrometer are sufficient to achieve spin-orbit energies of the
order of millielectronvolt [69]. Indeed, recent experimental
studies have reported a strong and electrically tunable SOI for
holes in such NWs [60,65].

While we focused in our discussion on the case
|eUEx/�| 
 1 and |Ckz/�| 
 1 for illustration purposes
(see Ref. [70] and Appendix A for a more general analysis),
we wish to emphasize that this regime is not crucial in order
to achieve a strong DRSOI. However, we also wish to point
out that the effective Rashba coefficient of the DRSOI (see
ᾱDR in the example above) is not always independent of the
applied electric field and may even decrease rapidly once the
electric field exceeds a certain value. Details will be provided
in Secs. IV–VI. We recall that the effective Rashba coefficient
of the DRSOI can be understood as the coefficient ᾱDR in an
effective SOI term of type ᾱDRExσykz that relies directly on
Hh

dir [Eq. (31)] rather than on higher-order (i.e., involving the
other bands of the semiconductor) corrections for the valence
band that are also generated by the electric field, such as Hh

R

[Eq. (24)].
For the holes in Ge/Si core/shell NWs, it turns out that

the standard Rashba SOI Hh
R [Eq. (24)] has essentially the

same effect on the spectrum as Hh
dir [Eq. (31)], even though

Hh
R and Hh

dir differ greatly. In particular, the latter does not
contain any spin operators. While Hh

dir is independent of the
semiconductor and therefore independent of the fundamental
band gap E0, Hh

R is a third-order correction and its coeffi-
cient ᾱh is approximately proportional to E−2

0 (see, e.g., the
derivation in Ref. [68]). As a consequence, the DRSOI domi-
nates for typical Ge/Si core/shell NWs and Hh

R is completely
negligible.
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On the one hand, the discovered DRSOI is unusually
strong and provides a remarkable degree of external control.
On the other hand, the effect resembles that of a standard
Rashba SOI [compare, e.g., Eqs. (5) and (32)]. Therefore the
DRSOI has a wide range of applications. For instance, it is
an especially useful tool for the implementation of Majorana
fermions [47,49] and for hole-spin qubits in NW QDs [70,81].
The predicted anisotropy and electrical tunability of the hole
g factor in elongated Ge/Si NW QDs [75] has already been
observed experimentally [66].

Of course, the discussed model for low-energy hole states
applies not only to Ge/Si core/shell NWs, but also to ar-
bitrary semiconducting NWs, provided that the approxima-
tions made in the derivation of the model are still well
justified. For all these details of the model and additional
information, such as magnetic-field-induced effects, we refer
to Refs. [69,70,75,113] and the SI of Ref. [70].

We want to conclude this Sec. II B 2 by highlighting
two major differences compared with the 2D-like systems in
Sec. II B 1. First, it is evident that the terms proportional to Ckz

in the low-energy Hamiltonian of Eq. (29) are crucial for the
DRSOI. These terms originate from the LK Hamiltonian Hh

0
and provide a coupling between basis states of different spin
type (Fig. 1). In a similar model for 2D-like systems, Hh

0 cannot
cause such a strong coupling between low-energy basis states
with different spin, because the low-energy basis states are of
HH type, see Sec. II B 1. That is, if we consider z as the axis
of strongest confinement, the low-energy states of the 2D-like
systems contain almost exclusively the spin states |3/2〉 and
|−3/2〉. For possible exceptions, we refer to Sec. II B 4. The
LK Hamiltonian Hh

0 [Eq. (6)] features products JμJν of two
but not of three or more spin operators, which would be needed
to couple |3/2〉 with |−3/2〉. Consequently, Eq. (27) applies
and the DRSOI in 2D-like systems is often strongly suppressed
by the HH-LH splitting.

The second difference affects the terminology. In the 2D-
like systems considered in Sec. II B 1, eigenstates with a
relatively small in-plane momentum can almost exclusively
be formed with basis states of either HH or LH type (weak
HH-LH mixing). Therefore these eigenstates are themselves
often referred to as HH or LH states. More precisely, when z

is the direction of strong confinement, the eigenstates with a
large contribution of the spin states |3/2〉 and |−3/2〉 (|1/2〉
and |−1/2〉) are simply referred to as HH (LH) states because
of the close connection between these spin states and the HH
mass mHH (LH mass mLH). In stark contrast to Sec. II B 1,
in systems with two axes of strongest confinement (as here
in Sec. II B 2) even the low-energy eigenstates can have
relatively large contributions of both HH- and LH-type basis
states (strong HH-LH mixing) [110,111]. Furthermore, one
should always be aware of the basis states that were considered
when HH and LH contributions are discussed, because there
is more variety in the literature than in the case of 2D-like
systems. For instance, there may be basis states with a HH-like
dispersion relation only for the motion along the NW axis or
only for the motion in a transverse direction, all of which might
be referred to as HH states. Thus the names HH and LH states
in the context of NWs can be ambiguous without a precise
specification. In the upcoming analysis of the hole states in Si,
Ge, and Ge/Si core/shell NWs, this will be taken into account.

3. Holes in QDs with similar confinement for all directions

We are currently not aware of an analysis of the DRSOI
for QDs that exhibit a very similar confinement along all
three directions. It is, however, reasonable to assume that a
relatively strong DRSOI is also feasible in these systems,
since HH-LH mixing is usually inevitable for the holes in
such QDs [110,111]. The effective SOI term that results from
the DRSOI in these systems may be determined with a model
that comprises only the LK Hamiltonian, the BP Hamiltonian
(if strain is present), the confining potential, and the direct
coupling to the electric field [Eq. (31)].

4. DRSOI in 2D-like systems

In Sec. II B 1, we considered as a simple example a
narrow hard-wall potential along the z axis [Eq. (13)] and
a much weaker in-plane confinement. We explained that the
low-energy hole states in such 2D-like systems are of HH type
and that the admixtures of the spin states |1/2〉 and |−1/2〉 are
very small. The presence of such admixtures has been pointed
out in many theoretical and experimental studies [100,117–
119]. As mentioned in Sec. II B 1 already, even a tiny HH-LH
mixing can have important effects on the g factors [32,45].
It might be possible that the DRSOI provides also in 2D-like
systems a substantial contribution to the SOI, especially when
the HH-LH mixing is relatively large. This depends, of course,
on the details of the confining potential and, in general, on the
experimental setup. Therefore, in addition to our suggestion in
Sec. II B 3, studying possible effects of the DRSOI in various
2D-like systems would provide interesting insights.

III. MODEL

A. Hamiltonian

The Hamiltonian of our model for low-energy hole states
in NWs is

H = HLK + HBP + Hh
dir + Hh

R + Hh
Z + V. (33)

In the following, the contributions to this Hamiltonian are
explained. We want to point out that our Hamiltonian contains
a global minus sign compared with that for valence-band
electrons, since holes are unfilled valence-band states.

1. Luttinger-Kohn Hamiltonian

The LK Hamiltonian without Zeeman terms (separately
discussed in Sec. III A 3) is [90,91]

HLK = h̄2

2m

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2
x ′J

2
x ′ + k2

y ′J
2
y ′ + k2

z′J
2
z′
)

− 4γ3
({kx ′ ,ky ′ }{Jx ′ ,Jy ′ } + c.p.

)]
, (34)

where “c.p.” stands for cyclic permutations and {A,B} =
(AB + BA)/2. We recall that m is the free electron mass, γ1,2,3

are the Luttinger parameters, and Ji are spin-3/2 operators
obeying [Jx ′ ,Jy ′ ] = Jx ′Jy ′ − Jy ′Jx ′ = iJz′ (and analogous for
cyclic permutations). It is important to note that the h̄ki in
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Eq. (34) correspond to the kinetic electron momenta, i.e.,

k = −i∇ + e

h̄
A, (35)

where −e is the electron charge, ∇ is the Nabla operator, and
A is the vector potential with B = ∇ × A [91]. Consequently,
one finds k × k = −ieB/h̄ [68], i.e., the components ki

no longer commute in the presence of a magnetic field B.
Furthermore, we note that the axes x ′, y ′, and z′ in Eq. (34)
correspond to the main crystallographic axes.

2. Bir-Pikus Hamiltonian

Strain-based effects on the hole states are described by the
BP Hamiltonian [112]

HBP = −
(

a + 5b

4

)(
εx ′x ′ + εy ′y ′ + εz′z′

)
+ b

(
εx ′x ′J 2

x ′ + εy ′y ′J 2
y ′ + εz′z′J 2

z′
)

+ 2d√
3

(εx ′y ′ {Jx ′ ,Jy ′ } + c.p.), (36)

where a, b, and d are the deformation potentials, εij = εji are
the strain tensor elements, and x ′, y ′, z′ are again the main
crystallographic axes.

3. Electric and magnetic fields

An applied electric field E is accounted for by the direct
coupling Hh

dir [Eq. (31)] and by the standard Rashba SOI Hh
R

[Eq. (24)]. An applied magnetic field B enters the calculation
via the aforementioned vector potential A. The used gauge
and further details are provided in Appendix B. In addition,
we include the Zeeman term [68,91]

Hh
Z = 2κμB B · J (37)

with μB as the Bohr magneton. The anisotropic Zeeman term
2qμB B · J [68,91], where J = ex ′J 3

x ′ + ey ′J 3
y ′ + ez′J 3

z′ , is
omitted in our model since |q| 
 |κ| for Si and Ge [92].

4. Confinement

In the present work, we consider NWs with rectangular
cross sections. More generally, we consider core-shell NWs
whose cores have rectangular cross sections, as illustrated in
Fig. 2. The height of the core isLx , the width isLy , and the cross
section lies in the x-y plane with |x| < Lx/2 and |y| < Ly/2.
The wire axis corresponds to the z axis, analogous to Sec. II B 2.
We assume hard-wall confinement at the core-shell interface,
and so the confining potential is

V = V (x,y) =
{

0, |x| < Lx

2 and |y| <
Ly

2 ,

∞, otherwise.
(38)

The same confining potential is used to model a bare NW of
height Lx and width Ly . We note that the bare NW can be
considered as a core-shell NW in the limit of a vanishing shell.

B. Basis states and numerical diagonalization

The functions [111,120]

fnx,ny
(x,y) =

2 sin
[
nxπ

(
x
Lx

+ 1
2

)]
sin

[
nyπ

(
y

Ly
+ 1

2

)]
√

LxLy

(39)

FIG. 2. Sketch of the NWs and the coordinate system considered
in this work. The core of the NW has a rectangular cross section which
lies in the x-y plane. The NW axis is the z axis. In the case of a Ge/Si
core/shell NW, the Ge core is compressively strained by the Si shell.
Since standard silicon-on-insulator (or bulk Si [59]) wafers have a
(100) surface, the x axis in the sketch usually corresponds to a main
crystallographic axis when a CMOS-compatible NW is fabricated as
in Refs. [59,84–89]. We find that a much stronger SOI can be induced
in Si NWs when x ‖ [110] and z ‖ [001] (see Secs. V and VI).

with nx,y ∈ {1,2, · · · } satisfy the relations

0 = fnx,ny
(−Lx/2,y) = fnx,ny

(Lx/2,y), (40)

0 = fnx,ny
(x,−Ly/2) = fnx,ny

(x,Ly/2), (41)∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy fnx,ny

(x,y)fn′
x ,n

′
y
(x,y) = δnxn′

x
δnyn′

y
,

(42)

where δij is the Kronecker delta. Thus they are consistent
with the hard-wall boundary conditions and form a complete
set of orthonormal basis functions for the transverse orbital
part of a wave function. Consequently, the hole states may
be written as linear combinations of basis states |nx,ny,kz,jz〉
whose position-space representation is

〈x,y,z | nx,ny,kz,jz〉 = fnx,ny
(x,y)eikzz |jz〉 (43)

if |x| < Lx/2 and |y| < Ly/2, or

〈x,y,z | nx,ny,kz,jz〉 = 0 (44)

otherwise. In Eq. (43), the factor eikzz with wave number kz

results from the model assumption of an infinitely long NW,
i.e., from the translational invariance along the z axis. The
spin states |jz〉 are eigenstates of Jz with eigenvalues jz ∈
{3/2, 1/2,−1/2,−3/2}, i.e., Jz |jz〉 = jz |jz〉. The spin-3/2
operators Jx , Jy , and Jz are implemented in our calculations
via the standard matrix representation which is shown, e.g., in
Appendix C of Ref. [68] or in Eqs. (A1) to (A3) of Ref. [69].

