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Theory of the inverse spin galvanic effect in quantum wells

Amin Maleki Sheikhabadi,1,2 Iryna Miatka,1 E. Ya. Sherman,3,4 and Roberto Raimondi1
1Dipartimento di Matematica e Fisica, Università Roma Tre, 00146 Rome, Italy

2Department of Physics, Kent State University, Kent, Ohio 44242, USA
3Department of Physical Chemistry, The University of the Basque Country UPV/EHU, 48940 Leioa, Spain

4IKERBASQUE Basque Foundation for Science, 48011 Bilbao, Spain

(Received 10 April 2018; published 11 June 2018)

The understanding of the fundamentals of spin and charge densities and currents interconversion by spin-orbit
coupling can enable efficient applications beyond the possibilities offered by conventional electronics. For this
purpose we consider various forms of the frequency-dependent inverse spin galvanic effect in semiconductor
quantum wells and epilayers taking into account the cubic in the electron momentum spin-orbit coupling in
the Rashba and Dresselhaus forms, concentrating on the current-induced spin polarization (CISP). We find
that including the cubic terms qualitatively explains recent findings of the CISP in InGaAs epilayers being
the strongest if the internal spin-orbit coupling field is the smallest and vice versa [Norman et al., Phys. Rev.
Lett. 112, 056601 (2014); Luengo-Kovac et al., Phys. Rev. B 96, 195206 (2017)], in contrast to the common
understanding. Our results provide a promising framework for the control of spin transport in future spintronics
devices.
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I. INTRODUCTION

The spin galvanic effect (SGE) and its Onsager reciprocal
effect are currently the focus of an intense investigation in
a large variety of physical systems, including metals, semi-
conductors, van der Waals heterostructures, and topologi-
cal insulators [1–5]. The effect allows the “spin-to-charge
interconversion,” where a nonequilibrium spin polarization
yields an electrical current (SGE) and, conversely, an applied
electrical current is able to orient the electron spin producing
the inverse SGE (ISGE). In the latter case one speaks also
of current-induced spin polarization (CISP). In the literature
different names refer to the same effect, often depending on
the context where the phenomenon is being investigated. A
discussion about the nomenclature can be found in Ref. [6].
On symmetry grounds the SGE arises when, due to restricted
symmetry conditions as in gyrotropic media [7,8], specific
components of polar and axial vectors transform according to
the same representation. On a microscopic level, instead, the
lack of inversion symmetry lifts the spin degeneracy, leading
to a momentum-dependent spin splitting, which acts as an
internal effective magnetic field. As a consequence, the spin
quantization axis of Bloch electron states is dependent on the
momentum direction. This aspect gives rise to a well-defined
spin texture around the Fermi surface, which can be experimen-
tally measured, for instance, by the spin-pumping technique
[4,9–11] and by pump-probe techniques as in semiconducting
epilayers [12–14]. After pumping polarized radiation into the
electron system, we can observe a degree of precession of
the induced spin polarization in the internal magnetic field.
An essential ingredient is the external electric field, which
unbalances the occupation of momentum states, yielding a
net internal field. In a semiconducting epilayer the spin-orbit
coupling (SOC) acts via two microscopic mechanisms. At the

bulk level, the lack of inversion symmetry of the lattice as
in GaAs heterostructures is responsible for the Dresselhaus
term [15], which depends on the third power of the electron
momentum. However, when the electron system is confined in
one direction, say along the z axis, the Dresselhaus spin-orbit
coupling (DSOC) becomes linear in momentum. On the other
hand, the lack of inversion symmetry with respect to the
growth direction of the epilayer yields the Rashba term [16],
which is linear in the momentum and in the spin operators.
A combination of the linear DSOC and the Rashba spin-orbit
coupling (RSOC) produces a characteristic spin texture, where
maximum and minimum values of the internal field align along
the [1,1] and [1,−1] crystallographic axes, depending on the
strength of the two types of SOC. The pump-probe technique
used in Refs. [12,13] is capable of reconstructing the texture
of the internal magnetic field by varying the direction of the
applied electric field, thus allowing the measurement of the
DSOC and RSOC.

Theoretical investigations of both linear DSOC and RSOC
in a two-dimensional electron gas (2DEG) [17,18] concluded
that the induced spin polarization is proportional to the internal
magnetic field, and hence, the former aligns with the latter.
However, the experimental results of Refs. [12,13] showed the
opposite behavior: the maximum spin polarization occurs in
correspondence with the minimum value of the internal field
and vice versa. Based on the model developed in Refs. [19,20],
a possible explanation has been proposed in Ref. [13] by allow-
ing SOC also from random impurities (see also Refs. [21,22]).
The latter have a twofold effect. On the one hand, they
introduce a second channel for spin relaxation, referred to as
the Elliott-Yafet mechanism, in addition to the Dyakonov-Perel
(DP) one associated with the linear RSOC and DSOC. On the
other hand, as found in Refs. [19,20], the interplay of linear
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RSOC and DSOC with the impurity SOC yields a negative
SGE, which tends to decrease the induced spin polarization
described in Refs. [17,18].

The aim of this paper is to study theoretically the ex-
perimentally relevant regimes of the ISGE in semiconductor
structures, including the dependence of the spin polarization on
the frequency of the driving electric field. The understanding
of the frequency-dependent response allows us to set the limits
on the timescale of the spin control by the electric field. We
extend our studies beyond the conventional diffusive regime,
that is, to the case when the spin precession rate due to the
spin-orbit coupling is of the order of the impurity-determined
scattering rate, as can be achieved in modern high-mobility
structures (see Ref. [23] as an example). To correspond to
the experimental realizations, in addition to the linear in the
electron momentum spin-orbit coupling, we include the cubic
terms in the Hamiltonian. These SOC terms are important
for weak antilocalization in quantum wells [24] and for the
persistent spin helix dynamics [25,26]. We demonstrate that the
unusual experimental results of Refs. [12,13] can be explained
by taking into account this cubic SOC. Indeed, the steady
current-induced spin density is controlled by the balancing of
the spin-generation and spin-relaxation torques. In the absence
of cubic SOC, the linear RSOC and the DSOC contribute
to both torques, and as a result, we obtain the alignment
of the spin polarization along the internal SOC field. Our
results demonstrate in detail that the cubic SOC by itself
can affect only the spin-relaxation torques without inducing
a spin-generation torque. When both linear and cubic SOCs
are present, the generation and relaxation torques are affected
differently, and the spin polarization is no longer bound to
align along the internal field, corresponding to the results of
Refs. [12,13].

