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Dielectric properties of graphene/MoS2 heterostructures from ab initio
calculations and electron energy-loss experiments
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High-energy electronic excitations of graphene and MoS2 heterostructures are investigated by momentum-
resolved electron energy-loss spectroscopy in the range of 1 to 35 eV. The interplay of excitations on different
sheets is understood in terms of long-range Coulomb interactions and is simulated using a combination of ab
initio and dielectric model calculations. In particular, the layered electron-gas model is extended to thick layers
by including the spatial dependence of the dielectric response in the direction perpendicular to the sheets. We
apply this model to the case of graphene/MoS2/graphene heterostructures and discuss the possibility of extracting
the dielectric properties of an encapsulated monolayer from measurements of the entire stack.
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I. INTRODUCTION

A transmission electron microscope (TEM), equipped with
a spectrometer to analyze the energy of scattered electrons,
is an ideal tool to investigate electronic excitations in solids,
nanostructures, and two-dimensional (2D) materials. Typical
setups for electron energy-loss spectroscopy (EELS) in TEMs
cover energy ranges starting from a few eV up to keV and
allow for variable spatial resolution down to individual atoms.
If the scattering angle is recorded, one can study the change
in the excitation energy with the momentum transferred to the
sample. This energy dispersion helps to reveal the nature of
excitations in the sample and to distinguish, e.g., plasmons
from interband transitions [1] and Wannier-Mott excitons
from Frenkel excitons [2,3]. Such momentum-resolved EELS
studies have been successfully applied to investigate excita-
tions in bulk materials [4–7] and nanostructures [8–10]. More
recently, 2D materials like graphene (G), hexagonal boron
nitride (hBN), and transition metal dichalcogenides (TMDs)
have also been studied [11–15].

TEM studies on atomically thin layers are very challenging,
as they suffer from beam-induced damage and contamination,
which alter the recorded signal. For the investigation of defect-
free graphene with TEM or TEM-EELS, the energy of the
primary electrons has to be reduced below the knock-on
threshold of about 80 kV [16]. Many other low-dimensional
materials are even more sensitive [17,18], raising increasing
interest in low-voltage electron microscopy [19–22]. Addition-
ally, the sample may be sandwiched between two protective
graphene layers, which can increase the radiation hardness
by several orders of magnitude [23,24]. In this case, the
signal from the graphene sheets has to be removed afterwards:
In aberration-corrected TEM imaging, Fourier filtering may
be applied [23,25], and in core-loss EELS experiments, the
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relevant signals are sufficiently separated. For low-loss EELS,
however, excitations on different layers are coupled, and it is
no longer clear how to extract the spectrum of the sandwiched
layer.

These complications hold for arbitrary van der Waals
heterostructures, which present growing interest due to
their adjustable electronic properties [26–30] and potential
applications[31–34]. In order to predict their dielectric
properties, much work has been dedicated to rigorous and
accurate calculations using time-dependent density-functional
theory (TDDFT) and many-body perturbation theory (see
Refs. [35–37] for a recent review). These calculations require
a large computational effort for each of the many possible
heterostructures. Thus, it is very useful to complement ab
initio simulations with less accurate but more efficient model
calculations, such as a layered electron-gas (LEG) model [38]
or a quantum-electrostatic heterostructure (QEH) model [39],
or by assuming the separability of the wave functions into
in-plane and out-of-plane components [40,41].

In this paper, we evaluate the accuracy of different dielectric
models for the momentum-dependent dielectric response of
heterostructures using ab initio calculations and correspond-
ing EELS experiments. Although the LEG model has been
successfully applied for the simulation of multilayer graphene
[42,43], we demonstrate its limitations for heterostructures
made of thick layers, like MoS2, and introduce model calcu-
lations that take a vertical extension of the sheet into account.
As a prototypical example, we calculate electron energy-loss
spectra of a G/MoS2/G sandwich starting from the dielectric
response of its building blocks, graphene and 1H -MoS2. Fi-
nally, we address the reverse process of extracting the dielectric
response of the encapsulated layer from measurements of
the G/MoS2/G heterostructure and evaluate prospects of the
sandwiching technique in TEM-EELS.