In order to analyze the low-energy hole states in the NWs,
we project the Hamiltonian H [Eq. (33)] onto the subspace
that is spanned by the 36 basis states |nx,ny,kz,jz〉 [Eqs. (43)
and (44)] with nx,y � 3. Having chosen the desired values
for all input parameters, such as the wave number kz and
the applied electric and magnetic fields, the resulting 36×36

235422-7



KLOEFFEL, RANČIĆ, AND LOSS PHYSICAL REVIEW B 97, 235422 (2018)

matrix is diagonalized numerically. We note that calculations
with only 16 basis states, namely those with nx,y � 2, yielded
results that are similar to those plotted here with nx,y � 3.
Since the eigenenergy of a particle in a hard-wall potential
increases quadratically with the quantum number, rather than,
e.g., linearly as in the case of harmonic confinement, only
minor quantitative corrections to the low-energy hole states
can be expected from basis states with large quantum numbers
nx and ny . We therefore conclude that our subspace with
nx,y � 3 is on the one hand large enough to feature the most
important couplings and to provide reasonably accurate results,
and on the other hand small enough to enable fast computation
[45]. For information on the accuracy of our approach and a
comparison with results from an extended subspace, we refer
to Sec. VII.

C. Nanowire fabrication

The details of the NW fabrication enter our model via
the relations between the axes x ′,y ′,z′ (main crystallographic
axes) and x,y,z (NW and setup, see Fig. 2). As already
mentioned in Sec. II, the unit vector that points along the

axis j is referred to as ej . Furthermore, we use ex ′ , ey ′ , and
ez′ for the crystallographic directions [100], [010], and [001],
respectively. In the following, we consider the two cases where
the NW axis z coincides with the [001] and the [110] direction.

1. Nanowire axis along [001]

When the z direction coincides with the [001] direction, one
obtains

ex = ex ′ cos φ + ey ′ sin φ, (45)

ey = −ex ′ sin φ + ey ′ cos φ, (46)

ez = ez′ , (47)

where the angle φ depends again on the details of the NW fab-
rication and determines the orientation of the crystallographic
axes with respect to the transverse directions. As described in
Appendix C 1, we can use the shown relations between the unit
vectors to rewrite, among other things, the LK Hamiltonian of
Eq. (34). By doing so, we find

H
[001]
LK (φ) = h̄2

2m

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2
xJ

2
x + k2

yJ
2
y

)
(cos4 φ + sin4 φ) − 2γ2k

2
z J

2
z

− γ2
[(

k2
y − k2

x

){Jx,Jy} + {kx,ky}
(
J 2

y − J 2
x

)]
sin(4φ) − γ2

(
k2
xJ

2
y + k2

yJ
2
x + 4{kx,ky}{Jx,Jy}

)
sin2(2φ)

− γ3
[(

k2
x − k2

y

)
sin(2φ) + 2{kx,ky} cos(2φ)

][(
J 2

x − J 2
y

)
sin(2φ) + 2{Jx,Jy} cos(2φ)

]
− 4γ3

({ky,kz}{Jy,Jz} + {kz,kx}{Jz,Jx}
)]

(48)

and we mention again that {A,B} = (AB + BA)/2. For details of the calculation, see Ref. [121]. As expected from symmetry
considerations, Eq. (48) features a π/2-periodicity, i.e.,

H
[001]
LK (φ±π/2) = H

[001]
LK (φ). (49)

In this work, we are particularly interested in two special cases. If φ = 0, the axes x,y,z of the NW coincide with the
crystallographic directions [100], [010], [001], and the LK Hamiltonian of Eq. (34) is equivalent to

H
[001]
LK (0) = h̄2

2m

[(
γ1 + 5γ2

2

)
k2 − 2γ2

(
k2
xJ

2
x + k2

yJ
2
y + k2

z J
2
z

) − 4γ3({kx,ky}{Jx,Jy} + c.p.)

]
. (50)

However, if φ = π/4, the axes x and y correspond to the directions [110] and [1̄10], respectively, and Eq. (34) is equivalent to

H
[001]
LK (π/4) = h̄2

2m

[(
γ1 + 5γ2

2

)
k2 − γ2

(
k2
xJ

2
x + k2

yJ
2
y + 2k2

z J
2
z

) − γ2
(
k2
xJ

2
y + k2

yJ
2
x + 4{kx,ky}{Jx,Jy}

)

−4γ3
({ky,kz}{Jy,Jz} + {kz,kx}{Jz,Jx}

) − γ3
(
k2
x − k2

y

)(
J 2

x − J 2
y

)]
. (51)

2. Nanowire axis along [110]

When the NW axis z corresponds to the [110] direction, the
relations between the basis vectors are

ex = ex ′
sin ξ√

2
− ey ′

sin ξ√
2

+ ez′ cos ξ, (52)

ey = ex ′
cos ξ√

2
− ey ′

cos ξ√
2

− ez′ sin ξ, (53)

ez = ex ′
1√
2

+ ey ′
1√
2
. (54)

The arbitrary angle is denoted here by ξ in order to avoid confu-
sion with the previously introduced angle φ. The Hamiltonian
H

[110]
LK (ξ ), which we obtain by following Appendix C 2 and

rewriting Eq. (34), is relatively lengthy and shown explicitly
in Ref. [121]. We wish to mention that the π -periodicity

H
[110]
LK (ξ±π ) = H

[110]
LK (ξ ), (55)
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which is expected from symmetry considerations, is indeed
satisfied and contrasts the π/2-periodicity of H

[001]
LK (φ) for the

NWs with z along [001] [see Sec. III C 1, Eqs. (48) and (49)].
If ξ = 0, the axes x,y,z coincide with the directions [001],

[11̄0], [110] and Eq. (34) is equivalent to

H
[110]
LK (0) = h̄2

2m

[(
γ1+5γ2

2

)
k2−γ2

(
2k2

xJ
2
x +k2

yJ
2
y + k2

z J
2
z

)
−γ2

(
k2
yJ

2
z + k2

z J
2
y + 4{ky,kz}{Jy,Jz}

)
−4γ3

({kx,ky}{Jx,Jy} + {kz,kx}{Jz,Jx}
)

−γ3
(
k2
y − k2

z

)(
J 2

y − J 2
z

)]
. (56)

We note that this special case, where x is parallel to a main
crystallographic axis and the NW axis is oriented along the
[110] direction, is of particular relevance for our discussion
because it applies to recently fabricated Si NWs that are based
on silicon-on-insulator technology [84,85,87,88].

IV. GE AND GE/SI CORE/SHELL NANOWIRES

In this section, we present the results for Ge NWs and Ge/Si
core/shell NWs.

A. Parameters and static strain

The valence-band parameters for Ge are [92] γ1 = 13.35,
γ2 = 4.25, γ3 = 5.69, and κ = 3.41. For the coefficient ᾱh of
the standard Rashba SOI, we use [69,122] ᾱh = −0.4 nm2e

based on Refs. [68,123] (see also Appendix D). We are
particularly interested in NWs with square cross sections,
and so

Lx = Ly = s (57)

is used for the plots in this Sec. IV, which means that the Ge
core has a square cross section with side length s. Considering
square cross sections is interesting for two reasons. First,
the DRSOI is expected to be pronounced because there are
two axes of strongest hole confinement, in stark contrast to
holes in 2D-like systems (Sec. II B 1). Second, the special
case Lx = Ly allows for a reasonable comparison between
the newly obtained results and those from previous theoretical
studies with circular cross sections [69,70,75,110,111]. More
specifically, we will compare previous results for a given core
radius R with those for s = 2R in our model, i.e., s/2 = R.

If a Si shell is present, the resulting strain in the Ge core must
be taken into account. In the case of cylindrical Ge/Si core/shell
NWs, the strain in the Ge core was found to be constant, with
the strain tensor elements εzz and ε⊥ = εxx = εyy depending
on the relative shell thickness and with 0 = εxy = εxz = εyz

[113,124]. Numerical calculations of the strain field profile
in core-shell NWs revealed that the core strain remains ap-
proximately position-independent (particularly near the core
center) when the cross section is hexagonal instead of circular
[125–127]. Since NWs with square cross sections also feature
a high degree of symmetry and since we study low-energy
hole states, which are mostly located near the core center,
we believe that the core strain in our model can also be
considered as constant, provided that Lx = Ly . For the strain

tensor elements εij in our model, we therefore use the results
from Ref. [113]. In Ref. [121], we provide detailed information
on how the BP Hamiltonian of Eq. (36), which is based on the
main crystallographic axes x ′,y ′,z′, is rewritten such that it
refers to the axes x,y,z (see Fig. 2). We note that when the
core strain is constant, all spin-independent terms in the BP
Hamiltonian only provide a global energy shift in our model
and therefore cannot affect the results. Hence the hydrostatic
deformation potential a drops out when we consider a square
cross section. The two remaining deformation potentials in
the BP Hamiltonian for Ge are [112] b � −2.5 eV and d �
−5.0 eV.

After an extensive analysis of our results for the two cases
z ‖ [001] and z ‖ [110] described in Sec. III C, using various
values for the angles φ and ξ , respectively, we conclude that
the orientation of the crystallographic axes has only minor
effects on the low-energy hole states in Ge/Si core/shell NWs.
This finding is not very surprising, because the small value
(γ3 − γ2)/γ1 = 10.8% indicates that the spherical approxi-
mation applies well to Ge [92–94]. Moreover, the spherical
approximation also applies to the BP Hamiltonian, since d =√

3b is almost satisfied for the deformation potentials of Ge
[112].

Since we obtain similar results for all orientations of the
crystallographic axes, we choose the spherical approximation
for the plots in this Sec. IV. That is, Figs. 3 to 7 are independent
of the orientation of the crystallographic axes and they can be
interpreted as averaged results that closely resemble the various
data sets calculated with nonspherical (cubic) corrections. For
Figs. 3 to 7, we set b = −2.5 eV, d = √

3b, and γ2 = γ3 =
γs = 5.114 [116].