The layout of this paper is as follows. In Sec. II we
introduce the formalism based on the Eilenberger equation for
the quasiclassical Green’s function. In Sec. III we apply this
formalism to the evaluation of the ISGE in the case of linear
RSOC and DSOC and study its frequency dependence within
and beyond the diffusive regime. Section IV demonstrates the
absence of the ISGE when only the cubic SOC is present. In
Sec. V we consider the interplay between linear and cubic
RSOC, and in Sec. VI we analyze the ISGE in a system where
both linear RSOC and DSOC are present together with cubic
DSOC. Section VII presents the conclusions and relation to
the experiment. Some details of the calculations are provided
in the Appendixes.

II. THE EILENBERGER EQUATION

We consider electrons confined in a two-dimensional (xy)
plane subject to impurity scattering and in the presence of SOC.
The Hamiltonian of the model in the presence of a generic
intrinsic SOC has the form

H = p2

2m
+ b · σ + V (r), (1)

where V (r) and p = (px,py) represent the impurity potential
and the vector of the momentum, respectively. The random
potential has zero average, and 〈V (r)V (r′)〉 = δ(r − r′)niv

2
0 ,

with v0 being the single-impurity scattering amplitude and

ni being the impurity concentration. In the following, we
choose units such that h̄ = 1 for the sake of simplicity. The
vector b can be defined as the effective magnetic field due
to the Rashba-Dresselhaus SOC. In Ref. [27], the Eilenberger
equation for the quasiclassical Green’s function was derived in
the presence of a SOC of the type shown in the Hamiltonian
(1). To present a consistent analysis, we first recall the key steps
of the derivation. The starting point is the left–right subtracted
Dyson equation for the Keldysh Green’s function Ǧ, which has
the form [28]

∂t Ǧ + 1

2

{
p
m

+ ∂

∂p
(b · σ ),

∂

∂x
Ǧ

}
+i[b · σ ,Ǧ] = −i[�̌,Ǧ],

(2)

where the self-energy �̌ includes disorder effects and the curly
brackets denote the anticommutator. In the Wigner coordinates,
the Green’s function is described as Ǧ = Ǧ(p,ε,x,t), where
p and ε are the Fourier transform of the relative coordinates
x1 − x2, t1 − t2 and x = (x1 + x2)/2, t = (t1 + t2)/2 are co-
ordinates of the center of mass. Whenever it is not strictly
necessary, we drop the explicit dependence Ǧ(p,ε,x,t) for sim-
plicity’s sake. The quasiclassical Green’s function is defined
as

ǧ = i

π

∫
dξǦ, (3)

where ξ = p2/2m − μ is the energy measured with respect
to the chemical potential μ in the absence of SOC. For the
Green’s function, following [27] we make the ansatz

Ǧ =
[
GR GK

0 GA

]
= 1

2

{[
GR

0 0
0 −GA

0

]
,

[
g̃R g̃K

0 g̃A

]}
, (4)

with GR
0 and GA

0 being, respectively, the retarded and advanced
Green’s functions in the absence of external perturbations,

G
R(A)
0 = 1

(ε − ξ )σ 0 − b · σ − �R(A)
, (5)

with the self-energy �R(A) (derived later) due to the impurity
potential and σ 0 being the identity matrix. According to the
ansatz (4), in the equilibrium we obtain

ˇ̃g =
[

1 2tanh(ε/2T )
0 −1

]
⊗ σ 0. (6)

Since the main contribution to the ξ integral comes from the
domain |ξ | � μ, it is sufficient to expand b around small values
of ξ . In the limit of |b| that is small compared to the Fermi
energy, we have

b ≡ |b| ≈ b0 + ξ
∂b0

∂ξ
, (7)

|p±| ≈ pF ∓ |b0|
vF

, (8)

where the subscript 0 denotes the values taken at the Fermi
surface and p± refers to the Fermi momentum in the ± band.
It is useful to introduce the projection operators for the two
spin subbands as

P± = 1
2 (σ 0 ± b0 · σ ), b0 = b/b. (9)
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As a result, the semiclassical Green’s function ǧ, defined in
Eq. (3), can be written as

ǧ =
∑
ν=±

(1 − ν∂ξb0)
1

2
{Pν, ˇ̃g} ≡

∑
ν=±

(1 − ν∂ξb0) ˇ̃gν

= 1

2
{σ 0 − ∂ξ b0 · σ , ˇ̃g}, (10)

from which we find

ˇ̃g = ǧ + 1
2 {∂ξ b0 · σ ,ǧ}, (11)

where ∂ξ is the partial derivative taken with respect to ξ . By
means of (10), we can show that

ǧν = 1

2
{Pν,ǧ}, ǧ =

∑
ν=±

ǧν, (12)

and moreover, for any function of momentum we obtain

i

π

∫
dξf (p)Ǧ =

∑
ν=±

f (pν)ǧν . (13)

Equations (3) and (13), by integrating over the energy ξ and
retaining terms up to the first order in |b|/εF , allow us to derive
the Eilenberger equation in the form [27,29,30]∑

ν=±

[
∂t ǧν + 1

2

{(
pν

m
+ ∂

∂p
(b · σ )

)
,

∂

∂x
ǧν

}
+ i[b · σ ,ǧν]

]

= −i[�̌,ǧ]. (14)

The self-energy �̌ appears in the collision integral on the
right-hand side and describes the spin-independent scattering
by disorder. The standard self-energy in the limit of the self-
consistent Born approximation has the form [31]

�̌ = − i

2τ
〈ǧ〉, 1

τ
= 2πn0niv

2
0, (15)

where n0 = m/2π is the density of states in the absence of SOC
(with m being the electron effective mass). The brackets 〈· · · 〉
denote the angular average over the momentum directions.
Finally, τ is the elastic scattering time at the Fermi level.