This paper is structured as follows: First, we review our ex-
perimental and theoretical methods used to study momentum-
resolved electron energy-loss spectra of single- and multilayer
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systems (Sec. II). Then we compare our experimental TEM-
EELS results for a bare 1H -MoS2 monolayer (Sec. III A) with
results obtained for a protected monolayer, i.e., a G/MoS2/G
sandwich (Sec. III B). To understand the influence of the
graphene sheets on the dielectric response of the monolayer,
different model calculations for the momentum-resolved spec-
tra of van der Waals heterostructures are presented (Sec.
III C): Extending the well-known LEG model, we propose two
models accounting for a finite thickness of the constituent 2D
layers [the building-block approach (BBA) and the in-plane
homogeneous model (IPH)] and assess their accuracy for the
prototypical case of bulk MoS2. Finally, these models are
used to simulate the energy-loss spectra of the G/MoS2/G het-
erostructure and discuss the applicability of the sandwiching
technique in TEM-EELS (Sec. III D).

II. METHODS

A. Experiments

Our TEM-EELS measurements were performed at an
acceleration voltage of 40 kV using the “SALVE I” Zeiss
Libra-200-based TEM prototype [12,21], which is equipped
with a monochromator and an �-type in-column energy filter.
All TEM samples were produced by mechanical exfoliation of
graphene or MoS2 and a subsequent transfer to holey carbon
TEM grids. G/MoS2/G sandwich samples have been produced
by multiple transfers of graphene and MoS2 monolayers [23].
The incident electron beam is oriented perpendicular to the
2D layers, illuminating a freestanding sample area of about
200–400 nm diameter. We use the diffraction mode of the
microscope and insert a slit aperture in the spectrometer
entrance plane to select scattering angles along a certain
crystallographic direction of the sample. A TEM holder with
in-plane specimen rotation capability is used to bring the
sample in the desired orientation (ΓM or ΓK). The energy
filter disperses the electrons according to their energy along a
direction perpendicular to the slit. In this manner, energy-loss
spectra for different momentum transfers can be recorded
simultaneously in an ω-q map, with energy and momentum

resolutions of around 0.1 eV and 0.1 Å
−1

, respectively [12].
For each ω-q map, a series of at least 100 images has been
acquired for 1 to 1.5 s per frame on a 4096 × 4096 pixel
complementary metal-oxide semiconductor (CMOS) camera.
In postprocessing, the single acquisitions have been aligned,
corrected for spectrometer distortions, and summed up. A de-
tailed discussion of limiting factors for energy and momentum
resolution can be found in Refs. [12,44]. The software used for
the analysis of the momentum-resolved EELS data is available
online [45].

By extracting spectra for different scattering angles θ from
the ω-q map, we access information about the momentum-
resolved inverse dielectric function ε−1(q,E) of the sample
via the recorded double-differential scattering cross section

∂2σ

∂�∂E
∝ −1

q̄2 + q2
E

Im ε−1(q,E). (1)

Here, q̄ ≈ 2π
λ

θ , qE ≈ 2π
λ

E
2E0

, and q = q̄ + qEez denote the
in-plane, out-of-plane, and total momentum transfers, respec-
tively. As the energy transfer E is small compared to the energy

E0 of the incident electrons, we have qE � q̄; that is, the total
momentum transfer is nearly parallel to the 2D sample. We
extract the energy-loss function ELF(q,E) = − Im ε−1(q,E)
from the measured spectrum in Eq. (1) by correcting for the
momentum- and energy-dependent prefactor and the finite
width of the slit aperture. The ELF can be directly compared
with corresponding calculations.

Note that the measured signal also includes a large con-
tribution from unscattered electrons, which have a certain
energy distribution around E = 0 eV. The largest part has been
blocked by a beam stop to protect the camera (E ≈ 0 eV,

q̄ ≈ 0 Å
−1

). In order to separate the tails of this zero-loss peak
(ZLP) from the inelastic signal, an additional measurement
without the specimen was performed right after measuring
eachω-q map. These reference spectra are shown as blue dotted
curves throughout this paper.