B. Hole spectrum without applied fields

The upper panel of Fig. 3 shows our calculated hole
spectrum of an unstrained Ge NW. The plot is independent
of the side length s of the square cross section. In the idealized
case of cylindrical symmetry, the hole spectrum of a NW can
be calculated exactly [69,110,111]. The result for a cylindrical
Ge NW, taken from Ref. [69], is displayed in the lower panel
of Fig. 3. A comparison between the two spectra reveals very
good agreement. We note that each line in Fig. 3 is twofold
degenerate. In particular, one finds a relatively small energy
gap � at kz = 0 between the two ground states and the two
excited states with second-lowest energy. Moreover, for small
kz the two degenerate subbands of lowest energy feature a
dispersion with negative effective mass.

In the presence of a Si shell, the abovementioned gap �

increases because of the compressive strain in the Ge core.
When � increases, the effective mass for the degenerate
subbands of lowest energy changes from negative to positive.
This can also be seen in Eq. (32), where the term C2/� that
leads to a negative effective mass decreases with increasing
�. Thus one obtains electronlike parabolic spectra in the
low-energy regime when the Ge core is sufficiently strained
due to a Si shell. This transition is illustrated in Ref. [121],
where the spectrum for a bare Ge NW is shown next to those
for a Ge/Si core/shell NW with increasing shell thickness.

The continuous increase of the energy gap�with increasing
Si shell can easily be understood by analyzing the BP Hamilto-
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FIG. 3. Low-energy hole spectrum of an unstrained Ge NW. Each
line corresponds to two degenerate subbands. (Top) Spectrum for
a square cross section, calculated with the model of Sec. III. The
two eigenstates of type A consist predominantly of the basis states
|1,1,0,± 1

2 〉 (96.4%). Those of type B have |1,1,0,± 3
2 〉 (51.6%) as

their largest contribution. For more information on the properties of A,
B, and C, we refer to Sec. V B. (Bottom) Spectrum for a circular cross
section, adapted from Ref. [69]. Due to the cylindrical symmetry,
the subbands can be classified via the total angular momentum Fz

along the NW axis [110,111]. Despite the different cross sections, the
spectra in the upper and lower panels closely resemble each other.
Around kz = 0, the effective mass for the degenerate subbands of
lowest energy is negative. We note that h̄2/(mR2) = 3.05 meV for
R = 5 nm. The label E at the vertical axis stands for “Energy.”

nian in the spherical approximation d = √
3b. Because of the

strain field profile of the Ge core, the BP Hamiltonian has the
simple, effective form [69,113] HBP = |b|[ε⊥(γ ) − εzz(γ )]J 2

z ,
where the parameter γ is the relative shell thickness of
the Ge/Si core/shell NW and where we exploited that b is
negative. In the presence of a Si shell (γ > 0), the difference
ε⊥(γ ) − εzz(γ ) of the strain tensor elements is positive and
increases with increasing γ . Thus holes with spin states |±1/2〉
are energetically favored by HBP. Analyzing the ground states
at kz = 0 in Fig. 3 reveals that the holes are predominantly
found near the core center and that they feature the spin states
|±1/2〉 with very high probability, with only small corrections
that involve other spin states [69,110,111]. The first excited

FIG. 4. Low-energy hole spectrum of a Ge/Si core/shell NW. The
cross section of the Ge core is a square with side length s = 10 nm
and the relative shell thickness is γ = 0.4. Each line represents two
degenerate subbands. Compared with the case of a bare Ge NW in
Fig. 3 (top), the contribution of |1,1,0,± 1

2 〉 (97.8%) to the A-type
eigenstates is greater, which is a consequence of the compressive
strain in the Ge core that is caused by the Si shell. Moreover, the strain
significantly increases the gap (referred to as � in the text) between
the eigenstates of type A and C, leading to an electronlike parabolic
dispersion relation with positive effective mass for the subbands of
lowest energy. At kz = 0, the two energetically lower states in the
enlarged frame do not contain the basis states |1,1,0,± 3

2 〉 at all. The
two energetically higher states originate from the B-type states of
Fig. 3, but the contribution of |1,1,0,± 3

2 〉 decreased to only 14.5%.

states at kz = 0 have a higher contribution of |±3/2〉 than the
ground states. This explains why the gap � between the two
ground states and the two first excited states is increased by
HBP as a result of the shell-induced strain, leading to a positive
effective mass in the subbands of lowest energy when the Si
shell is sufficiently thick (see also Ref. [121]). An example is
provided in Fig. 4, where we display the calculated spectrum
for a Ge/Si core/shell NW with s = 10 nm and relative shell
thickness γ = 0.4. The latter yields εzz = −21.8 × 10−3 and
ε⊥ = −5.8 × 10−3 for the core strain [113].

C. Hole spectrum with applied fields

In Figs. 3 and 4, we have not yet included any electric
or magnetic fields. In the upper panel of Fig. 5, we show
our calculated hole spectrum for the two subbands of lowest
energy in a Ge/Si core/shell NW with s = 10 nm and γ =
0.3. Furthermore, the electric field Ex = 6 V/μm and the
magnetic field Bx = 1 T are applied in the x direction. We
observe very good agreement with the lower panel of Fig. 5,
which was obtained with the effective model developed in
Ref. [69] for cylindrical Ge/Si core/shell NWs, using R =
5 nm and otherwise exactly the same parameters as above.
This agreement is of great importance, because it confirms
that the DRSOI discovered in Ref. [69] also occurs in NWs
with approximately square cross sections and that the derived
effective model is consistent with the numerical approach of
the present work.

We note that γ was defined in Refs. [69,113] as the ratio
between the shell thickness and the core radius R. Thus γ =
0.3 corresponds to a rather thin Si shell of 1.5 nm thickness
when R = s/2 = 5 nm as in Fig. 5. Nevertheless, the core
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FIG. 5. Subbands of lowest energy in a Ge/Si core/shell NW with
relative shell thicknessγ = 0.3. Each line represents a single subband,
because the degeneracy is lifted by an electric field Ex = 6 V/μm
and a magnetic field Bx = 1 T applied along the x axis (see Fig. 2).
The spectrum in the upper panel was calculated with the model of
Sec. III using s = 10 nm (square cross section). The lower panel was
adapted from Ref. [69] (circular cross section). In both cases, the
spin-orbit energy is approximately one millielectronvolt. The Zeeman
gap at kz = 0 corresponds to a g factor of 8.3 (top) and 5.2 (bottom),
respectively. When the magnetic field is applied along z instead of
x, our calculation for the square cross section yields a g factor of
1.8. As expected [66,69,75], this value is smaller than the one for the
perpendicularly applied magnetic field.

strain εzz = −18.6 × 10−3 and ε⊥ = −4.8 × 10−3 associated
with γ = 0.3 [113] is already sufficient at R = s/2 = 5 nm
to change the effective mass from negative to positive for the
subbands of lowest energy, leading to an electronlike parabolic
spectrum. When a spectrum in the absence of fields is twofold
degenerate and described by the electronlike Hamiltonian
h̄2k2

z /(2meff ) with effective mass meff > 0, an effective SOI of
the form ασykz results in two parabolas whose minima occur at
kz = ±l−1

SO, where lSO = h̄2/(meff |α|) is the spin-orbit length
[51,69,95,96]. Magnetic fields are omitted at the moment,
so the two parabolas cross at kz = 0. The energy difference
meffα

2/(2h̄2) between the minima and the degenerate states at
kz = 0 is the spin-orbit energy ESO, as illustrated in the inset of
Fig. 6. Therefore the spin-orbit energy can be used to quantify
the strength of the SOI and is an important property of the
spectrum [47,51]. In Fig. 5, as expected, the SOI leads to a shift
of the two parabolas along the kz axis, and we note that the gap
at kz = 0 closes if Bx is set to zero, i.e., if magnetic fields
are absent. The spin-orbit energy is approximately 1 meV,
despite the moderate electric field of only a few volts per
micrometer. We verified that this strong SOI results from the
DRSOI, because the spectra in Fig. 5 remain unchanged (apart
from negligibly small, quantitative corrections) when we set
ᾱh = 0 [122]. The magnetic field lifts the degeneracy at kz = 0,
with a g factor greater than 5 in Fig. 5 [128], and so the

FIG. 6. Spin-orbit energy ESO as a function of the electric field Ex

for three Ge/Si core/shell NWs. The NWs differ in the side length s

of the Ge core, the relative shell thickness is always γ = 0.4. In each
of the three cases, a black dot marks the point where the maximal
spin-orbit energy Emax

SO is reached. The sketched E-k diagram in the
inset illustrates how we extract the spin-orbit energy ESO from a low-
energy hole spectrum. At a given set of parameters, we obtain ESO

from the numerically calculated spectrum, similar to that of Fig. 5
(top), setting all magnetic fields to zero. In the absence of magnetic
fields, there is a degeneracy at kz = 0, as sketched in the diagram.

low-energy hole spectrum in Ge/Si core/shell NWs is very
useful for, among other things, the implementation of Majorana
fermions [47,49] and spin filters [46]. As we illustrate in the
following, even spin-orbit energies that clearly exceed 1 meV
can be achieved with these NWs.

In Sec. II B 2, we discussed the 4 × 4 Hamiltonian of
Eq. (29), which was derived in Ref. [69] for Ge/Si core/shell
NWs with cylindrical symmetry. Starting from this Hamilto-
nian and considering |eUEx/�| 
 1 and |Ckz/�| 
 1, i.e.,
the regime where the splitting � is relatively large, we used
perturbation theory and obtained the 2 × 2 Hamiltonian in
Eq. (32) for the two subbands of lowest energy. Analogously,
we can derive

H eff
2x2 = h̄2k2

z

2mavg
+ Cσykz (58)

for the case of a very strong electric field, meaning that |eUEx |
is much greater than all other energies in Eq. (29), apart from
global energy shifts on the diagonal. In this case, the low-
energy eigenstates contain almost equal superpositions of the
two basis states |g+〉 and |e+〉 or |g−〉 and |e−〉. In the derivation
of Eq. (58), we exploited that the masses mg and me are similar
for Ge, and replaced both of them by an average effective mass
mavg that satisfies

1

mavg
= 1

2

(
1

mg

+ 1

me

)
. (59)

For a more general calculation, we refer to Appendix A.
When we compare Eq. (58) with the well-known effective
Hamiltonian for electrons in Rashba NWs [Eq. (5)], we can
identify ᾱDR = C/Ex as the effective Rashba coefficient of
the DRSOI. For the spin-orbit length lSO and the spin-orbit
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energy ESO, we obtain [69]

lSO = h̄2

mavgC
, (60)

ESO = mavgC
2

2h̄2 . (61)

The latter suggests that

ESO =
(

10 nm

R

)2

× 0.96 meV (62)

can be achieved with Ge/Si core/shell NWs, where we recall
that R is the radius of the Ge core.

Equations (58) to (62) are remarkably simple and depend
neither on the splitting � nor on the electric field Ex . However,
they require that |eUEx/�| � 1. It is therefore important to
note that the 4 × 4 Hamiltonian of Eq. (29) is reliable only
when the subspace spanned by the four basis states |g±〉 and
|e±〉 is sufficiently separated from other states. As explained
in the SI of Ref. [70], we estimate that this subspace can be
considered as isolated when |Ex | � (10 nm/R)3 × 5 V/μm.
The decay of this upper bound with R−3 can be understood
from the R−2-type decrease of the level spacings and the
proportionality to ExR of the couplings that are caused by the
term −eExx. With the parameters for Ge/Si core/shell NWs,
we consequently find that |eUEx/�| > 1 is accessible within
the allowed parameter regime when R � 5 nm [129].