Notice that g̃R and g̃A do not depend on the SOC and
thus have no spin structure; that is, g̃R = σ 0 and g̃A = −σ 0

solve the retarded and advanced components, respectively,
of Eq. (14). Then, by using Eq. (10), we show that gR =
σ 0 − ∂ξ (b0 · σ ). Hence, in equilibrium we have

gK = tanh

(
ε

2T

)
(gR − gA)

= 2 tanh

(
ε

2T

)
[σ 0 − ∂ξ (b0 · σ )]

≡ geq[σ 0 − ∂ξ (b0 · σ )], (16)

which defines geq. The Keldysh (K) component of the collision
integral can be presented in the form

[�̌,ǧ]K = �RgK + �KgA − gR�K − gK�A. (17)

Then the Keldysh components of the linearized Eilenberger
equation according to Eq. (14) can be written as [27]

(M0 + M1)gK = (N0 + N1)〈gK〉, (18)

where, by defining p̂ = p/|p|,

M0g
K = gK + τ∂tg

K + vF τ p̂ · ∂xg
K + iτ [b0 · σ ,gK ],

(19)

1

τ
M1g

K = −1

2

{
b0 · σ

pF

p̂ − ∂p(b0 · σ ),∂xg
K

}

− i[∂ξ (b0 · σ ),{b0 · σ ,gK}]

− 1

2τ
{∂ξ (b0 · σ ),gK}, (20)

N0〈gK〉 = 〈gK〉, (21)

N1〈gK〉 = {∂ξ (b0 · σ ),gK}. (22)

In the presence of SOC, 〈gK〉 can be written as a system of four
equations according to the spin structure of the quasiclassical
Keldysh Green’s function, i.e.,

gK = gK
0 σ 0 + gK

i σ i, i = x,y,z. (23)

The internal magnetic fields b = b(N)
R + b(N)

D = b
(N)
0 b̂(N)

due to intrinsic RSOC and DSOC can be classified by the
power N of their momentum dependence [32]. Notice that we
use the notation (N ) for the superscript to emphasize the label
character of the symbol N and to avoid confusion with the
power function. In the above equation, b̂ does not depend on
the modulus of the momentum. Hence, the retarded component
of the Green’s function according to Eqs. (12)–(16) reads

gR = σ 0 − cb̂(N) · σ , c = Nb
(N)
0

2εF

, (24)

where N = 1 (N = 3) for the linear (cubic) SOC. In the
presence of both SOCs b = b(1) + b(3).

We now consider the Eilenberger equation in the presence
of an external electric field. In order to study an infinite system
under a uniform time-dependent electric field, we use the
minimal substitution

∂x → ∂x − |e|EÊ∂ε, (25)

where |e| and E are the absolute values of the electron charge
and the applied electric field, respectively, and Ê ≡ (Êx,Êy) =
(cos φ, sin φ), with φ being the angle of the field with respect
to the x axis. Hence, we can go back to Eq. (18) and solve it for
the system under the influence of a uniform time-dependent
electric field E = EÊ as

M0g
K = (N0 + N1)〈gK〉 + SE, (26)

from which we obtain

gK = M−1
0 SE + M−1

0 (N0 + N1)〈gK〉. (27)

Notice that gK in Eqs. (26) and (27) represents a column
vector, whose components are defined in Eq. (23). By taking
the angular average of Eq. (27), we obtain a closed equation
for 〈gK〉 in terms of which the physical observables, such as
the spin polarizations Si , are calculated with [33]

Si = −n0

4

∫ ∞

−∞
dε

〈
gK

i

〉
. (28)
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By using the Pauli matrix expansion of Eq. (23) in Eq. (19),
we can write the Eilenberger equation (26) and (27) as a
linear algebraic system for the components gK

0 and gK
i . The

explicit matrix form of such a system for Eq. (27) is shown in
Appendix A. After explicitly taking the average of Eq. (27)[

1 − 〈
M−1

0 (N0 + N1)
〉]〈gK〉 = 〈

M−1
0 SE

〉
, (29)

we can neglect N1 to leading order in b0/εF , thus decoupling
the spin sector from the charge one. Furthermore, by using the
expressions of M0, N0, and SE from Eqs. (A1), (A2), and (A3)
we can show that after the angular average gz decouples from
gx and gy . As a result, the in-plane spin dynamics is reduced
to problems described by 2 × 2 matrices.

III. INVERSE SPIN GALVANIC EFFECT: BEYOND THE
DIFFUSIVE REGIME

In this section we evaluate the ISGE in the presence of the
linear RSOC and DSOC. The evaluation will not be restricted
to the diffusive approximation bτ � 1, where the SOC is
small compared to the disorder broadening. Hence, we will
extend the previous results obtained in the diffusive regime
[19,20,31,33–40]. This case will also serve as an example of the
way our formalism works. In a 2DEG the effective magnetic
field due to the combination of the linear RSOC and DSOC
reads [41]

b(1) = p

⎡
⎣ α1p̂y + β1p̂x

−α1p̂x − β1p̂y

0

⎤
⎦, (30)

where α1 and β1 are the magnitudes of the linear RSOC and
DSOC, respectively. The terms SE proportional to the uniform
electric field are derived by using Eq. (A3),

SE = Ẽ

[
s11 s12

s21 s22

][
Êx

Êy

]
, (31)

with Ẽ = −|e|EτvF ∂εgeq and

s11 = α1 sin 2φ + β1 cos 2φ,

s12 = −α1 cos 2φ + β1 sin 2φ,

s21 = −α1 cos 2φ − β1 sin 2φ,

s22 = −α1 sin 2φ + β1 cos 2φ. (32)