B. First-principles calculations for monolayers

To compute the dielectric response of graphene and MoS2

monolayers, we performed first-principles calculations us-
ing time-dependent density-functional theory [46]: First, the
ground-state was computed with the plane-wave pseudopo-
tential DFT code ABINIT [47] within the local-density ap-
proximation using norm-conserving Troullier-Martins pseu-
dopotentials. For the plane-wave basis sets, energies of up
to 30 Ha (graphene) and 40 Ha (MoS2) have been used.
Second, the independent-particle response χKS of noninter-
acting Kohn-Sham (KS) particles was calculated in linear-
response approximation using the DP code [48]. Converged
results were obtained using Monkhorst-Pack k-point grids
with 59 × 59 × 1 symmetric sampling points (graphene, ΓM)
and 23 × 23 × 1 shifted sampling points (MoS2, ΓM) for the
Brillouin zone integration. A supercell height Lz of twice
the interlayer distance in bulk graphite and 2H -MoS2 was
sufficient to avoid interactions with artificial replicas of the
monolayers. Note that for a periodic system, the microscopic
response function χKS(r,r ′,E) becomes a matrix χKS

GG′(q,E)
in plane-wave representation. All three-dimensional reciprocal

lattice vectors G and G′ smaller than Gcut = 8 Å
−1

(graphene)

and Gcut = 6 Å
−1

(MoS2) have been taken into account. Third,
the linear response χ of interacting electrons to an electron-
beam induced perturbation was obtained in the random-phase
approximation (RPA) by solving the matrix equation [46]

χ = χKS + χKSvCχ, vC = 4π |q + G|−2, (2)

where vC denotes the classical Coulomb interaction between
electrons. Its long-range part (G = 0) gives rise to collective
electronic excitations (plasmons), while the short-range part
(G �= 0) is responsible for the so-called crystal local-field
effects. Exchange and correlation effects are completely ne-
glected in the response of the system. To avoid interactions
between different supercells, Eq. (2) has been solved in mixed
coordinates (q̄,z) using a plane-wave basis ei q̄ r̄ for the in-plane
direction and a real-space grid along the out-of-plane direction
z [49,50]. Finally, the energy-loss function of the monolayer,
normalized to unit area, was obtained in reciprocal space as

ELF(q̄,E) = −LzvC(q̄) Im χ00(q̄,E), (3)
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FIG. 1. Momentum-resolved energy-loss experiments on (a)
1H -MoS2 monolayers and (b) G/MoS2/G heterostructures for mo-

mentum transfers q̄ = 0, 0.3, and 0.6 Å
−1

along the ΓM direction of
MoS2. The measured energy-loss function (ELF; gray filled curve) is
compared to corresponding ab initio RPA calculations of 1H -MoS2

(red solid line) and graphene (black dashed line). Blue dotted curves
indicate the background originating from unscattered electrons.

where we have restricted ourselves to in-plane momentum
transfers, q = q̄, inside the first Brillouin zone, Ḡ = 0̄. In
the literature, analogous TDDFT calculations for graphene
[8,51,52] and MoS2 monolayers [15,53] were performed with
very similar results.

III. RESULTS AND DISCUSSION

A. Monolayer MoS2

Before we discuss the momentum-resolved EELS signal
of the full graphene and MoS2 heterostructure, we compare
our calculations and experiments for a monolayer of MoS2.
Our data complement a detailed EELS study on MoS2 for
small q̄ [14] as well as our previous work on graphene [12].
Figure 1(a) shows the calculated and measured energy-loss
function of monolayer MoS2 for in-plane momentum transfers

up to q̄ = 0.6 Å
−1

in the ΓM direction (see the Supplemental
Material [54] (SM), Fig. S4, for a larger set of momentum

transfers). For q̄ = 0 Å
−1

, large differences between theoret-
ical and experimental data are observed. Like in the case
of graphene, this can be explained by three reasons: First,
due to the finite momentum resolution in experiment, the
measured EEL spectra are actually a weighted average of rather

different spectra with q̄ values up to 0.1 Å
−1

. A corresponding
simulation shows the importance of the limited resolution for
very small q̄ (see the SM [54], Sec. I B). Second, we observe
additional peaks at low energy losses that are not present in the
RPA ab initio calculations. Two features at around 2 and 3 eV
have been reported by previous EELS experiments [14,55,56]
and can be attributed to excitonic states [36,57]. Such excitonic
effects are not included in the RPA approximation and have
been investigated in detail for MoS2 monolayers by solving the
Bethe-Salpeter equation for vanishing [58,59] and finite q̄ [60].