Transferring the abovementioned results to Ge/Si core/shell
NWs with square cross sections suggests that for small side
lengths s � 10 nm, the spin-orbit energy at relatively strong
electric fields is approximately electric-field-independent, with
a value of about ESO = (20 nm/s)2 × 0.96 meV. In Fig. 6,
we plot the numerically calculated spin-orbit energy ESO

as a function of the applied electric field Ex for the three
examples s = 6, 10, and 14 nm. The relative shell thickness
is always γ = 0.4. In every case, ESO first increases rapidly
with increasing Ex , then reaches a maximum value Emax

SO , and
finally decays slowly when Ex is further increased. However,
as evident from Fig. 6, reaching Emax

SO in thin NWs (small s)
requires a stronger electric field than in thicker NWs (larger
s). Moreover, also the achievable spin-orbit energies depend
strongly on the size of the NW. Figure 7 shows the obtained
values for Emax

SO as a function of s.
The comparison with the effective model for cylindrically

symmetric Ge/Si core/shell NWs reveals good agreement.
First, we find from Fig. 6 that Emax

SO is approximately reached
when Ex is chosen such that the ratio |eUEx/�| is of the
order of one, using R = s/2 for the estimate. Second, the
decay after Emax

SO is relatively slow, particularly for NWs with
a small s. Third, the values of Emax

SO at small s in Fig. 7 scale
approximately with s−2. When we consider a Ge core with
s = 6 nm, the abovementioned term (20 nm/s)2 × 0.96 meV
yields a spin-orbit energy of 10.7 meV, which agrees well with
the numerically calculated Emax

SO = 7.8 meV.
We note that the decrease of ESO in Fig. 6 towards zero at

very strong Ex is not reproduced by the effective model for
cylindrical Ge/Si core/shell NWs. According to our estimates,
more than the four basis states |g±〉 and |e±〉 would have to be
included in this regime. Similarly, also the model of Sec. III
will lose validity when the electric field becomes so strong

FIG. 7. Maximal spin-orbit energy Emax
SO as a function of the side

length s for Ge/Si core/shell NWs with relative shell thickness γ =
0.4. Details for the three data points at s = 6, 10, and 14 nm are shown
in Fig. 6.

that the considered number of basis states in our numerical
approach is insufficient. It is therefore not surprising that, in
the regime of strong electric fields, our numerical results and
the 4 × 4 model for cylindrical NWs eventually deviate from
each other. At these electric fields, more research about the
hole states and their SOI is needed for reliable predictions, as
explained in Sec. VII.

D. Results beyond the spherical approximation

Finally, we want to comment on effects of the growth
direction. When we consider a bare Ge NW with square cross
section and calculate the hole spectrum with γ2 = 4.25 and
γ3 = 5.69 [92] instead of the spherical approximation γ2 = γ3,
the key features in the low-energy regime of Fig. 3 (top) are
preserved. That is, the gap � between the eigenstates of type
A and C at kz = 0 is relatively small and the effective mass
for the two degenerate subbands of lowest energy is negative.
Varying the orientation of the crystallographic axes leads here
to rather large quantitative differences. For the three special
cases mentioned in Sec. III C, i.e., x ‖ [100] and z ‖ [001],
x ‖ [110] and z ‖ [001], and x ‖ [001] and z ‖ [110], we
obtain the effective masses −0.45m, −0.034m, and −0.13m,
respectively. The results for � in units of h̄2/[m(s/2)2] are
5.6, 2.8, and 2.0. Next, we consider the Ge/Si core/shell NWs.
We list the results that we obtain by recalculating the data
of Fig. 5 (top), which shows the lowest-energy subbands of
a Ge/Si core/shell NW with γ = 0.3, s = 10 nm, Bx = 1 T,
and Ex = 6 V/μm. For the g factor at kz = 0, we get 7.3, 8.8,
and 6.3, respectively, when we use γ2,3 as above and otherwise
unchanged parameters. The effective mass, calculated at Bx =
Ex = 0, is 0.11m, 0.21m, and 0.081m. The spin-orbit energy
is 0.34, 1.3, and 0.31 meV. Thus, although these spin-orbit
energies differ by less than a factor of five, we note that the
largest of the three is obtained when x ‖ [110] and z ‖ [001].
In Secs. V and VI, we will show that this orientation is a
particularly promising choice for Si NWs.

V. SI NANOWIRES

Given the agreement in Sec. IV between our new approach
and previous theoretical results for Ge and Ge/Si core/shell
NWs, we now use our model from Sec. III to analyze the
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hole states in Si NWs. Importantly, a model as in Ref. [69]
no longer applies, because in Si the Luttinger parameter γ3 is
approximately four times greater than γ2 [92]. That is, the hole
spectrum around the � point is highly anisotropic for bulk Si,
and so a spherical approximation [93,94] does not apply.

A. Parameters

In our calculations for Si NWs, we use [92] γ1 = 4.22,
γ2 = 0.39, γ3 = 1.44, and we note that these numbers agree
well with those provided elsewhere [68,123,130]. The reported
values for κ (e.g., κ = −0.42 [68]) differ more than those for
the γi , and we set κ = −0.26 [92] in our calculations. We
recall that the choice for κ only matters when the effects of a
magnetic field are studied. As described in Appendix D, we use
ᾱh = 0.002 nm2e based on Refs. [68,123], and so the standard
Rashba coefficient for holes in Si is extremely small.

Unless stated otherwise, we use Lx = Ly = s in this sec-
tion. Hence, analogous to the case of Ge/Si core/shell NWs
(Sec. IV), we focus here on setups where the Si core has a
square cross section. However, in contrast to Ge/Si core/shell
NWs, the materials that surround recently fabricated Si NWs
[84–89] usually do not lead to considerable strain in the Si
core, and so we treat the Si NWs as unstrained.

B. Hole spectrum without applied fields

Since γ2 and γ3 differ greatly in Si, the orientation of the
crystallographic axes with respect to the setup (Fig. 2) strongly
affects the hole spectrum in the NW. This is illustrated in Fig. 8,
where we plot the low-energy hole spectrum for three different
cases. Each line in Fig. 8 is twofold degenerate. Despite the sub-
stantial differences between these three spectra, they all exhibit
an important common feature. In stark contrast to unstrained
Ge NWs (Fig. 3), the two degenerate subbands of lowest energy
always show an electronlike, parabolic dispersion relation with
a positive effective mass, even though the Si NW is unstrained.
However, the value of this effective mass strongly depends on
the orientation of the crystallographic axes.

We obtain the abovementioned effective mass by fitting the
function h̄2k2

z /(2meff ) to the degenerate subbands of lowest
energy. When the z axis, i.e., the NW axis, corresponds to
the [001] direction, we refer to the fitted mass as m

[001]
fit (φ),

where φ is the angle described in Sec. III C 1. Analogously,
we use the notation m

[110]
fit (ξ ) when z coincides with [110], with

ξ as in Sec. III C 2. For the three cases shown in Fig. 8, we
obtain m

[001]
fit (0) = 0.446m (top panel, x ‖ [100], z ‖ [001]),

m
[001]
fit (π/4) = 0.794m (middle panel, x ‖ [110], z ‖ [001]),

and m
[110]
fit (0) = 0.184m (bottom panel, x ‖ [001], z ‖ [110]).

The low-energy eigenstates at kz = 0 in the spectra of
Fig. 8 may be grouped into three types, which we briefly
describe in the following. The two eigenstates of type A closely
resemble the basis states |1,1,0,± 1

2 〉 (see Sec. III B for the
definition of the basis states). Thus with a high probability
the holes are found near the core center and with the spin
states |±1/2〉. Similarly, the two eigenstates of type B consist
predominantly of |1,1,0,± 3

2 〉. The two eigenstates of type C
mainly contain basis states of type |1,2,0,jz〉 and |2,1,0,jz〉.
At least approximately, they can be considered as eigenstates

FIG. 8. Low-energy hole spectra of Si NWs with different ori-
entations of the crystallographic axes (see labels at the top of each
panel and Fig. 2 for an illustration of the axes x and z). In each
case, the cross section of the NW is a square with side length s.
The spectra in the top, middle, and bottom panel were calculated
with φ = 0, φ = π/4, and ξ = 0, respectively (see Secs. III C 1 and
III C 2). Every line corresponds to two degenerate subbands. The
marked eigenstates of type A, B, and C are discussed in Sec. V B.
The relative contribution of the basis states |1,1,0,± 1

2 〉 to the two
eigenstates of type A is 97.7% (top), 99.9% (middle), and 95.0%
(bottom), respectively. That of |1,1,0,± 3

2 〉 to the two eigenstates of
type B is 95.9% (top), 99.8% (middle), and 85.5% (bottom). Despite
the absence of strain, the effective mass of the lowest-energy subbands
is always positive.
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with total angular momenta ±1/2 (in units of h̄) along z and
nonzero orbital angular momenta along z.

In our calculated spectra for bare Ge NWs (Fig. 3, top)
and Si NWs with z ‖ [110] (Fig. 8, bottom), the two ground
states at kz = 0 are of type A, the states with second-lowest
energy are of type C, and those with third-lowest energy are
of type B. These properties were also found previously in a
calculation for GaAs NWs with hard-wall confinement [111].
We note in passing that the basis states |g±〉 and |e±〉 of the
effective model for Ge/Si core/shell NWs [69,70] (Sec. II B 2)
resemble states of type A and C, respectively. Remarkably, the
orientation of the crystallographic axes in Si NWs even affects
the order of the subbands. While in Fig. 8 the ground states are
always of type A, it turns out that the eigenstates with second-
lowest (third-lowest) energy at kz = 0 are of type B (C) when
z ‖ [001], which contrasts the spectrum in the bottom panel for
z ‖ [110] where B and C are swapped. The observed change
in the order of the subbands can be understood as follows.
The energy gap at kz = 0 between the eigenstates of type A
and B is largely determined by 〈1,1,0,± 3

2 | HLK |1,1,0,± 3
2 〉 −

〈1,1,0,± 1
2 | HLK |1,1,0,± 1

2 〉, which yields 2γ2h̄
2π2/(s2m) if

z ‖ [001]. If z ‖ [110], the result changes by the factor (3γ3 +
γ2)/(4γ2). For the parameters of Si, this corresponds to an ap-
proximately threefold increase of the gap between eigenstates
of type A and B, which is consistent with the numerical data
of Fig. 8.

C. Hole spectrum with applied fields

The orientation of the crystallographic axes is of particular
importance for the SOI. In fact, we find that the SOI in Si
NWs can be strong. As an example, the upper panel of Fig. 9
shows the calculated spectrum for the two subbands of lowest
energy in a Si NW with x ‖ [110], z ‖ [001], and s = 10 nm.
A moderate electric field Ex = 6 V/μm is sufficient for a
spin-orbit energy close to one millielectronvolt. As illustrated
in the lower panel of Fig. 9, an additional magnetic field
Bx = 1 T leads to a Zeeman gap of 0.11 meV at kz = 0, which
corresponds to an effective g factor of 1.9 [128]. When the
magnetic field is applied along z instead of x, we obtain a
g factor of about 0.6. (With κ = −0.42 [68] instead of κ =
−0.26 [92], the results are g � 2.7 and g � 0.8, respectively.)
The possibility to open a gap at kz = 0 in the spectrum is
important, e.g., for the implementation of spin filters [46] and
Majorana fermions [47,51].