By performing the angular average of Eq. (27) for a uniform
system, we get

�̂〈gK〉 = 〈
M−1

0 SE
〉
, (33)

where �̂ = 1 − 〈M−1
0 (N0 + N1)〉 includes both the spin relax-

ation and the frequency dependence effects. To solve the above
equation, we have to perform several integrals with respect to
the momentum direction, as listed in Appendix B. Under the
uniform time-dependent electric field, we have

〈
M−1

0 (N0 + N1)
〉 = 1

L3 + La2
(
α2

1 + β2
1

)[
M11 M12

M21 M22

]
,

(34)

where a = 2τpF and L = 1 − iτ�, with � being the variable
associated with the Fourier transform with respect to time t

[see the term with the time derivative in Eq. (19)]. The matrix
elements appearing in Eq. (34) read

M11 = M22 =
[
L2 + a2

2

(
α2

1 + β2
1

)] 1√
1 − C2

− a2α1β1

C
1 − √

1 − C2

√
1 − C2

, (35)

M12 = M21 = a2 α2
1 + β2

1

2C
1 − √

1 − C2

√
1 − C2

−a2 α1β1√
1 − C2

, (36)

with

C = a2 2α1β1L

L3 + La2
(
α2

1 + β2
1

) . (37)

For the two dimensionless quantities aα1 and aβ1 we may con-
sider two different regimes. As we assumed at the beginning,
the SO splitting and the disorder broadening are much smaller
than the Fermi energy εF . For instance, in the Rashba model
we have

εF 
 1

τ
, εF 
 2α1 pF . (38)

We can rewrite aα1 in terms of the two small parameters α1/vF

and 1/εF τ as

aα1 = 2τα1 pF = 4α1

vF

εF τ. (39)

According to Eq. (38) and the relation between α1/vF and
1/εF τ , we can define two different regimes depending on
which one dominates [32,42]. The first one is the diffusive
regime, corresponding to a high impurity concentration, i.e.,
aα1 � 1, and the Dyakonov-Perel spin relaxation. The second
regime, which occurs at aα1 
 1, goes beyond the diffusive
limit and describes the opposite situation of a relatively low
concentration of impurities, where the spin-relaxation time is
close to τ [43]. To analyze these two regimes and a crossover
between them in a simple form, we focus in this section on a
model with only the linear RSOC and DSOC. In the diffusive
limit (C → 0) we can neglect the terms with higher-order
Rashba-Dresselhaus SOC since

√
1 + C2 − 1√

1 + C2
≈ C2

2
� 1. (40)

In such a case, the second term in Eq. (35) and the first one
in Eq. (36) vanish. We may notice also that C = 0 when either
α1 = 0 or β1 = 0. Finally, by using Eq. (28) we can write a
generalized Bloch equation for the spin density as

�̂S = ω̂Ê, (41)

where the matrix ω̂ describing the spin-generation torque on
the right-hand side of the above equation is given by

ω̂ = S0

2

β2
1 − α2

1

L3 + La2
(
α2

1 + β2
1

)[
ω11 ω12

ω21 ω22

]
, (42)
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with S0 = −|e|τn0E and

ω11 = −ω22 = − β1a
2

√
1 − C2

− α1δ, (43)

ω12 = −ω21 = α1a
2

√
1 − C2

+ β1δ, (44)

and

δ = L2 1(
α2

1 + β2
1

)
C − 2α1β1

1 − √
1 − C2

√
1 − C2

. (45)

Correspondingly, �̂ has the phenomenological meaning of a
spin-relaxation torque matrix, and the resulting spin density
S is obtained as a result of the balance between the gen-
eration and the relaxation torques. Clearly, in the diffusive
regime, when C � 1, δ is very small, and we recover the
standard DP spin relaxation. Equation (41) is one of the main
results of the paper. The contributions to the spin torque,
dependent on δ and C, appear in Eq. (41) only when the
interplay of the Rashba-Dresselhaus SOC is considered beyond
the conventional diffusive approximation of Refs. [19,20,36].
Furthermore, the powers of L take into account terms relevant
at high frequencies. We also notice that at α2

1 = β2
1 , the

contributions of the RSOC and the DSOC cancel each other,
which leads to a pure gauge configuration [44], where the CISP
does not appear.

A. Inverse spin galvanic effect in the linear Rashba model

In this section, we solve the generalized Bloch equations
(41) numerically for different RSOC magnitudes. After setting
β1 = 0 in Eq. (41), the Bloch equations in the 2DEG Rashba
model read[

Sx

Sy

]
= 1

2

Sα
0 α2

1a
2E

L3 − L2 + (L − 1/2)a2α2
1

[
Êy

Êx

]
, (46)

with Sα
0 = −|e|n0τα1. In the static limit when the frequency

is zero, i.e., L = 1, the spin polarization becomes[
Sx

Sy

]
= Sα

0 E

[
Êy

Êx

]
, (47)

which is the Edelstein result [18]. In the following equation, we
consider the frequency-dependent ISGE by inserting L = 1 −
i�τ in Eq. (46). In this case, the real and imaginary components
of the spin density become zero, respectively, when

�τ = aα1

2
, (48)

�τ = 0;
√

1 + a2α2
1 . (49)

When the imaginary part of the ISGE vanishes, the real
part dominates and vice versa, leading to the dependence of
the ISGE on the field frequency. We define the frequency-
dependent spin galvanic (SG) conductivity, which can be found
from Eq. (46), as

Si(�) = χ
ij

SG(�) Ej (�), i,j = x,y. (50)

Notice that both the charge current and spin density are odd
under time reversal. Hence, the Onsager reciprocal relations
imply the equality of the SG and ISG responses as well as of the

FIG. 1. (a) Real part, (b) imaginary part, and (c) absolute value
of the normalized SG conductivity χyx as a function of the frequency
�τ . In all plots, 2α1τpF = 0.5 (solid orange line), 2α1τpF = 1
(dashed green line), 2α1τpF = 3 (dotted red line), and 2α1τpF = 5
(dot-dashed blue line). Results are given in units of Sα