Third, our experimental spectra show an additional peak at
higher energies of about 23 eV. For graphene, a similar feature
has been attributed to out-of-plane excitations [12] which are
not taken into account by our in-plane calculations. For finite

momentum transfers (0.3 and 0.6 Å
−1

), we achieve relatively
good agreement between the simulations and experiments
regarding the position and intensity of the two most prominent
peaks. With increasing q̄, the peak above 10 eV shifts to
higher energy and becomes more dominant in the spectrum.
In analogy to similar peaks in graphite and graphene, we will
refer to the two peaks as theπ peak (low-energy feature) and the
π+σ peak (high-energy feature) throughout this paper [61].

Another reason for differences between theory and ex-
periment is contamination and beam-induced changes in the
sample. Although very clean areas of the sample were selected,
we have found that contamination tends to accumulate over
time in the illuminated area, altering the EELS signal of
the monolayer (see the SM [54], Fig. S2). Additionally, the
sample might degrade due to knock-on damage and other
beam-induced processes.

B. G/MoS2/G sandwich

With the knowledge of the simulated energy-loss functions
of bare graphene and 1H -MoS2 layers we now take a look at the
experimental spectra of a graphene and MoS2 heterostructure.
In Fig. 1(b), measured energy-loss spectra of a G/MoS2/G
sandwich are compared to ab initio calculations for graphene
and MoS2 monolayers for in-plane momentum transfers q̄ of

0, 0.3, and 0.6 Å
−1

(ΓM direction). In the experiment, the
sample was oriented along the ΓM direction of MoS2, with
an arbitrary orientation of the graphene layers. Due to the
negligible in-plane anisotropy of both graphene and MoS2 for

up to q̄ = 0.6 Å
−1

(see Ref. [12] and the Supplemental Material
[54], Fig. S4), we can assume the ΓM direction for all layers
in our simulations.

From the comparison with the monolayer spectra, it is
evident that low-loss spectra of the sandwich structure cannot
be simply understood as a sum of its individual constituents
like in the case of core-loss EELS. Indeed, the π+σ peak
of the G/MoS2/G spectrum is always shifted to higher energy
compared to the spectra of both graphene and MoS2, and the
relative height of the π peak is strongly decreased. Both effects
can be attributed to Coulomb interactions between plasmons
in different layers and have also been observed in low-loss
spectra of multilayer graphene [43,62]. For a quantitative
description of these interactions, rigorous calculations of the
entire heterostructure are required.

C. Model calculations

Brute-force TDDFT calculations for a stack of many layers
with different lattice constants require large supercells with
many atoms and thus a large computational effort even within
RPA. At the same time, layers in van der Waals heterostructures
are weakly bound, and excitations on different sheets are
mainly coupled via long-range Coulomb interactions. Ne-
glecting interlayer hopping, we can therefore first perform
TDDFT calculations for each individual monolayer and in-
clude Coulomb interactions between neighboring sheets in
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a second step. In the following, we introduce corresponding
model calculations of different complexity.

1. Building-block approach

In the framework of TDDFT, it appears natural to split the
independent-particle polarizability χKS of the heterostructure
into contributions χKS,α of each individual monolayer α of the
stack. Indeed χKS,α is a very local quantity [63] which decays
rapidly in the out-of-plane direction. Within the BBA [64], the
total KS polarizability of the stack is approximated as the sum
over all monolayers located at height zα . Given χKS,α in mixed
coordinates (q̄,z), it reads

χKS
ḠḠ′(q̄,E; z,z′)

BBA≈
∑

α

χ
KS,α

ḠḠ′ (q̄,E; z − zα,z′ − zα),

where the number, sequence, and distance of the layers can
easily be varied without repeating a full TDDFT calculation.
The microscopic density-response function χḠḠ′(q̄,E; z,z′) of
the stack is then obtained by solving Eq. (2). In this step,
long- and short-range Coulomb interactions are fully taken
into account without any further approximation. Therefore,
the BBA is very accurate. On the other hand, this approach
is not appropriate for inverting the calculation and extracting
the dielectric response of an unknown material from the EELS
experiment of a stack. To this end, the full microscopic density-
response matrix χḠḠ′ should be measured, not just a diagonal
element as in Eq. (3). Additionally, lattice constants of different
layers have to be commensurate such that corresponding in-
plane reciprocal lattice vectors Ḡ match between all summands
in the above equation.

