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Spin-orbit coupling and magnetic-field dependence of carrier states in a self-assembled quantum dot
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In this work, we investigate the influence of spin-orbit coupling on the magnetic-field dependence of carrier
states in a self-assembled quantum dot. The electron and hole energy levels are calculated using the 6-, 8- and
14-band k·p models. Through a detailed study within these models, we extract the information about the impact
of various spin-orbital coupling channels on the hole p shell. We demonstrate that the most important contribution
comes from the influence of shear strain. We show that the complicated magnetic-field dependence of the hole p

shell resulting from numerical simulations can be very well fitted using a phenomenological model. We compare
the electron and hole g-factors calculated within 8- and 14-band k·p models and show that these methods give
reasonably good agreement.
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I. INTRODUCTION

Spin-related properties of carriers confined in quantum dots
(QDs) attract much attention due to their potential application
in spintronics [1–3]. In particular, the effect of spin-orbit
(SO) coupling in QDs was a subject of extensive studies
over recent years [4–9]. The lack of inversion symmetry in
the crystal lattice (bulk-inversion asymmetry, BIA) leads to
the Dresselhaus SO coupling, while asymmetry related to a
nanostructure (or induced via external fields) gives rise to
the Rashba SO coupling (structure-inversion asymmetry, SIA)
[10]. Furthermore, mixing between heavy-hole (hh) and light-
hole (lh) subbands significantly affects the overall SO coupling
[11,12]. In the case of nanostructures, also other mechanisms
related to abrupt material interfaces play a very important role
[13]. In the description of QDs’ spectra, some theoretical works
[4,8,9] utilize the effective Fock-Darwin model supplemented
by additional terms (described by empirical parameters), which
are referred to the Rashba or/and Dresselhaus SO coupling.
Such a model qualitatively describes basic QD properties and
(if taken with realistic parameters) can predict correct spin
ordering of the several lowest single-particle states.

The spin dynamics of a QD system can be driven by
applying an external magnetic field. However, the response of
the system strongly depends on the parameters, which cannot
be simply deduced from the bulk values. In consequence,
spin control needs a precise knowledge of the carrier states
in the system, which requires advanced modeling. One of the
important issues is related to the electron/hole g factor, which
in the case of QD can differ by an order of magnitude from
the bulk value [14]. The g factor in a QD was investigated in
many experimental works [7,15–22] and theoretical studies
including tight-binding [23,24] and k·p [19–22] modeling.
The magnetic-field dependence of the hole energy levels
were investigated within 4-band k·p [25], where, while lh-hh
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subband mixing was included, the influence of various SO
mechanisms and anisotropy, were neglected. Also in Ref. [6],
the hole states in presence of magnetic field were studied. In
that work, the subband mixing enters via Luttinger Hamil-
tonian, and the Rashba coupling is accounted for by a free
parameter.

In this paper, we study the magnetic-field dependence of
the electron and hole states. We show that quantitative and
qualitative reconstruction of the hole p-shell energy levels
results from the interplay of several SO mechanisms with the
most important contribution from the one that depends on
the shear strain. We utilize the 14-band k·p model, which
inherently accounts for the Rashba, Dresselhaus, and other
spin-orbit coupling mechanisms. We show that the results
from the 14-band k·p theory can be very well fitted via an
extended Fock-Darwin model with the structural asymmetry
and SO interaction taken into account. Finally, we calculate the
electron and hole g factors using 8- and 14-band k·p models
and show that these methods give reasonably good agreement.

The paper is organized as follows. In Sec. II, we briefly
describe the models that are used to calculate the strain
distribution and the carrier states. In Sec. III, we present
and discuss the results of numerical simulations. Section IV
contains concluding remarks. Finally, a detailed description of
the model is given in the Appendix.

II. MODEL

The system under consideration contains a single self-
assembled QD formed by InGaAs in GaAs matrix. The dot
is lens shaped with the diameter of 24 nm, the height of
4.2 nm, and is placed on a 0.6-nm-thick wetting layer (WL). We
consider the uniform [Fig. 1(a)] and with simulated material
intermixing [Fig. 1(b)] InxGa1−xAs distribution. In the latter
case, the material distribution is processed by Gaussian blur
with a standard deviation of 1.2 nm. The inhomogeneous
composition is described by the function C(r), where C(r) = 1
refers to pure InAs, C(r) = 0 to pure GaAs, and intermediate

2469-9950/2018/97(23)/235408(9) 235408-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.235408&domain=pdf&date_stamp=2018-06-07
https://doi.org/10.1103/PhysRevB.97.235408


KRZYSZTOF GAWARECKI PHYSICAL REVIEW B 97, 235408 (2018)

-6
-4
-2
 0
 2
 4
 6

[0
01

] (
nm

)

-6
-4
-2
 0
 2
 4
 6

 0
 0.2
 0.4
 0.6
 0.8
 1

In
 c

on
te

nt

(a)