0 .

corresponding conductivities. In the numerics we normalize
the real, imaginary or absolute value of the conductivities
according to the formula

χij = χ
ij

SG(�)

χ
ij

SG(�max)
(51)

to evaluate their frequency behavior, with �max being the
frequency at the maximum value of χ

ij

SG; the latter being
the corresponding characteristics. In Fig. 1, we plot the real
and imaginary parts as well as the absolute value of the
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corresponding normalized conductivity χyx as a function of the
frequency in units of Sα

0 for the different magnitudes of RSOC.
At sufficiently high frequencies, the conductivity vanishes,
according to Eqs. (48) and (49), and a significant conductivity
oscillation appears at � ∼ α1pF if we go beyond the diffusive
regime, that is, the condition α1pF τ � 1 is satisfied.

B. Inverse spin galvanic effect in the linear
Rashba-Dresselhaus SOC

As shown in the previous section, the ISGE shows a different
behavior with respect to the dimensionless parameter aα1. In
this section we consider the ISGE in the presence of both the
RSOC and DSOC. In the diffusive regime we assume aα1 � 1
and aβ1 � 1 for high impurity concentration. In this limit, we
can neglect the higher-order terms in the Rashba-Dresselhaus
SOC and in �τ . Hence, the generalized Bloch equation has
the same form as Eq. (41), with �̂ and ω̂ given by

�̂ = −i�τ + a2

2

[
α2

1 + β2
1 2α1β1

2α1β1 α2
1 + β2

1

]
, (52)

ω̂ = S0
a2

2

(
β2

1 − α2
1

)[−β1 α1

−α1 β1

]
. (53)

Notice that in the diffusive approximation, keeping just the first
order in �τ yields the standard form of the Bloch equation,
which coincides with the result of Refs. [19,20,36], when
the extrinsic effect is not considered. For β1 = 0, the above
equations reproduce the results for the Rashba model presented
in Eq. (46) for the diffusive limit. In the limit of the spin helix
regime, where RSOC and DSOC are close to each other, we
can write the spin polarization of Eq. (41) as

[
Sx(�)
Sy(�)

]
= Sα

0
a2�2E

−2i�τ + a2�2

[
Êx + Êy

−Êx − Êy

]
, (54)

where � = α1 − β1 and |�| � |α1|,�τ � 1. We notice that
there is no effect for � = 0, as expected, and the typical
frequency scale is � ∼ a2�2/2τ . This can be appreciated
explicitly by the numerical evaluation of the SG conductivities
when the RSOC and DSOC are present. In Figs. 2(a) and
2(b), we plot the normalized conductivities, χxx and χxy , as
a function of the frequency for different values of α1 and β1

in the diffusive regime. The different scale in the frequency
behavior from the top to the bottom plots is related to the
difference between RSOC and DSOC, as shown in Eq. (54).
In the diffusive regime, there is no finite-frequency peak in the
conductivity, independent of the spin-orbit-coupling details.

To solve numerically the generalized Bloch equations be-
yond the diffusive approximation, we have to keep all the
orders of the spin-orbit coupling field b and frequencies �τ .
As we demonstrated in Eq. (41), in this regime several new
terms in the spin-relaxation and the spin-generation torques
contribute to the Bloch equation. Figures 2(c) and 2(d) show the
numerically obtained absolute value of the SG conductivity as
a function of frequency beyond the diffusive regime. In contrast
to the diffusive regime, we find a finite-� SG conductivity. The
latter increases with the difference of the magnitudes of RSOC
and DSOC.

IV. INVERSE SPIN GALVANIC EFFECT IN THE CUBIC
RASHBA-DRESSELHAUS MODEL

For a quantum well with the cubic Rashba-Dresselhaus
SOC, the Hamiltonian contains a p-cubic contribution in
addition to the p-linear terms [24,45]. According to Eq. (1)
of Ref. [46], the effective Hamiltonian of the structural inverse
asymmetry to third order in the wave vector p reads

H
(3)
R = iα3

[
0 (px − ipy)3

−(px + ipy)3 0

]
≡ b(3)

R · σ , (55)

with b(3)
R being the effective internal magnetic field due to the

cubic Rashba SOC, which can also be written as

b(3)
R = α3

[
3py p2

x − p3
y

3px p2
y − p3

x

]
= α3p

3

[
sin 3φ

− cos 3φ

]
. (56)

In quantum wells, the Hamiltonian also contains the terms
arising due to the bulk inversion asymmetry, i.e., the cubic
Dresselhaus SOC [24],

H
(3)
D = −β3

[
0 (px − ipy)3

(px + ipy)3 0

]
≡ b(3)

D · σ (57)

or, alternatively,

b(3)
D = β3

[
3px p2

y − p3
x

−(
3py p2

x − p3
y

)] = −β3p
3

[
cos 3φ

sin 3φ

]
. (58)

Hence, the total effective internal magnetic field of the cubic
Rashba-Dresselhaus SOC is given by [41]

b(3) = b(3)
R + b(3)

D = p3

[
α3 sin 3φ − β3 cos 3φ

−α3 cos 3φ − β3 sin 3φ

]

≡ b
(3)
0 b̂(3). (59)

To the linear order in the external electric field, the source term
SE has the same form as in Eq. (31), with Eq. (32) replaced by

s11 = p2
F α3(2 sin 4φ − sin 2φ) + p2

F β3(−2 cos 4φ + cos 2φ),

s21 = p2
F α3(2 cos 4φ + cos 2φ) + p2

F β3(−2 sin 4φ + sin 2φ),

s12 = −p2
F α3(2 cos 4φ + cos 2φ) − p2

F β3(2 sin 4φ + sin 2φ),

s22 = −p2
F α3(2 sin 4φ + sin 2φ) + p2

F β3(2 cos 4φ + cos 2φ).