2. Layered electron-gas model

The computation can be simplified considerably by noting
that the Coulomb potential of microscopic charge oscillations
(|Ḡ| > 0) decays rapidly in the out-of-plane direction and thus
hardly contributes to the coupling between different sheets.
Thus, microscopic effects can be included in the response
of each individual layer before multiple sheets are coupled
via long-range Coulomb interactions. Within the LEG model
[38,65,66], this separation is achieved by introducing a dielec-
tric model system of strictly two-dimensional, homogeneous
sheets with polarizability �α(q̄,E) at vertical position zα

[Fig. 2(c)]. The microscopic polarizability of this stack of
artificial layers is then a simple sum of yet unknown, scalar
functions �α(q̄,E),

πLEG
ḠḠ′ (q̄,E; z,z′) =

∑

α

�α(q̄ + Ḡ,E)δ(z − zα)δ(z′ − zα)δḠḠ′ .

The microscopic density response χ of this model system is
obtained from Eq. (2), where χKS is replaced by πLEG. As
πLEG is diagonal in Ḡ, the energy-loss function ELF(q̄,E) of
the stack, given in Eq. (3), depends only on �α(q̄,E) inside the
first Brillouin zone. To determine these unknown �α from first
principles, we consider the LEG model for a single, isolated
layer α [43]. In this case, Eq. (2) relates the polarizability
�α(q̄,E) of the artificial layer to the macroscopic density

FIG. 2. Sketch of different model systems for a three-layer het-
erostructure (sandwich). (a) Fully microscopic description of the
dielectric response including lattice mismatch within the building-
block approach (BBA). (b) In-plane homogeneous (IPH) model with
a z-dependent response for each layer. (c) Stack of strictly two-
dimensional layers in the layered electron-gas (LEG) model.

response of the sheet χ̄α(q̄,E) ≡ Lzχ
α
00(q̄,E),

χ̄α(q̄,E) = �α(q̄,E) + �α(q̄,E) v2D(q̄) χ̄α(q̄,E), (4)

where v2D = 2π/q̄ denotes the Coulomb potential in two
dimensions. Thus, �α can be obtained from a separate TDDFT
calculation for each monolayer: First, the microscopic re-
sponse χ

KS,α

GG′ and χα
GG′ are computed, using mixed coordinates

in Eq. (2). Then Eq. (4) is solved. By construction, the LEG
model thus coincides with the TDDFT result for a single layer;
that is, �α includes the averaged effect of all microscopic
details. On the other hand, �α is just a scalar, macroscopic
function, and the lattice vectors of different layers do not
need to be commensurate. Most importantly, the equations are
simple enough to enable the reconstruction of the polarizability
of an unknown layer.

3. In-plane homogeneous model

The main approximation of the LEG model is hidden in the
assumption that all interlayer interactions can be modeled as
interactions between strictly two-dimensional, homogeneous
sheets. It breaks down when some layers of the stack are
thick or strongly inhomogeneous, i.e., when the interlayer
distance is no longer large compared to the thickness or the
in-plane lattice constant of the sheet. Several dielectric models
for thick layers are currently being investigated in relation to
Bethe-Salpeter calculations for monolayers and heterostruc-
tures using, e.g., homogeneous sheets of finite thickness
[41,67–69] or multiple, infinitely thin sheets [70,71] for each
individual layer. To extend the LEG model to thick layers, we
propose to consider a heterostructure made of artificial layers
α that are homogeneous in the in-plane direction and have
an arbitrary, nonlocal behavior in the out-of-plane direction
[Fig. 2(b)]. Within this in-plane homogeneous model (IPH), the
microscopic polarizability of the stack is a sum of z-dependent
polarizabilities π̃α(q̄,E; z,z′),

π IPH
ḠḠ′(q̄,E; z,z′) =

∑

α

π̃α(q̄ + Ḡ,E; z − zα,z′ − zα)δḠḠ′ .