As in Sec. IV C, we plot in Fig. 10 the spin-orbit energy ESO

as a function of Ex . The three solid curves correspond all to a Si
NW with s = 10 nm, but the orientation of the crystallographic
axes is different. Remarkably, the curves in Fig. 10 and the
maximally achievable spin-orbit energies Emax

SO differ greatly.
This can also be seen in Fig. 11, where we show Emax

SO as a
function of the side length s.

A key result which is evident from Figs. 10 and 11 is that
the case with x ‖ [110] and z ‖ [001] leads to significantly
larger spin-orbit energies than the cases where x coincides
with a main crystallographic axis. This suggests that the SOI
of holes in Si NWs can be much increased compared with
recent experiments. In fact, the smallest values for Emax

SO in
Figs. 10 and 11 are obtained when x is parallel to a main
crystallographic axis and z ‖ [110], which is the case in many
recent devices with Si NWs [84,85,87,88].

FIG. 9. Subbands of lowest energy in a Si NW with side length
s = 10 nm. An electric field Ex = 6 V/μm is applied along the x

axis (see Fig. 2). The plotted spectra were calculated with φ = π/4,
i.e., the x axis corresponds to the [110] direction and the NW axis z

corresponds to the [001] direction. (Top) The electric field leads to
a SOI and shifts the two originally degenerate subbands in opposite
directions along the kz axis. This lifts the degeneracy, except at kz = 0.
Ground (excited) states are represented by the solid blue (dashed red)
lines. The spin-orbit energy ESO is of the order of millielectronvolt.
(Bottom) A magnetic field Bx along x opens a Zeeman gap at kz = 0
with a g factor of approximately 2.

We recall that the spin-orbit energy ESO and the spin-orbit
length lSO are [51,69,95,96]

ESO = meff ᾱ
2E2

x

2h̄2 , (63)

lSO = h̄2

meff |ᾱEx | (64)

for an electronlike Hamiltonian of the form h̄2k2
z /(2meff ) +

ᾱExσykz. Hence the effective Rashba coefficient ᾱ and the
spin-orbit length can be calculated with the data from Figs. 10
and 11 via

|ᾱ| = h̄

|Ex |

√
2ESO

meff
, (65)

lSO = h̄√
2meffESO

. (66)
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FIG. 10. Dependence of the spin-orbit energy ESO on the electric
field Ex for three Si NWs with identical cross sections (s = 10 nm).
For each of the three NWs, the orientation of the crystallographic axes
is different and provided by the labels of the respective lines. The blue,
red, and orange solid lines were calculated analogously to Fig. 6, using
φ = π/4, φ = 0, and ξ = 0, respectively. Black dots mark the points
with maximal spin-orbit energy Emax

SO . The dashed lines are plots of
Eq. (85) with φ = π/4 (black) and φ = 0 (gray). In the regime of
small Ex , they almost coincide with the numerically calculated solid
lines. For details on Eq. (85) and the underlying model, see Sec. VI.

A reasonable choice for the effective mass meff is the fitted
mass obtained in Sec. V B for the spectrum without applied
fields. That is, for the three cases plotted in Figs. 10 and 11,
meff should be replaced by m

[001]
fit (0) = 0.446m, m[001]

fit (π/4) =
0.794m, and m

[110]
fit (0) = 0.184m, respectively.

When x ‖ [110] and z ‖ [001], we obtain both the largest
effective mass and the largest spin-orbit energies compared
with the other two cases. Although ESO ∝ meff [Eq. (63)],
it is important to note that the greatest ratios ESO/meff and,
therefore, the greatest |ᾱ| are obtained for this orientation

FIG. 11. Maximal spin-orbit energy Emax
SO as a function of the side

length s for Si NWs with different orientations of the crystallographic
axes (see explanations at the top right of the figure). Details for
the three data points at s = 10 nm are shown in Fig. 10, the other
data were calculated analogously. We note that Emax

SO ∝ s−2 in good
approximation. As explained in Sec. VII, we estimate that the
spin-orbit split-off band may become important in Si NWs when
s < 10 nm, which might lead to strong deviations from Emax

SO ∝ s−2

in this regime. We believe that if all bands of the semiconductor were
fully taken into account for s < 10 nm, Emax

SO would still increase with
decreasing s.

of the crystallographic axes as well. Moreover, the fact that
m

[001]
fit (π/4) is large is advantageous for achieving a short

spin-orbit length [Eqs. (64) and (66)]. For instance, the data
in Fig. 11 reveal that for each of the considered values of s,
the calculated Emax

SO in the case of x ‖ [110] and z ‖ [001]
exceeds the Emax

SO for x ‖ [001] and z ‖ [110] by a factor
of about 15. Furthermore, m

[001]
fit (π/4)/m

[110]
fit (0) = 4.3. We

therefore conclude that, at any fixed side length s, changing
the orientation of the crystallographic axes could reduce the
shortest possible spin-orbit length in recently fabricated Si
NWs [84–89] by a factor of eight.

Another possibility to decrease the shortest achievable spin-
orbit length is to decrease the side length s of the Si NW. As in
the case of Ge/Si core/shell NWs (Sec. IV C), we find from the
data in Fig. 11 that Emax

SO scales approximately with s−2, and
so the minimal spin-orbit length is approximately proportional
to s. With Emax

SO from Fig. 11 and the aforementioned effective
masses for Si NWs, we obtain the minimal spin-orbit length
lmin
SO � 3.1s for x ‖ [100] and z ‖ [001], lmin

SO � 0.84s for x ‖
[110] and z ‖ [001], and lmin

SO � 6.8s for x ‖ [001] and z ‖
[110]. We wish to point out, however, that reaching Emax

SO
and lmin

SO in a thin NW requires a stronger electric field than
in thicker ones, as shown before for Ge/Si core/shell NWs
(see also Fig. 6). For comments on very thin Si NWs with
s < 10 nm, see Sec. VII and the caption of Fig. 11.

Thus far, we have focused on electric fields E that are
applied along the x axis. Remarkably, for the case with x ‖
[110] and z ‖ [001], we find that even larger spin-orbit energies
can be obtained when the electric field is parallel to the diagonal
of the cross section. For instance, while Emax

SO � 0.7 meV when
s = 10 nm and E ‖ x, we obtain ESO = 1.5 meV with the
same Si NW when Ex = Ey = 10 V/μm. However, in the
case of x ‖ [001] and z ‖ [110], we did not find a noteworthy
enhancement of Emax

SO by changing the direction of E.
Setting ᾱh = 0 in the calculations does not affect the

presented results, apart from negligible quantitative deviations.
Therefore we conclude that our results for the SOI of low-
energy hole states in Si NWs (Sec. V C) and Ge/Si core/shell
NWs (Sec. IV C) are based on the DRSOI. As a consequence,
the values for ᾱ that may be calculated with Eq. (65) and our
numerical data correspond to the values of ᾱDR, which is the
effective Rashba coefficient of the DRSOI.

VI. ANALYTICAL RESULTS FOR SI NANOWIRES

In order to explain why a surprisingly large DRSOI can
be achieved with Si NWs when x ‖ [110] and z ‖ [001],
we consider a simple model. In this section, we use the
Hamiltonian

H = H
[001]
LK (φ) + V (x,y) − eExx (67)

for a NW with z ‖ [001]. The LK Hamiltonian H
[001]
LK (φ) and

the confining potential V (x,y) are displayed in Eqs. (48) and
(38), respectively. For simplicity, we assume that the NW has
a square cross section, i.e., Lx = Ly = s, where s is the side
length.
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A. Subspace and projected Hamiltonian

The matrix

Hproj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̄2k2
z

2m′
LH

0 p1Ex 0 0 −ip2kz

0 h̄2k2
z

2m′
LH

0 ip2kz p1Ex 0

p1Ex 0 �1 + h̄2k2
z

2m′
LH

ν(φ) 0 0

0 −ip2kz ν∗(φ) �1 + �2 + h̄2k2
z

2m′
HH

0 0

0 p1Ex 0 0 �1 + h̄2k2
z

2m′
LH

ν∗(φ)

ip2kz 0 0 0 ν(φ) �1 + �2 + h̄2k2
z

2m′
HH

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(68)

shows the projection of H onto a subspace with the six
basis states |1,1,kz,

1
2 〉, |1,1,kz,− 1

2 〉, |2,1,kz,
1
2 〉, |2,1,kz,− 3

2 〉,
|2,1,kz,− 1

2 〉, and |2,1,kz,
3
2 〉. For details on the basis states,

we refer to Sec. III B. The two states |1,1,kz,± 1
2 〉 are used in

the model because we are interested in the lowest-energy sub-
bands and the expectation value 〈nx,ny,0,jz| H |nx,ny,0,jz〉
at kz = 0 is minimal for these two states. In Eq. (68),
the energy 〈1,1,0,± 1

2 | H |1,1,0,± 1
2 〉 = h̄2π2(γ1 − γ2)/(s2m)

was subtracted from the diagonal, as it corresponds to a global
offset. The two states |2,1,kz,± 1

2 〉 are included because among
all basis states with a reasonably small nx � 3, these are the
only states that are coupled to |1,1,kz,± 1

2 〉 via the electric field
Ex . Finally, the two states |2,1,kz,± 3

2 〉 are taken into account
because these are coupled to both |1,1,kz,± 1

2 〉 and |2,1,kz,∓ 1
2 〉

due to the LK Hamiltonian.
In Eq. (68), the prefactors are

p1 = 16es

9π2
, (69)

p2 = 8γ3h̄
2

√
3ms

. (70)

The prime at the effective masses

m′
HH = m

γ1 − 2γ2
, (71)

m′
LH = m

γ1 + 2γ2
(72)

was added to avoid confusion with Eqs. (11) and (12), which
are based on the spherical approximation. The expressions for
the two energy gaps read

�1 = 3h̄2π2(γ1 − γ2)

2s2m
, (73)

�2 = 5h̄2π2γ2

s2m
. (74)

We wish to emphasize that the orientation of the crystallo-
graphic axes enters the model via the coupling

ν(φ) = −3
√

3h̄2π2e2iφ[γ2 cos(2φ) − iγ3 sin(2φ)]

2s2m
. (75)

At this stage, we can already see why x ‖ [110] is favorable
for the DRSOI. When one compares the case φ = π/4, i.e.,

x ‖ [110], with the case φ = 0, i.e., x ‖ [100], one finds

ν(π/4)

ν(0)
= γ3

γ2
, (76)

and so the coupling at φ = π/4 is four times stronger because
γ3/γ2 ≈ 4 in Si [68,92].

B. Results

The Hamiltonian Hproj in Eq. (68) can be used to derive
analytical results for the low-energy states. First, we find a
unitary transformation that exactly diagonalizes Hproj when
kz = 0 and Ex = 0. Second, we apply this transformation
to Hproj. Third, by considering terms that contain kz or Ex

as perturbations, we perform a second-order Schrieffer-Wolff
transformation (quasi-degenerate perturbation theory [68]) and
obtain an effective 2 × 2 Hamiltonian for the subbands of
lowest energy. Neglecting the corrections to the effective mass,
this approach yields

H
eff,[001]
2x2 = h̄2k2

z

2m′
LH

+ ᾱDR(φ)Exσykz + δ̄DR(φ)Exσxkz, (77)

where σx and σy refer to Pauli matrices. The coefficient

δ̄DR(φ) = χ (φ)(γ2 − γ3) sin(4φ), (78)

where

χ (φ) = γ3

7γ 2
2 − 3γ 2

1 − 4γ1γ2 + 9γ 2
2 cos2(2φ) + 9γ 2

3 sin2(2φ)

×28s2e

9π4
, (79)

requires a high degree of asymmetry because it vanishes when
φ ∈ {0,π/4,π/2, · · · } or γ2 = γ3.