(60)

By using Eqs. (A1)–(A3) we obtain for the generalized Bloch
equation

�̂ = L2 + 1
2a2p4

F

(
α2

3 + β2
3

)
L3 + La2p4

F

(
α2

3 + β2
3

)σ0, (61)

ω̂ = 0. (62)

The above equations show that, in the cubic RSOC and DSOC
model, the spin-generation torque ω̂E vanishes, although the
spin-relaxation rate �̂ is nonzero. Notice that this result can also
be derived in the diagrammatic approach, where it appears as
a consequence of the vanishing of the vertex corrections. The
latter contain the first harmonics of φ, and hence, the b field
with the third harmonics does not contribute. This was first
noticed by Murakami in the theory of the spin Hall effect [47].
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FIG. 2. Plots of the absolute value of the normalized SG conductivity [χij = χxx (solid orange line) and χyx(dashed green line)] as a function
of frequency in the presence of linear RSOC and DSOC. (a) and (b) Conductivity in the diffusive regime and (c) and (d) conductivity beyond
the diffusive regime. The linear SOC coefficients are (a) 2α1τpF = 0.1 and 2β1τpF = 0.5, (c) 2α1τpF = 1 and 2β1τpF = 5, (b) 2α1τpF = 0.3
and 2β1τpF = 0.5, and (d) 2α1τpF = 3 and 2β1τpF = 5. The results are given in units of Sα

0 .

V. INVERSE SPIN GALVANIC EFFECT IN THE LINEAR
AND CUBIC RASHBA MODEL

As we have seen in the previous section, in the cubic SOC
case, the ISGE does not exist. Here we evaluate the ISGE in
the presence of both the linear and cubic RSOCs. In this case,
the internal magnetic field reads

bR = p

[
α1 sin φ + α3 p2 sin 3φ

−α1 cos φ − α3 p2 cos 3φ

]
, (63)

where α1 and α3 are the magnitudes of the linear and cubic
Rashba SOCs, respectively. With the field bR in Eq. (A3), the
source SE in Eq. (31) becomes

s11 = 2p2
F α3 sin 4φ + (

α1 − p2
F α3

)
sin 2φ,

s21 = −2p2
F α3 cos 4φ + (−α1 + p2

F α3
)

cos 2φ,

s12 = −2p2
F α3 cos 4φ − (

α1 + p2
F α3

)
cos 2φ,

s22 = −2p2
F α3 sin 4φ − (

α1 + p2
F α3

)
sin 2φ. (64)

By using Eqs. (A1) and (A2), the matrix 〈M0(N0 + N1)〉 can
be written as

〈M0(N0 + N1)〉 = 1

L3 + L
(
a2

1 + a2
3

)[
M11 0

0 M22

]
, (65)

with a1 = aα1 and a3 = ap2
F α3 and

M11 = [
L2 + 1

2

(
a2

1 + a2
3

)]
A0

+ 1
2

(−a2
1 + 2a1a3

)
A2 − a1a3A4 − 1

2a2
3A6, (66)

M22 = [
L2 + 1

2

(
a2

1 + a2
3

)]
A0 (67)

+ 1
2

(
a2

1 + 2a1a3
)
A2 + a1a3A4 + 1

2a2
3A6,

where

An =
〈

cos(nφ)

1 + D cos 2φ

〉
(68)

and

D = 2La1a3

L3 + L
(
a2

1 + a2
3

) . (69)

The diffusive regime occurs when a1 � 1 and a3 � 1, and for
this regime we have D � 1. In such a case, all the integrals
except the first one in Eqs. (66) and (67) can be neglected.
Moreover, D = 0 when either a1 = 0 or a3 = 0.

Finally, by using Eqs. (A1) and (A3) the matrix ω̂ appearing
on the right-hand side of Eq. (41) can be presented as

ω̂ = S0

L3 + L
(
a2

1 + a2
3

)[
0 w12

w21 0

]
, (70)

with

w12 = α1

2

(
a2

1 + 3a2
3

)
A0 + [ − L2

(
α1 + p2

F α3
)

+ α1

2

(
a2

1 + 2a2
3 + 6a1a3

) + 2α3p
2
F a2

3

]
A2

+ 1
4

(
α1a

2
1 − α3p

2
F a2

1 + 2α3p
2
F a2

3

)
A4 − α1a

2
3A6

(71)
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and

w21 = α1

2

(−a2
1 + 3a2

3

)
A0 + [

L2
(
α1 + p2

F α3
)

+ α1

2

(
a2

1 + a2
3

) − α3p
2
F

2

(
3a2

1 + a2
3

)]
A2

+ α3p
2
F

2

(
4L2 + 3a2

1 + a2
3

)
A4 − α3p

2
F a1a3A6,

(72)

where the formulas for A0, . . . ,A6 are provided in Appendix B.
Notice that when the cubic Rashba SOC goes to zero (α3 = 0),
Eqs. (70), (71), and (72) reproduce the result derived in Eq.
(47). Furthermore, Eqs. (71) and (72) become zero when α1 =
0, irrespective of α3. As a result we found that when the linear
and cubic RSOCs are present, the ISGE is strongly modified by
several new terms in the spin-relaxation and spin-generation
torques.