All other steps are completely analogous to the LEG model:
The microscopic density response χ is obtained from Eq. (2),
where χKS is replaced by π IPH. Considering the IPH model
for a single layer, the polarizability π̃α(q̄,E; z,z′) is obtained
from the in-plane averaged density response χα

0̄0̄(q̄,E; z,z′)
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FIG. 3. Validation of different model calculations for EEL spectra

of bulk MoS2 at in-plane momentum transfer q̄ = 0.3 Å
−1

along the
ΓM direction: Comparison between BBA, IPH, and LEG models
(green solid, blue dash-dotted, and red dashed lines, respectively). As
a reference, a full TDDFT calculation (RPA; black solid line) and the
measured EEL spectrum (gray filled curve) are shown. Additionally,
the RPA spectrum for a single MoS2 monolayer is shown (red dotted
line). The inset shows the calculated position of the π+σ peak in
bulk MoS2 with an artificially increased layer distance d . The result
of the rigorous RPA calculation for bulk MoS2 (black cross) can be
reproduced by model calculations only if the z dependence of the
monolayers is considered (IPH; blue dash-dotted line).

using the analog of Eq. (4) for z-dependent polarizabilities. The
effective polarizability π̃α of the artificial layer is found to be,
indeed, localized in the vertical direction, and heterostructures
can be simply stacked along the z direction. Due to the
homogeneity of the layers in the in-plane direction, we still
avoid lattice-mismatch problems, but the inversion of the
calculation becomes much more problematic.

4. Comparison of models for bulk MoS2

As illustrated in Fig. 2, the complexity of the model de-
creases from BBA to IPH and the LEG model. At the same time,
deviations from full ab initio results increase. To assess the
accuracy of the presented models quantitatively, we discuss the
prototypical examples of graphite and bulk MoS2. For graphite
and few-layer graphene, the LEG model has already proven
useful for the accurate simulation of electron energy-loss
spectra in the low-loss region [42,43]. For in-plane momentum
transfers, all three model calculations give nearly the same
result. This is no longer the case for heterostructures with thick
sheets. In bulk MoS2, the layer thickness dS = 3.2 Å, which
can be estimated by the distance between upper and lower
sulfur atoms, is half the interlayer distance d = 6.15 Å. To
evaluate the performance of the model calculations for bulk
MoS2, we compare momentum-resolved EELS measurements

for an intermediate momentum transfer q̄ = 0.3 Å
−1

along the
ΓM direction with corresponding simulations (see Fig. 3). As
a reference, the result of a standard TDDFT-RPA calculation
is shown as a black solid line. It is found to be in very good
agreement with the experiment. The BBA calculation (green
solid line), which neglects only interlayer hopping, gives nearly

the same spectrum as the RPA calculation. Very similar results
are obtained if the individual monolayers are approximated as
homogeneous sheets with variation along the z direction (IPH
calculation, blue dash-dotted line). However, the LEG model
clearly fails (red dashed line); that is, the approximation of the
MoS2 sheets as homogeneous, strictly two-dimensional layers
does not hold.

Instead of comparing systems with different monolayer
thicknesses, like graphite and MoS2, we can artificially in-
crease the interlayer distance to show that the finite thickness of
the layers is the reason for the failure of the LEG model. Indeed,
the ratio between the z extension and interlayer distance
is the important parameter. In the inset in Fig. 3, we consider
the π+σ peak position [54] for artificial bulk MoS2 with an
increased interlayer distance. Independent of the model, the
peak energy decreases with increasing layer distance and ap-
proaches the value of an isolated MoS2 monolayer in the limit
d → ∞. This can be explained by the decreasing Coulomb
interaction between neighboring sheets. On the other hand, the
LEG model (red dashed line) systematically underestimates the
π+σ peak position, which corresponds to an underestimation
of the Coulomb interaction compared to the IPH model (blue
dash-dotted line) or the reference TDDFT calculation (black
cross). The error of the LEG model is as large as 1.6 eV in the
π+σ peak position at bulk interlayer distance d = d0. This
error decreases for larger d, i.e., when the z extension of the
layers becomes less important.