The effective Rashba coefficient of the DRSOI is

ᾱDR(φ) = χ (φ)[γ2 + γ3 + (γ2 − γ3) cos(4φ)]. (80)

For φ = 0 (x ‖ [100]), it simplifies to

ᾱDR(0) = 29γ2γ3s
2e

9π4
(
16γ 2

2 − 3γ 2
1 − 4γ1γ2

) , (81)

whereas

ᾱDR(π/4) = 29γ 2
3 s2e

9π4
(
7γ 2

2 − 3γ 2
1 − 4γ1γ2 + 9γ 2

3

) (82)
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FIG. 12. Dependence of the derived coefficients δ̄DR(φ) [see
Eqs. (78) and (79)] and ᾱDR(φ) [see Eqs. (80) and (79)] on the angle
φ. For detailed information, we refer to Sec. VI. We use the Luttinger
parameters γ1 = 4.22, γ2 = 0.39, and γ3 = 1.44 for Si (Sec. V A)
[92]. The Si NW has a square cross section with side length s and the
electric field, applied along the x axis (Fig. 2), is assumed to be small.

for φ = π/4 (x ‖ [110]). With the Luttinger parameters of Si
[68,92,123,130], the ratio

ᾱDR(π/4)

ᾱDR(0)
= γ3

(
16γ 2

2 − 3γ 2
1 − 4γ1γ2

)
γ2

(
7γ 2

2 − 3γ 2
1 − 4γ1γ2 + 9γ 2

3

) (83)

reveals that, compared with x ‖ [100], the effective Rashba
coefficient of the DRSOI is more than five times greater when
x ‖ [110]. This can also be seen in Fig. 12, where we plot the
dependence of ᾱDR [Eq. (80)] and δ̄DR [Eq. (78)] on the angle
φ.

In Eq. (77), we neglected corrections to the effective mass
for simplicity. Corrections to the effective mass may easily
be accounted for by replacing the m′

LH in Eq. (77) with the
m

[001]
fit (φ) introduced in Sec. V B. We recall that, for Si NWs,

the values m
[001]
fit (0) = 0.446m and m

[001]
fit (π/4) = 0.794m

were obtained from the lowest-energy spectra in Fig. 8. For
a Hamiltonian h̄2k2

z /[2m
[001]
fit (φ)] + ᾱDR(φ)Exσykz, the spin-

orbit length lSO and the spin-orbit energy ESO are [51,69,95,96]

lSO(φ) = h̄2

m
[001]
fit (φ)|ᾱDR(φ)Ex |

(84)

and

ESO(φ) = m
[001]
fit (φ)ᾱ2

DR(φ)E2
x

2h̄2 , (85)

respectively. Thus, considering a fixed side length s, a fixed
electric field Ex , and provided that Ex is small enough for the
perturbative approach in this Sec. VI B to apply, our analytical
results show for Si NWs with z ‖ [001] that by changing from
x ‖ [100] to x ‖ [110], the spin-orbit length becomes more
than nine times shorter and the spin-orbit energy increases by a
factor of about fifty. This agrees very well with our numerical
results from Sec. V. In Fig. 10, where Eq. (85) is plotted for
the cases φ = 0 (gray dashed line) and φ = π/4 (black dashed
line) using s = 10 nm and the γ1,2,3 of Sec. V A, we find
quantitative agreement with the numerical data in the regime
of small Ex , which is the regime where the abovementioned
perturbation theory applies.

C. Validity and remarks

We want to conclude this section with several remarks. Our
results for ᾱDR [see Eqs. (79) to (82)] show that ᾱDR ∝ s2

increases linearly with the area of the square cross section.
This finding is consistent with the model for cylindrical Ge/Si
core/shell NWs [69]. In the absence of strain (no Si shell),
the energy gap � in the effective Hamiltonian is proportional
to R−2, where R is the core radius. Thus, for a bare Ge
NW, we obtain ᾱDR = 2eCU/� ∝ R2 in the regime of small
electric fields, since C ∝ R−1 and U ∝ R (see Sec. II B 2).
We wish to emphasize that the remarkable scalings ᾱDR ∝ s2

and ᾱDR ∝ R2 are only valid within the parameter regimes
for which the assumptions and perturbative approaches behind
the respective formulas apply. For instance, the off-diagonal
coupling p1Ex in Eq. (68) is proportional to s, whereas the
energy gaps �1,2 on the diagonal are proportional to s−2.
Hence, when s is continuously increased, the perturbation
theory behind our analytical results in Sec. VI B will eventually
lose validity when Ex is fixed. Also, the validity will eventually
be lost when Ex is increased at a fixed s, which explains
the deviation in Fig. 10 between the numerical and analytical
results beyond the regime of small Ex . As a rough estimate,
one may use |p1Ex/�1| � 0.1 to identify the regime of small
Ex for the model of Eq. (68). With s = 10 nm and the Luttinger
parameters of Si, this estimate yields |Ex | � 2.4 V/μm, in
good agreement with Fig. 10.

While thicker Si and Ge NWs allow for a stronger SOI
when only weak electric fields are present in the system (see
the abovementioned ᾱDR ∝ s2 and ᾱDR ∝ R2), reaching the
lowest-energy subband with NWs or NW QDs that have large
cross sections may be experimentally challenging because of
the small energy gaps between the subbands. In fact, we find
that qualitatively different behaviors can be expected for hole
states in different subbands, which is consistent with previous
work [111].

From a theoretical point of view, Ge/Si core/shell NWs
with a core diameter of approximately 4–24 nm were found
to be most promising (see, e.g., Ref. [70] and its SI). Similar
considerations apply to Si NWs, as discussed in Sec. VII.
When we use s = 10 nm, we already obtain a relatively large
ᾱDR(π/4) = −3.0 nm2e from Eq. (82) for holes in Si NWs,
which is similar to the calculated Rashba coefficients ᾱel = 1.2
and 5.2 nm2e for electrons in InAs and InSb, respectively
[68,98]. The negative sign obtained with the formulas for ᾱDR

here in Sec. VI simply results from our ordering of the two
states that the Pauli matrices are based on. If these two states
were swapped, the coefficient ᾱDR would change its sign.

In order to rule out that the term δ̄DR(φ)Exσxkz in Eq. (77)
is an artifact of the six-dimensional subspace of Eq. (68), we
performed numerical calculations for Si NWs with square cross
sections, considering a nonzero electric field E = Exex , a
nonzero magnetic field B = Byey , and z ‖ [001]. Analogously
to Sec. V, we used the method described in Sec. III to analyze
the low-energy hole spectrum. For φ = 0, the two subbands
of lowest energy correspond, in good approximation, to two
parabolas that are shifted against each other in the E-kz

diagram (E: Energy). Importantly, the two parabolas cross each
other. This is consistent with an effective 2 × 2 Hamiltonian
of the form h̄2k2

z /(2meff ) + ᾱDRExσykz + gμBByσy/2, where
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meff is an effective mass and g is a g factor. The same qualitative
results are observed at φ = π/4 and φ = π/2. With 0 < φ <

π/4 or π/4 < φ < π/2, however, an anticrossing occurs in
the spectrum. This anticrossing can only be obtained with an
additional term proportional to σx,z in the 2 × 2 Hamiltonian,
in agreement with the term δ̄DRExσxkz in Eq. (77). We recall
that, indeed, δ̄DR(φ) vanishes for 0 � φ � π/2 only at φ = 0,
φ = π/4, and φ = π/2 (see also Fig. 12).

When we analyze Eq. (68) in the regime of very strong elec-
tric fields, where |p1Ex/�1| � 1, we find that the low-energy
eigenstates contain almost equal superpositions of |1,1,kz,± 1

2 〉
and |2,1,kz,± 1

2 〉. Deriving an effective 2 × 2 Hamiltonian for
the low-energy subbands yields that Eqs. (77), (78), and (80)
also apply at very strong Ex , but with

χ (φ) = χ = − 27γ3h̄
4π4

8s4m2eE2
x

(86)

instead of Eq. (79). The property χ ∝ E−2
x in Eq. (86) is

consistent with the numerical result that the spin-orbit energy
decreases at large Ex , as illustrated for Si NWs in Fig. 10.

Finally, we want to briefly mention that additional couplings
among the basis states |nx,ny,kz,jz〉 have, of course, been
omitted by considering only the six-dimensional subspace of
Eq. (68). Nevertheless, the simple analytical results derived in
Sec. VI B apply well to the case of Si NWs. In some other
materials, additional couplings may be relatively important
as well. For instance, in the case of Ge, where both γ2/γ1

and γ3/γ1 are greater than in Si, these additional couplings
apparently play a larger role than in Si and, depending on
the desired accuracy, more basis states should be taken into
account, as we do in the numerical calculations of Sec. IV.
However, since γ2 ≈ γ3 in Ge, the spherical approximation
applies and the effective model of Ref. [69] can be exploited
as an analytical alternative [see also Eqs. (29), (32), (58),
and (A8)]. By combining several subsequent transformations,
it is sometimes even possible to derive surprisingly simple
expressions that remain valid for a relatively wide range of
parameters [70].

VII. ACCURACY

Our numerical results in Secs. IV and V were calculated by
diagonalizing matrices with 36 × 36 matrix elements, which
are obtained from the model and the basis states of Sec. III. The
model focuses on the topmost valence band of Si or Ge (�v

8
[68]) and uses hard-wall confinement for the core of the NW.
This approach has many advantages. For instance, it allows for
very fast calculations with standard numerical tools. Also, it
provides insight into important mechanisms and enables the
derivation of analytical results (Sec. VI). On the other hand, it
is clear that such an approach is only reliable if the associated
requirements are satisfied.

An important requirement is that the considered subspace
is well isolated. This may be analyzed by comparing energy
scales. When the cross section of the NW core is a square
with side length s, the energies due to an electric field Ex

are usually proportional to Exs [see, e.g., Eqs. (68) and (69)]
and those due to the quantum confinement are proportional
to s−2 [see, e.g., Eqs. (73) and (74)]. Therefore estimates for

the upper bound of Ex in our approach typically lead to a
value proportional to s−3. The upper bound can be increased
by taking more basis states into account, particularly in the case
of hard-wall confinement, since the energies associated with
hard-wall confinement scale with the squared quantum number
[see, e.g., Eqs. (17) and (18)]. We note that core-shell interfaces
are usually very narrow or even abrupt [52]. Therefore we
consider hard-wall confinement as a better approximation than
harmonic confinement, for instance, where the energies are
proportional to the quantum number and one obtains equally
spaced energy levels. Nevertheless, it would be interesting to
compare our results with those for various confining potentials.
This may be necessary, e.g., for setups where the confinement
in at least one of the transverse directions is caused by electric
gates.