VI. THE EFFECTS OF THE LINEAR RSOC AND DSOC
WITH THE CUBIC DSOC

In this section we evaluate the ISGE in the presence
of the linear Rashba-Dresselhaus SOC combined with the
cubic Dresselhaus SOC. To make the comparison with the
experiments easier, we limit ourselves to the diffusive regime.
For the given SOC, the effective SO field b is defined as

b = p

[
α1 sin φ + β1 cos φ − p2β3 cos 3φ

−(α1 cos φ + β1 sin φ + p2β3 sin 3φ)

]
, (73)

with α1,β1, and β3 being the above-introduced magnitudes of
the linear (Rashba and Dresselhaus) and cubic (Dresselhaus)
SOC. According to Eq. (A3) and using the form of Eq. (41),
we can show

s11 = α1 sin 2φ + (
β1 + β3p

2
F

)
cos 2φ − 2β3p

2
F cos 4φ,

s12 = −α1 cos 2φ + (
β1 − β3p

2
F

)
sin 2φ − 2β3p

2
F sin 4φ,

s21 = α1 cos 2φ + (
β1 − β3p

2
F

)
cos 2φ + 2β3p

2 sin 4φ,

s22 = α1 sin 2φ − (
β1 + β3p

2
F

)
cos 2φ − 2β3p

2
F cos 4φ.

(74)

To evaluate the ISGE in the diffusive regime, we need to
expand in Eq. (27) the denominator M−1

0 [with M0 presented
in Eq. (A1)] in terms of the spin-orbit field. Hence, for all
the off-diagonal terms in M−1

0 we can neglect b2
x + b2

y in the
denominator with respect to L, whereas for the diagonal terms
we must expand the denominator. After this expansion, the
matrix M−1

0 acquires the form

M−1
0 ≈

[
1 + i�τ − a2b̂2

y a2b̂x b̂y

a2b̂x b̂y 1 + i�τ − a2b̂2
x

]
. (75)

Now we can derive the Bloch equations (41) by inserting the
internal magnetic field defined in Eq. (73). The spin-relaxation
rate arises from the left-hand side of Eq. (33), which becomes

�̂ = −i�τ + �̂1 + �̂3, (76)

where the DP spin relaxations for the linear RSOC and DSOC
(�̂1) and the cubic DSOC (�̂3) are given by

�̂1 = a2

2

[(
α2

1 + β2
1

)
σ 0 + 2α1β1σ

x
]
, (77)

�̂3 = a2

2
β2

3p4
F σ 0. (78)

Since the cubic SOC does not produce the spin-generation
torque by itself, we can expect that this torque contains the
terms originating from the linear coupling and its interplay
with the cubic one. Hence, the static limit (� = 0) of the Bloch
equations in Eq. (41) can be rewritten as

(�̂1 + �̂3)S = (ω̂1 + δω̂1,3)Ê, (79)

where the superscript indices correspond to the linear (1) and
cubic parts (3) of the SOC and to their interplay (1, 3). By using
Eqs. (A1) and (A3) the matrices ω̂1 and δω̂1,3 appearing in the
spin-generation torque on the right-hand side of Eq. (79) are
given by

ω̂1 = S0a
2

2

(
α2

1 − β2
1

)[β1 −α1

α1 −β1

]
, (80)

ω̂1,3 = S0a
2

2

[
β̃1 −α̃1

α̃1 −β̃1

]
, (81)

with

β̃1 = 2p2
F β3

(
2β1p

2
F β3 + α2

1

)
, (82)

α̃1 = α1p
2
F β3

(
5p2

F β3 + 2β1
)
. (83)

To obtain the spin polarizations, we take the inverse of the
matrix �̂ and multiply it by the spin-generation torque ω̂. In
the zero-frequency limit, �̂−1 is given by

�̂−1 = 2

a2

(
α2

1 + β2
1 + β2

3 p4
F

)
σ 0 − 2α1β1σ

x(
α2

1 + β2
1 + β2

3 p4
F

)2 − 4α2
1β

2
1

. (84)

Then the spin polarization is defined by

S = S0

(
−(α1iσ

y + β1σ
z)

(
α2

1 − β2
1

)2(
α2

1 + β2
1 + β2

3 p4
F

)2 − 4α2
1β

2
1

+ 2β3p
2 (ξ iσ y + 2 ζσ z)(

α2
1 + β2

1 + β2
3 p4

F

)2 − 4α2
1β

2
1σ z

)
Ê, (85)

where

ξ = α1
[(− 1

2β3 p2
F + 2β1

)(
α2

1 − β2
1

) + β3 p2
F

(
3β2

1 − 5α2
1

)
−β2

3 p4
F

(
2β1 + 5β3 p2

F

)]
, (86)

ζ = (
α2

1 − β2
1

)(
α2

1 + 1
4β1β3 p2

F

) + β3 p2
F β1

(
2β2

1 − 3α2
1

)
+β2

3 p4
F

(
α2

1 + 2β1β3 p2
F

)
. (87)

In Eq. (85), the first term corresponds to the linear Rashba-
Dresselhaus SOC, whereas the second one is produced by the
presence of the linear and cubic SOCs and represents their
joint action. To compare our results with Ref. [19], we begin
by considering the simple case of β3 = 0. Thus, Eq. (85) is
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FIG. 3. Absolute value of the normalized SG conductivity as a
function of the frequency in the diffusive regime. The components
(a) χxx and (b) χyx are induced by the external electric field along
the x direction. The linear SOC coefficients are fixed: 2α1τpF =
0.1, 2β1τpF = 0.3. For both plots 2β3τp

3
F = 0.1, solid orange line;

2β3τp
3
F = 0.2, dashed green line; 2β3τp

3
F = 0.3, dotted red line; and

2β3τp
3
F = 0.4, dot-dashed blue. Results are given in units of Sα

0 .

equivalent to Eqs. (52) and (53), and the spin polarization is
given by

S = |e|τN0(β1σ
z + α1iσ

y)E

= N0

2
Bint, (88)

where Bint is the spin-orbit field induced by the electric current.
To analyze the frequency behavior of the CISP, we consider

its real and imaginary components. The imaginary part orig-
inates from L = 1 − i�τ in the matrix �̂, whereas the spin-
generation torque is frequency independent in the diffusive
regime.

The normalized conductivities, χxx and χyx , are shown in
Fig. 3 as a function of frequency for different values of the
cubic DSOC (2β3τp

3
F ) and fixed values 2α1τpF = 0.1 and

2β1τpF = 0.3. We have shown that in the presence of the
linear RSOC-DSOC and cubic DSOC the conductivity is the
result of the interplay of these two mechanisms. In addition,
the anisotropy of the spin polarization can be controlled by the
strength of the cubic DSOC in addition to the present linear
RSOC and DSOC.