-6
-4
-2
 0
 2
 4
 6

-20 -15 -10 -5 0 5 10 15 20

[0
01

] (
nm

)

[110] (nm)

-6
-4
-2
 0
 2
 4
 6

-20 -15 -10 -5 0 5 10 15 20
 0
 0.2
 0.4
 0.6
 0.8
 1

In
 c

on
te

nt

(b)

FIG. 1. Material distribution in the system, in the case of uniform
(a) and blurred (b) QD.

values correspond to InxGa1−xAs. The spectral properties of
the system are affected by strain, which is caused by an
InAs/GaAs lattice mismatch. The strain distribution is modeled
within the continuous elasticity approach [26]. The piezoelec-
tric potential V (r) is calculated by solving the equation ρ(r) =
ε0∇[εr (r)∇V (r)], where εr (r) is the position-dependent rela-
tive permittivity. The charge density is calculated from ρ(r) =
−∇ · P(r), where the piezoelectric polarization is accounted
for up to the second order with respect to the strain-tensor
elements [27] with parameters taken from Ref. [28].

In order to calculate the electron and hole states, we
implemented the 14-band k·p model. In this framework, (in
contrast to 8- and fewer-band approaches) the kinetic part of
the Hamiltonian correctly describes the symmetry (C2v) of the
zinc-blende crystal [29]. Furthermore, the model inherently
contains the Dresselhaus, Rashba, and other coupling mecha-
nisms, which, in the fewer-band models, need to be represented
via additional perturbative terms [10]. The Hamiltonian of
the system can be written as H = H (k) + H (str) + H (m) + V ,
where H (k) is the kinetic part of the Hamiltonian, H (str)

accounts for the strain, and H (m) represents the magnetic
interaction. The Hamiltonian can be divided into blocks ac-
cording to the symmetry classification [10,30]. In the case of
the extended Kane model (14 bands), �8c, �7c �6c, �8v , and
�7v bands are taken into account explicitly and the remote
band contribution enters via material parameters [10,30]. We
keep the Burt-Foreman operator ordering [31] in its extended
version proposed in Ref. [32]. The magnetic field is introduced
via Peierls substitution within the gauge-invariant scheme,
described in detail in Ref. [33]. The electron and hole states
are obtained by diagonalizing the Hamiltonian. The in-plane
probability density of the nth electron/hole state is calculated
using the formula

d (e/h)
n (x,y) =

14∑
m=1

∫ ∞

−∞
ψ (e/h)∗

n,m (r)ψ (e/h)
n,m (r)dz,

where ψ
(e/h)
n,m (r) denotes the mth-band component of the nth

electron/hole wave function. The average values of the z com-
ponents of the electron and hole envelope angular momenta
read as

〈Mz〉 =
14∑

m=1

∫ ∞

−∞
ψ (e/h)∗

n,m (r)

(
iy

∂

∂x
− ix

∂

∂y

)
ψ (e/h)

n,m (r)d r.

E
M

z

Bz

FIG. 2. (a) Magnetic-field dependence of the 12 lowest electron
states in the uniform InAs QD. Energy E = 0 refers to the unstrained
GaAs valence band edge. Schematic pictures on the left describe
spin configuration at magnetic field close to zero, while insets on
the right present the configuration at B = 12 T. (b) Corresponding
axial projection of the envelope angular momentum. The inset in the
right bottom corner presents the in-plane probability density of e3 and
e5 states at Bz = 0 and Bz = 12 T.

A full description of the Hamiltonian and calculation details
are given in the Appendix.

III. RESULTS

This section presents the results for the magnetic-field
dependence of the lowest-energy electron and hole states. The
eigenstates are 14-element pseudospinors, where each part
refers to one of the bands: �8c, �7c �6c, �8v , or �7v . Since the
considered QD has a geometrical axial symmetry, the states are
labeled according to the axial components of their approximate
envelope angular momenta (s, p, d shells).

A. Electron states

The electron energy levels in the uniform InAs QD as a
function of external axial magnetic field are shown in Fig. 2(a).
The corresponding average values of the axial projection of the
envelope angular momentum 〈Mz〉 are presented in Fig. 2(b).
The two lowest-energy states (e1,e2) are s type with 〈Mz〉 ≈ 0.
Their energies increase according to the diamagnetic shift
α(e)

s B2
z , where fitting to the numerical results gives α(e)

s =
10.04 μeV/T2. The energy splitting between the two lowest
s-type states can be attributed to the effective Landé factor ge =
(Es↑ − Es↓)/μBBz = −2.17. This value differs significantly
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from the electron bulk g factor, averaged according to the local
composition