Our comparison of the different models shows that the IPH
model is able to correctly describe Coulomb interactions in het-
erostructures even for thick layers, while the LEG model fails
in this case. The calculated EEL spectra are nearly identical to
full TDDFT calculations in RPA. On the other hand, IPH and
LEG models both include microscopic inhomogeneities only
implicitly via an effective dielectric constant. This allows us to
easily combine arbitrary 2D layers even with incommensurable
unit cells. The IPH model is thus ideal for simulating the in-
plane dielectric response of 2D heterostructures with arbitrary
stacking.

D. Calculations for the G/MoS2/G heterostructure

Having established an accurate and fast method to simulate
in-plane EEL spectra of arbitrary heterostructures, we now
revisit our experimental results for the G/MoS2/G sandwich
samples discussed in Sec. III B. We focus on intermediate

momentum transfers q̄ = 0.3 Å
−1

, where differences between
sandwich and monolayer spectra are very pronounced [see
Fig. 1(b)] and RPA calculations have been proven to describe
our experimental results for individual monolayers sufficiently
well [see Fig. 1(a)]. Thus, calculations using the IPH model
can be directly compared to our EELS measurements.

Unfortunately, the interlayer distance d between graphene
and 1H -MoS2 layers in the G/MoS2/G sandwich is not known
a priori. Very few theoretical estimations exist in the literature,
using molecular dynamics simulations [72] or DFT calcula-
tions [73,74]. Experimentally, the layer distance is hard to
measure, and it might even vary if contamination is trapped
between the layers during the assembly of the sandwich.
We therefore consider different layer distances d ranging
between two limiting cases (see Fig. 4): As the upper bound,
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FIG. 4. Variation of the interlayer distance d in the G/MoS2/G
sandwich structure. Experimental EEL spectra (gray filled curve) for

a momentum transfer of q̄ = 0.3 Å
−1

are compared to IPH model
calculations for d = 3.35 Å, d = 4.0 Å, and d → ∞.

we consider infinitely separated layers (d → ∞), where the
coupling between different sheets vanishes and the simulated
EEL signal becomes a simple sum of graphene and 1H -MoS2

spectra (red dotted line). As the lower bound, we use the
interlayer distance of bulk graphite (d = 3.35 Å), ignoring the
increased thickness of the sandwiched MoS2 layer compared to
graphene. Although the Coulomb interaction between different
layers is overestimated in this case, the overall agreement with
our experimental results is largely improved (black dashed
line). This shows the importance of the Coulomb coupling,
which has two main effects on the energy-loss spectra: First,
the π peak is strongly suppressed in comparison to a simple
sum of the graphene and 1H -MoS2 spectra. Second, the π and
π+σ peaks are shifted to higher energies when the Coulomb
coupling increases, i.e., d decreases. This is the same behavior
as observed in bulk MoS2 (see Fig. 3) or graphite.

Using the sensitivity of the π+σ peak position to the
interlayer distance d, we can try to estimate d by matching
the calculated peak position to our experimental results. The
best-fit result for the IPH model is obtained at an interlayer
distance d of about 4.0 Å (green solid line). This value is
much smaller than predictions from theory suggest. The given
carbon-sulfur distances in Refs. [72–74] are on the order of the
interlayer distance of graphite and would result in a distance
d of around 4.95 Å [75]. The large difference between these
layer distances suggests that the fitted distance d compensates
discrepancies between experimental and theoretical results of
different origins. In particular, it has to be noted that for the
best match of the π + σ peak, the energy of the π peak is
overestimated by about 1.5 eV by the calculation.