FIG. 4. The black arrows within the empty circular sector cor-
respond to the vector plot of the in-plane spin polarization (Sx,Sy).
The red arrows in the orange background correspond to the direction
and the magnitude of the magnetic field Bint , where the greatest
value is shown by the darkest color of the background. The results
are given in units of S0; Ex,Ey are the components of the electric
field E. Linear RSOC and DSOC parameters are 2α1τpF = 0.12 and
2β1τpF = 0.125. (a) The cubic DSOC effect is absent for 2β3τp

3
F =

0, (b) the cubic DSOC effect, 2β3τp
3
F = 0.05, is comparable with

the linear RSOC and DSOC effects, and (c) the cubic DSOC effect,
2β3τp

3
F = 0.2, is greater than the linear RSOC and DSOC effects.
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To analyze such anisotropy of the ISGE, in Fig. 4 we present
the vector plot of the spin polarization as a function of the
electric field direction for different values of the cubic DSOC.
In the two upper diagrams the ISGE is shown without (β3 = 0,
top) and with a weak cubic DSOC (2β3τp

3
F = 0.1, middle).

We can see that the largest magnitude of the ISGE occurs for
the electric field and the current along the crystallographic
direction [1,1] (effective linear SOC α1 + β1), while the
smallest effect occurs for the field along the [1,−1] direction
(effective linear SOC α1 − β1). In addition, the bottom plot
in Fig. 4 shows that the increase in β3 (2β3τp

3
F = 0.2)

considerably modifies the anisotropy of the ISGE; that is, the
strongest polarization is now produced for the spin along the
[1,−1] direction, and the smallest one corresponds to the [1,1]
direction. This picture is consistent with the experimental result
[12,13].

VII. CONCLUSIONS

In this work, we have studied theoretically the current-
induced spin orientation in quantum wells by applying the
approach based on the quasiclassical Green’s functions. The
theory has been developed for systems where both the linear
and cubic in the electron momentum spin-orbit couplings are
present, and the corresponding Eilenberger equations have
been derived. From these equations we obtained the gener-
alized Bloch equations governing the spin dynamics of the
carriers, permitting us to study a strong spin-orbit coupling suf-
ficient to place the spin dynamics beyond the diffusive regime.
Compared with previous studies, in the case of a sufficiently
strong coupling, we found several new terms arising from
the interplay of spin-orbit-coupling symmetries. For the linear
in the momentum coupling, we calculated numerically the
current-induced spin polarization as a function of the frequency
of the driving electric field. We found that this polarization
can be increased by using the high-frequency fields. Since
the linear coupling contributes to both the spin-generation
and spin-relaxation torques, in the static limit the spin po-
larization always aligns along the internal spin-orbit-coupling
“magnetic” field. We noticed that the purely cubic SOC has
an effect on only the spin-relaxation torque, without inducing
a spin-generation torque. When both the linear and cubic
couplings are present, the spin generation and spin relaxation
are affected differently. As a result, the spin polarization is no
longer parallel to the spin-orbit field, depending on the relative
strength of the linear and cubic couplings. This feature agrees
with recent experiments [12,13]. In general, the approach
developed in this paper can lead to both a better understanding
of the spin transport in semiconductors and finding efficient
operational regimes of spintronics devices.
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APPENDIX A: EXPLICIT MATRIX FORM FOR THE
KELDYSH COMPONENT OF THE QUASICLASSICAL

GREEN’S FUNCTION

The matrix forms of the linear operators appearing in
expressions (19) and (27) are

M0 =

⎡
⎢⎢⎣

L 0 0 0
0 L 0 −2τb0b̂y

0 0 L 2τb0b̂x

0 2τb0b̂y −2τb0b̂x L

⎤
⎥⎥⎦, (A1)

N0 + N1 =

⎡
⎢⎢⎣

1 −cb̂x −cb̂y 0
−cb̂x 1 0 0
−cb̂y 0 1 0

0 0 0 1

⎤
⎥⎥⎦, (A2)

SE = Ẽ

⎡
⎢⎢⎢⎢⎢⎢⎣

Ê · p̂

Ê · p̂
N + 1

2

b0

EF

b̂x − Ê · ∂p

vF

bx

Ê · p̂
N + 1

2

b0

EF

b̂y − Ê · ∂p

vF

by

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A3)

APPENDIX B: INTEGRALS OVER THE MOMENTUM
DIRECTION

In this Appendix, we evaluate the integrals used for averag-
ing over the momentum direction in calculations beyond the
diffusive regime. For the combination of linear Rashba and
Dresselhaus SOCs, we obtain

〈
1

1 + C sin 2φ

〉
= 1√

1 − C2
, (B1)〈

sin 2φ

1 + C sin 2φ

〉
= 1

C

(
1 − 1√

1 − C2

)
, (B2)〈

cos 2φ

1 + C sin 2φ

〉
=

〈
sin 4φ

1 + C sin 2φ

〉
= 0, (B3)〈

cos 4φ

1 + C sin 2φ

〉
= 1√

1 − C2
+ 2

C2

(
1 − 1√

1 − C2

)
. (B4)

In the presence of both the linear and cubic Rashba SOCs,
we have the following angular averages:

〈
sin(2nφ)

1 + D cos 2φ

〉
=

〈
sin[(2n + 1)φ]

1 + D cos 2φ

〉
= 0, (B5)〈

cos[(2n + 1)φ]

1 + D cos 2φ

〉
= 0, n = 0,1,2, . . . , (B6)〈

1

1 + D cos 2φ

〉
= −1√

1 − D2
, (B7)〈

cos 2φ

1 + D cos 2φ

〉
= 1

D

(
1 + 1√

1 − D2

)
, (B8)〈

cos 4φ

1 + D cos 2φ

〉
= 1

D2

(
−2 − −2 + D2

√
1 − D2

)
, (B9)〈

cos(6φ)

1 + D cos 2φ

〉
= 1

D3

(
4 − D2 + 4 − 3D2

√
1 − D2

)
. (B10)
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