In the case of Ge/Si core/shell NWs, the assumption of hard-
wall confinement is justified as long as all energies are below
the Ge-Si valence-band offset of about 0.5 eV [53]. In the case
of Si NWs, which may be surrounded by materials with a very
large band gap (such as SiO2 [84,89,131]), the valence-band
offset can be even larger than that for the Ge-Si interface. An
important constraint in our model for Si NWs is certainly the
small splitting of only 44 meV [68,123] between the topmost
valence band (�v

8 ) and the spin-orbit split-off band (�v
7 ) at the

� point (k = 0) in bulk Si. As a consequence, we estimate
that effects of the split-off band may become important in Si
NWs with s < 10 nm. For Ge, the splitting between �v

8 and
�v

7 is approximately 0.3 eV [68,123] and therefore relatively
large. Based on all numbers, we decided to show our results
for s � 4 nm. We also note that s cannot be chosen arbitrarily
small because the LK Hamiltonian and the BP Hamiltonian
lose validity if the NW has only very few atoms in its cross
section.

While the above explanations lead to a lower bound for s

in our model, there are also reasons for an upper bound. If
s is chosen very large, a great number of basis states may be
necessary for reliable results in the presence of, e.g., strain (can
easily exceed 10 meV in Ge/Si core/shell NWs [69,113]) or
applied fields (see, e.g., the mentioned proportionality to s−3 of
our estimated bound for the electric field). Furthermore, since
the energy gaps between subbands scale with s−2 in the absence
of strain, as evident from Figs. 3 and 8, it may be challenging
to reach the subbands of lowest energy experimentally when s

is large.
A rather surprising feature in the numerical results of

Secs. IV and V is the eventual decay of the spin-orbit energy,
which is observed when the electric field is continuously
increased. For instance, in the example of a Si NW with
s = 10 nm, x ‖ [110], and z ‖ [001] (blue line in Fig. 10),
the maximal spin-orbit energy Emax

SO = 0.68 meV is reached
at Ex = 6.8 V/μm, and at stronger Ex the spin-orbit energy
ESO decays rapidly. When we recalculate this curve with
nx,y � 5 instead of nx,y � 3, i.e., with 100 instead of 36
basis states (see Sec. III B), we find that the maximum now
occurs at Ex = 7.3 V/μm with Emax

SO = 0.78 meV. Again, ESO

decays rapidly with increasing Ex once the maximum was
reached. In the two calculations, ESO dropped to Emax

SO /2 at
Ex � 15 V/μm (with nx,y � 3, Fig. 10) and Ex � 17 V/μm
(with nx,y � 5), respectively. Thus we obtain here quantitative
but not qualitative corrections by changing from nx,y � 3
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to nx,y � 5. Due to the hard-wall confinement, qualitative
corrections to these results from basis states with even larger
nx,y are not expected either. This strongly suggests that the
eventual decay of ESO at increasing Ex is not an artifact of our
finite subspace. We note that a decay of ESO is expected when
the simple model of Sec. VI is analyzed in the regime of strong
Ex [see Eq. (86)].

We also recalculated other curves with nx,y � 5 instead
of nx,y � 3. For a Si NW with s = 10 nm, x ‖ [100], and
z ‖ [001] (red line in Fig. 10), Emax

SO increases from 0.09 meV
to 0.13 meV, and the electric field at which Emax

SO is reached
changes by a factor of two from Ex = 16 V/μm to Ex =
32 V/μm. When we compare the Ex-dependence of ESO with
the abovementioned case for x ‖ [110] (blue line in Fig. 10),
we find that for x ‖ [100], the maximal spin-orbit energy is
obtained at a stronger Ex and the range of Ex with ESO >

Emax
SO /2 is wider. In the case of x ‖ [100], it turns out that the

increase of ESO at small Ex is much steeper than the decrease
after ESO = Emax

SO , leading to a plateaulike behavior once
ESO ≈ Emax

SO is reached. As evident from Fig. 6, a relatively
slow decay of ESO is also observed for Ge/Si core/shell NWs.
When the three curves for s = 6 nm, s = 10 nm, and s =
14 nm in Fig. 6 are recalculated with nx,y � 5, Emax

SO increases
by 21%, 41%, and 74%, respectively, and the electric field
at which the maximum occurs increases by 40%, 54%, and
69%. Although all these curves decay at strong electric fields,
the decay occurs at values for Ex at which we estimate that
more basis states must be taken into account for the results
to be reliable. Numerical calculations with nx,y > 5, however,
are beyond the scope of the present work.

We note that a plateau of ESO is obtained when the effective
model of Ref. [69] for Ge/Si core/shell NWs is studied in
the regime of strong Ex [see Eqs. (58) and (61)]. However,
we wish to emphasize again that the model of Ref. [69], the
simple 6 × 6 model of Sec. VI, and our numerical approach
discussed in Sec. III B are all based on finite subspaces, which
are no longer well isolated once the electric-field-induced
couplings to omitted basis states become relatively strong.
Recent numerical calculations for bare Ge NWs with circular
cross sections [132] agree very well with the theory for
such NWs in Ref. [69]. In Ref. [132], the effective Rashba
parameter for holes reaches a wide plateau in its electric
field dependence, which is expected, e.g., from Eq. (A8) or
Eq. (58) or simply from exact (numerical) diagonalizations
of Eq. (29). Nevertheless, this observation of a wide plateau,
which is also reported for Si NWs, is not necessarily expected
for the NWs of the present work. One reason is that Ref. [132]
focuses on circular cross sections, in contrast to the rectangular
cross sections studied here. Furthermore, results for different
orientations of the crystallographic axes with respect to the
wire axis and the electric field direction are not compared in
Ref. [132]. In the present work, we find that the orientation
of the crystallographic axes can have very strong effects,
particularly for Si NWs. Consequently, the detailed behavior
of ESO in the regime of large Ex is currently an open problem
for our considered systems and requires further research.

In summary, the model and the numerical approach of
Sec. III have several advantages because of their simplicity. It is
clear, however, that results with a high quantitative precision
will require an extended model. Nevertheless, based on our

estimates and calculations described above, we believe that
our quantitative results are within the right order of magnitude
for the range of s considered in Secs. IV and V, and most
importantly, that the qualitative findings are reliable. The
detailed behavior of the SOI at strong electric fields, however,
requires further research. We identified cases with a clear
and relatively fast decay of ESO, and cases with a plateaulike
behavior where the decay is slow. In the latter cases, the decay
occurs at electric fields outside of our estimated parameter
range within which the model assumptions (isolated subspace)
are well satisfied.

VIII. CONCLUSION

We studied low-energy hole states in Si- and Ge-based NWs
whose cores have rectangular cross sections. In particular, we
analyzed the case where the cross section is a square with
side length s. It turned out that the DRSOI is the dominant
contribution to the SOI and that the shortest achievable spin-
orbit length is approximately proportional to s.

For Ge and Ge/Si core/shell NWs, we found that the
orientation of the crystallographic axes has relatively small
effects on the low-energy hole spectrum. Furthermore, we
obtained very good agreement with the results of Ref. [69],
where Ge and Ge/Si core/shell NWs with cylindrical symmetry
were considered and an effective model for the low-energy sub-
bands was developed. Thus our work strongly supports recent
calculations [49,70,75,81,133] that make use of the effective
Hamiltonian of Ref. [69]. In addition, the agreement suggests
that the exact shape of the Ge core is not important for the low-
energy hole states, as long as the confinement in the transverse
directions is approximately similar. As a consequence, our
results of Sec. IV and those of Refs. [49,69,70,75,81,133]
may equally be used for NWs with, e.g., circular, square, or
hexagonal cross sections.

The orientation of the crystallographic axes is very impor-
tant for the hole states in Si NWs. By comparing the results for
different orientations, we found significant differences among
the effective masses of the lowest-energy subbands and among
the strengths of the SOI. Considering a perpendicularly applied
electric field along x, a particularly strong SOI was obtained for
Si NWs with x ‖ [110] and z ‖ [001] (see Fig. 2 for a sketch of
the axes and the NW), in agreement with our analytical results
of Sec. VI. For these NWs with x ‖ [110] and z ‖ [001], an
additional enhancement of the achievable spin-orbit energy
was observed when the electric field was applied parallel to
the diagonal of the square cross section. Including magnetic
fields in our model showed that a helical gap at kz = 0 can be
opened.

We found that the preferable choice of the side length s

depends on the setup and the application. If only relatively
weak electric fields are feasible, a stronger SOI may be
achieved by using a larger s, since ᾱDR ∝ s2 within the regime
of small electric fields and in the absence of strain. (Details
are provided in Sec. VI, and we note that this feature is not
observed in Fig. 6 for Ge/Si core/shell NWs because of the
strain.) If there is practically no limitation on the electric field,
the strongest achievable SOI is increased when s is decreased.

Our work also points out some currently open questions.
For instance, as explained in Sec. VII, a detailed analysis
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of the SOI and its electric-field-dependence in the regime of
strong fields would be desirable. Furthermore, predictions for
holes in Si NWs with circular cross sections [88] would be
useful. Given our results for square cross sections, particularly
the strong dependence of the SOI on the orientation of the
crystallographic axes, we expect that the SOI in Si NWs with
circular cross sections depends on both the growth direction
and the orientation of the electric field. This may be analyzed
with an approach similar to that of Sec. III, using cylindrical
confinement [110,111], which is beyond the scope of the
present work.

Although we primarily considered square cross sections,
we also studied rectangular cross sections with different aspect
ratios Lx/Ly . As expected [45,120], we found that the HH-LH
mixing decreases when Lx/Ly or Ly/Lx is changed from 1
(square cross section) toward 0. When the HH-LH mixing is
reduced, the DRSOI becomes less pronounced, as explained
in Sec. II.

In conclusion, our calculations show that holes in Si- and
Ge-based NWs are promising platforms for applications which
require a strong and/or electrically tunable SOI. Spin-orbit
energies of several millielectronvolts can be achieved, and the
SOI can be switched on and off via the electric field. In Si NWs,
the orientation of the crystallographic axes strongly affects the
properties of the low-energy hole states.
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APPENDIX A: EFFECTIVE 2 × 2 HAMILTONIAN FOR
CYLINDRICAL GE/SI CORE/SHELL NANOWIRES

The Hamiltonian H eff
4x4 in Sec. II B 2, Eq. (29), was derived in

Ref. [69] for holes in cylindrically symmetric Ge/Si core/shell
NWs. It describes the four subbands of lowest energy in the
presence of an electric field perpendicular to the NW. In this
appendix, we show that an effective 2 × 2 Hamiltonian for
the two subbands of lowest energy can easily be obtained
from H eff

4x4. The two steps described below were already
performed analogously in Ref. [70] (see also its SI), where they
correspond to the first two steps in the derivation of an effective
2 × 2 Hamiltonian for hole-spin qubits in Ge/Si core/shell NW
QDs with electric and magnetic fields.