So far, we have assumed that the polarizabilities of both
graphene and monolayer MoS2 are known, and we considered
the layer distance d to be the (only) unknown parameter.
If we now come back to our initial aim of reconstructing
the polarizability of monolayer MoS2 from the G/MoS2/G
spectrum, we have to refer to the literature value of d = 4.95 Å.
For this fixed layer distance, the resulting EEL spectrum
calculated using the IPH model is shown in Fig. 5 (blue
dash-dotted line). Moreover, we revive the less complicated
LEG model, which can, in principle, be used for an inverse

FIG. 5. Comparison of experimental EEL spectra (gray filled
curve) of the G/MoS2/G sandwich structure with corresponding IPH

and LEG model calculations for a momentum transfer of q̄ = 0.3 Å
−1

and an interlayer distance d = 4.95 Å (see text).

calculation, i.e., the reconstruction of the polarizability of
1H -MoS2. Using the same layer distance, a LEG calculation
for G/MoS2/G (red dashed line) yields nearly the same result
as the IPH model. In contrast to the case of bulk MoS2 we
find that for the G/MoS2/G sandwich structure, the LEG still
matches our IPH reference calculation. This implies that the
sandwiching approach for reduced beam damage could work.

For a practical implementation, however, there are many
pitfalls. In the following, we want to summarize the main
complications in experiments and theory. First, as already
mentioned in Sec. III A, there are multiple possible reasons
for the mismatch between experiments and simulations. From
the theoretical point of view, neglecting exchange and corre-
lation effects in the theoretical description of MoS2 leads to
differences at smaller momentum transfers q̄. Moreover, the
simulations should also account for the finite q resolution in
the EELS measurements. In TEM experiments, electron-beam-
induced modifications of the sample can alter the spectra as
well as (hydrocarbon) contamination (see the Supplemental
Material [54], Fig. S2). Even the number of layers can vary
over the sample and is hard to assess in a TEM experiment.
Exact methods based on electron diffraction exist only for
certain cases, e.g., to distinguish between monolayer and
bilayer graphene and between 1H - and 2H -MoS2 [76,77]. In
particular for the application of the encapsulation approach to
an unknown 2D material, this can pose a serious limitation
together with the unknown interlayer distances.

Last, before the polarizabilities of the monolayers can be
separated, the complex inverse dielectric function ε−1 of the
sandwich structure needs to be determined via Kramers-Kronig
analysis. This requires a very precise subtraction of the zero-
loss peak and may be complicated by retardation effects [78].
It should be noted that this is a particular problem for low-
energy excitations in the range of several electronvolts. But
even for core-loss spectra, which can be generally understood
as a simple sum of contributions from different monolayers
in a first approximation, the sandwiching of the sample might
alter the near-edge spectra which contain information about
excitations in the valence region.
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IV. CONCLUSIONS

In this paper, different dielectric models for the calculation
of low-loss EEL spectra of prototypical heterostructures have
been assessed by comparison with ab initio calculations and
momentum-resolved EELS measurements. Using bulk MoS2

as a test system, we have shown that the commonly used
layered electron-gas model might fail for a stack of thick
layers. The origin of this failure is the neglect of the finite
extent of each individual 1H -MoS2 sheet in the out-of-plane
direction (dS ≈ 3.2 Å), which leads to an underestimation
of the Coulomb interaction between neighboring layers. We
have introduced a partly microscopic, in-plane homogeneous
model, which takes the finite layer thickness into account and
shows nearly perfect agreement with rigorous TDDFT-RPA
calculations for bulk MoS2. This offers an accurate and fast
method to simulate the EELS signal of arbitrary heterostruc-
tures, which can be directly compared to experimental results.

Using these IPH calculations as a reference, we have
investigated the dielectric response of a G/MoS2/G sandwich.
In this case, the LEG model was found to give a rather good
description of the EELS signal. On this basis, it is, in principle,
possible to extract the polarizability of a bare MoS2 monolayer
from the EELS signal of the less beam sensitive G/MoS2/G
sandwich if the polarizability of graphene is known. For a

practical implementation of this sandwiching technique in low-
loss EELS, several experimental difficulties arise which have
been discussed in detail. In particular, the strong dependence
of the results on the unknown interlayer separation was found
to be critical. Hence, our results emphasize the need for
low-voltage microscopy in a very clean environment to enable
precise measurements of EEL spectra of monolayers.
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