When we focus on the regime of small kz, we can split H eff
4x4

into a leading-order Hamiltonian

H 0
4x4 =

⎛
⎜⎝

0 0 eUEx 0
0 0 0 −eUEx

eUEx 0 � 0
0 −eUEx 0 �

⎞
⎟⎠ (A1)

and a perturbation

H
pert
4x4 = H eff

4x4 − H 0
4x4. (A2)

All matrix elements of H
pert
4x4 are proportional to either kz or k2

z .
In a first step, we perform the unitary transformation Ũ †H eff

4x4Ũ ,

where Ũ † is the conjugate transpose of the unitary matrix

Ũ =

⎛
⎜⎝

cos θ 0 sin θ 0
0 cos θ 0 − sin θ

− sin θ 0 cos θ 0
0 sin θ 0 cos θ

⎞
⎟⎠. (A3)

Using

cos θ = � + �′√
(� + �′)2 + (2eUEx)2

, (A4)

sin θ = 2eUEx√
(� + �′)2 + (2eUEx)2

(A5)

with

�′ =
√

�2 + (2eUEx)2, (A6)

we find that Ũ from Eq. (A3) diagonalizes the Hamiltonian at
kz = 0. Omitting global shifts in energy, one obtains

Ũ †H 0
4x4Ũ =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 �′ 0
0 0 0 �′

⎞
⎟⎠, (A7)

and so �′ corresponds to the subband spacing. In a second
step, having calculated Ũ †H eff

4x4Ũ , we treat �′ as a large energy
and perform a second-order Schrieffer-Wolff transformation
(quasi-degenerate perturbation theory [68]) in order to obtain
an effective 2 × 2 Hamiltonian for the two subbands of lowest
energy. The result reads [70,134]

H eff
2x2 = h̄2k2

z

4mgme

[
me + mg + �

�′ (me − mg)

]
− �2C2k2

z

(�′)3

+2eCU

�′ Exσykz + F1k
4
z + F2Exσyk

3
z , (A8)

where σy is a Pauli matrix. We note that the factors

F1 = (me − mg)2(eUEx)2h̄4

4m2
gm

2
e(�′)3

(A9)

and

F2 = (me − mg)eCUh̄2�

mgme(�′)3
(A10)

vanish if mg = me. Furthermore, we expect that corrections to
the terms of type k3

z and k4
z from a higher-order Schrieffer-Wolff

transformation can be important. Nevertheless, we note that
only the terms in Eq. (A8) which are linear or quadratic in
kz are of relevance when one is interested in the behavior at
small kz.

Equations (32) and (58) of the main text can either be
separately derived from Eq. (29) or they can be considered
as special limits of Eq. (A8). For instance, Eq. (32) is obtained
when |eUEx/�| → 0, since in this case �′ → �. Analo-
gously, Eq. (58) is obtained when |eUEx | corresponds to a
large energy.

As evident from the term 2eCUExσykz/�
′ in Eq. (A8),

the DRSOI results in the effective Rashba parameter αDR =
ᾱDREx = 2eCUEx/�

′, where �′ is the subband spacing
defined in Eq. (A6). We recall that � ∝ R−2 in the case of
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unstrained NWs and that C ∝ R−1 and U ∝ R [69]. For bare
Ge NWs, the predicted dependence of αDR on the electric field
Ex and the NW radius R is therefore as follows. When Ex or
R is small, i.e., when �′ ≈ � due to |eUEx/�| 
 1, we find
αDR ≈ 2eCUEx/� ∝ ExR

2. Once Ex or R is large enough
for |eUEx/�| � 1 to be satisfied, we find αDR ≈ C ∝ R−1,
which is independent of the electric field. All these features
follow directly from the theory of Ref. [69]. They are consistent
with recent numerical calculations [132].

APPENDIX B: ORBITAL CONTRIBUTIONS
OF A MAGNETIC FIELD

As pointed out in Sec. III A 1, the h̄ki in the LK Hamiltonian
correspond to the kinetic electron momenta, i.e.,

k = −i∇ + e

h̄
A, (B1)

where e is the elementary positive charge and A is the
vector potential with B = ∇ × A [91]. Considering a homoge-
neous magnetic field B = Bxex + Byey + Bzez with arbitrary
strength and direction, we choose the vector potential

A = − 1
2Bzyex + 1

2Bzxey + (Bxy − Byx)ez. (B2)

That is, we choose a symmetric gauge for the magnetic field Bz

along the wire and a Landau gauge for the components Bx and
By perpendicular to the wire. The vector potential in Eq. (B2)
was also used in our previous works on Ge/Si NWs [69,70,75],
and it may easily be verified that the relation B = ∇ × A is
satisfied. From Eqs. (B1) and (B2), we obtain

kx = −i∂x − eBz

2h̄
y, (B3)

ky = −i∂y + eBz

2h̄
x, (B4)

kz = −i∂z + eBx

h̄
y − eBy

h̄
x. (B5)

Furthermore,

k2
x = −∂2

x + i
eBz

h̄
y∂x + e2B2

z

4h̄2 y2, (B6)

k2
y = −∂2

y − i
eBz

h̄
x∂y + e2B2

z

4h̄2 x2, (B7)

k2
z = −∂2

z − 2i
e

h̄
(Bxy∂z − Byx∂z)

+ e2

h̄2

(
B2

xy
2 − 2BxByxy + B2

yx
2
)
. (B8)

In addition, we find

kxky = −∂x∂y − i
eBz

2h̄
(1 + x∂x − y∂y) − e2B2

z

4h̄2 xy, (B9)

kykx = −∂x∂y − i
eBz

2h̄
(−1 + x∂x − y∂y) − e2B2

z

4h̄2 xy, (B10)

and

kxkz = −∂x∂z − i
e

h̄

(
Bxy∂x − By − Byx∂x − Bz

2
y∂z

)

+ e2Bz

2h̄2 (Byxy − Bxy
2), (B11)

kzkx = −∂x∂z − i
e

h̄

(
Bxy∂x − Byx∂x − Bz

2
y∂z

)

+ e2Bz

2h̄2 (Byxy − Bxy
2), (B12)

and

kykz = −∂y∂z − i
e

h̄

(
Bx + Bxy∂y − Byx∂y + Bz

2
x∂z

)

+ e2Bz

2h̄2 (Bxxy − Byx
2), (B13)

kzky = −∂y∂z − i
e

h̄

(
Bxy∂y − Byx∂y + Bz

2
x∂z

)

+ e2Bz

2h̄2

(
Bxxy − Byx

2
)
. (B14)

We note that

kykz − kzky = −i
e

h̄
Bx, (B15)

kzkx − kxkz = −i
e

h̄
By, (B16)

kxky − kykx = −i
e

h̄
Bz, (B17)

and so k × k = −ieB/h̄ is indeed satisfied [68].
Equations (B6) to (B14) correspond to the chosen represen-

tations of the operators kikj in the LK Hamiltonian. However,
when the magnetic field is relatively weak, terms in kikj that
are quadratic in the magnetic field may be neglected, analogous
to previous theoretical studies on Ge/Si NWs [69,70,75]. We
verified numerically that these quadratic terms are indeed
negligible for the considered parameter range. Hence only
the terms in Eqs. (B6) to (B14) that are either independent
of or linear in the magnetic field are important for the results
presented in this work.

APPENDIX C: TRANSFORMATION
OF THE LUTTINGER-KOHN HAMILTONIAN

Since the spherical approximation does not apply to Si,
the Hamiltonian of our model depends on the details of the
NW fabrication. That is, the relations between the coordi-
nate systems � for the NW (x,y,z) and �′ for the main
crystallographic axes (x ′,y ′,z′) must be taken into account,
see Sec. III C. The coordinate system �′ is based on the
orthonormal vectors ex ′ , ey ′ , and ez′ = ex ′ × ey ′ , which cor-
respond to the crystallographic directions [100], [010], and
[001], respectively. Analogously, the basis vectors of � are ex ,
ey , and ez = ex × ey and point along the axes x (“height”), y

(“width”), and z (“length”) of the NW, as illustrated in Fig. 2.
In this appendix, we briefly explain how the �′-based LK
Hamiltonian of Eq. (34) is rewritten in terms of �. All details
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are provided in Ref. [121], including information on rewriting
the BP Hamiltonian of Eq. (36).

1. Nanowire axis along [001]

For the momentum operator h̄k and its components, the
equality

k = exkx + eyky + ezkz = ex ′kx ′ + ey ′ky ′ + ez′kz′ (C1)

applies. Equations (45) to (47) therefore imply that

kx ′ = kx cos φ − ky sin φ, (C2)

ky ′ = kx sin φ + ky cos φ, (C3)

kz′ = kz. (C4)

The relations between Jx ′,y ′,z′ and Jx,y,z for the spin are
identical to those for the momentum and can be derived
analogously via

J = exJx + eyJy + ezJz = ex ′Jx ′ + ey ′Jy ′ + ez′Jz′ . (C5)

Insertion of the expressions for kx ′,y ′,z′ and Jx ′,y ′,z′ into Eq. (34),
followed by algebraic simplification, yields Eq. (48). We want
to mention that the inverse relations for Eqs. (45) to (47) are

ex ′ = ex cos φ − ey sin φ, (C6)

ey ′ = ex sin φ + ey cos φ, (C7)

ez′ = ez (C8)

and resemble Eqs. (C2) to (C4).

2. Nanowire axis along [110]

We proceed analogously to Appendix C 1. Using Eqs. (C1),
(C5), and (52) to (54), one finds

kx ′ = kx

sin ξ√
2

+ ky

cos ξ√
2

+ kz

1√
2
, (C9)

ky ′ = −kx

sin ξ√
2

− ky

cos ξ√
2

+ kz

1√
2
, (C10)

kz′ = kx cos ξ − ky sin ξ, (C11)

and the identical relations between Jx ′,y ′,z′ and Jx,y,z. Again,
we briefly mention that these relations resemble the inverse

relations

ex ′ = ex

sin ξ√
2

+ ey

cos ξ√
2

+ ez

1√
2
, (C12)

ey ′ = −ex

sin ξ√
2

− ey

cos ξ√
2

+ ez

1√
2
, (C13)

ez′ = ex cos ξ − ey sin ξ (C14)

for Eqs. (52) to (54). By inserting the expressions for kx ′,y ′,z′

and Jx ′,y ′,z′ into Eq. (34), we obtain the ξ -dependent LK
Hamiltonian displayed in Ref. [121] after algebraic simpli-
fication. The special case with ξ = 0 (or ξ = π because of the
symmetry) is shown in Eq. (56).

APPENDIX D: TERMS CAUSED BY ELECTRIC FIELDS

In this appendix, we provide information about the two
electric-field-dependent terms Hh

dir and Hh
R in our model

Hamiltonian for low-energy hole states in NWs [Sec. III,
Eq. (33)]. When an effective electric field E is present inside
the NW core, the Hamiltonian [68,69]

Hh
dir = −eE · r = −e

(
Exx + Eyy + Ezz

)
(D1)

describes the direct coupling between the hole and the electric
field. Additional corrections can, e.g., be derived via k · p
theory [68]. For holes in the valence band �v

8 , which is the
topmost valence band of Si and Ge, the most prominent
correction is the standard Rashba SOI

Hh
R = ᾱh E · (k × J). (D2)

By means of third-order perturbation theory, starting with the
extended Kane model, one obtains [68,104]

ᾱh � −eP 2

3E2
0

+ eQ2

9

[
10

E′2
0

− 7(
E′

0 + �′
0

)2

]
(D3)

for the Rashba coefficient, where the energies E0, E′
0, and

�′
0 quantify the gaps between the considered bands and P

and Q are the parameters for the momentum matrix elements.
Taking the Si values E0 = 4.19 eV, E′

0 = 3.40 eV, �′
0 = 0,

P = 8.72 eV Å, and Q = 7.51 eV Å from Ref. [123], we find
ᾱh ≈ 0.002 nm2e for Si, which is much smaller than the
Rashba coefficient ᾱh ≈ −0.4 nm2e obtained for Ge [69,122].
Although Hh

R is fully taken into account in our numerical
calculations, we have verified that Hh

R is negligible for all
results plotted here, both in the case of Ge and Si, because
the DRSOI in the studied systems clearly dominates.
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