〈g〉 =
14∑

m=1

∫ ∞

−∞
ψ (e)∗

s,m (r)g(r)ψ (e)
s,m(r)d r = −13.17,

where g(r) = C(r)gInAs + [1 − C(r)]gGaAs, with gInAs =
−14.9 and gGaAs = −0.44. This discrepancy is caused by
the renormalization of the effective gap and the angular
momentum quenching [14]. In fact, the Landé factor ge tends to
the bulk value in the limit of a very large dot and to g0 = 2 in the
limit of a very small dot with strong confinement [14]. The next
four states [e3 – e6, green lines in Fig. 2(a)] exhibit the p-type
symmetry. The splitting at B = 0 is caused by the piezoelectric
field and (with smaller contribution) by the spin-orbit coupling.
These pairs of states exhibit large Zeeman splitting due to their
nonzero envelope angular momenta. As shown in the inset of
Fig. 2(b), in weak magnetic field the p-type states are oriented
along [110] and [11̄0] axes. In consequence, their 〈Mz〉 is close
to zero. However, the magnetic field leads to the mixing of
these states and tends to form of |p±1〉 ∝ (|p110〉 ± i|p11̄0〉)
with Mz = ±1, which are clearly visible at Bz > 4 T. Finally,
the last three pairs of states belong to the d shell [e7–e12, plotted
with blue lines in Fig. 2(a)], for sufficiently strong magnetic
field they form Mz ≈ −2,0,2 configurations. At about B = 4
T there is an anticrossing between the states with Mz ≈ 0 and
Mz ≈ 2. All of the considered electron states are mainly �6c

with very small admixtures from the other groups of bands.
In consequence, their axial projection of the band angular
momentum j (e)

z is approximately ± 1
2 .

Although the structure of the electron energy levels re-
sembles the one that results from the standard Fock-Darwin
model, the obtained spin configuration is more complicated.
The reason is the spin-orbit coupling, which affects the spin
and spectral properties of a QD [4]. The total spin-orbit
coupling favors the configurations where the electron spin
and envelope angular momentum are antiparallel. In conse-
quence, for positive Mz and weak magnetic fields, the spin
configuration is inverted compared to the s-shell states [left
spin diagrams in Fig. 2(a)]. However, at stronger magnetic
fields, the energy related to the Zeeman term dominates and
the spin configuration returns to the “usual” case where the
lower-energy state has spin oriented up [spin diagrams on the
right in Fig. 2(a)]. This situation takes place for e5, e6 pair
of states (Mz ≈ 1): at about Bz = 1.61 T there is a crossing
between these states, in the case of e11, e12 (Mz ≈ 2) states,
this occurs for 11.7 T.

The complicated magnetic-field dependence of the p shell
can be interpreted within a phenomenological model involving
five parameters. This corresponds to the Fock-Darwin model
with a spin-orbit term included [4]. The relevant Hamiltonian
is

H eff
p = Va(| + 1〉〈−1| + H.c.) ⊗ 1 + 1

2h̄
VSOLz ⊗ σz

+ 1

2
μBgpBz1 ⊗ σz + 1

h̄
WBzLz ⊗ 1

+ αpB2
z1 ⊗ 1, (1)

TABLE I. The effective parameters describing the electron p shell
obtained from the fitting procedure. The superscript (e) refers to the
electron.

Uniform QD Blurred QD

V (e)
a (meV) 1.513 0.651

V
(e)

SO (meV) 0.173 0.370
g(e)

p −1.353 −0.695
W (e)(meV/T) 0.949 0.900
α(e)

p (μeV/T2) 14.76 13.20

where the tensor product is related to the formal subsystems of
the envelope and the band angular momentum, | ± 1〉 refers to
Mz, Va is a parameter that accounts for the system anisotropy,
1 is the unit operator, σz is the axial Pauli matrix, Lz is
the operator of the axial projection of the envelope angular
momentum, gp is the effective g factor for the p shell, and W

is a parameter related to the influence of the envelope angular
momentum. In the basis {| + 1 ↑〉,| − 1 ↑〉,| + 1 ↓〉,| − 1 ↓〉}
(where the number refers to Mz and the arrow to the spin
orientation with respect to the z axis) the Hamiltonian can be
written in a form of a 4 × 4 matrix

H eff
p =Va

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ + VSO

⎛
⎜⎜⎝

1
2 0 0 0
0 − 1

2 0 0
0 0 − 1

2 0
0 0 0 1

2

⎞
⎟⎟⎠

+WBz

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ + αpB2

z

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

+μBgpBz

⎛
⎜⎜⎝

1
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 1

2

⎞
⎟⎟⎠.

We fitted the phenomenological parameters to the electron
p shell (Table I) and obtained an excellent agreement to the
14 k·p numerical results (see Fig. 3). The blurred QD gives
larger spin-obit term, but smaller anisotropy compared to the

FIG. 3. Magnetic-field dependence of the electron p-shell energy
levels in the uniform InAs QD.
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FIG. 4. (a) Magnetic-field dependence of the lowest hole energy
levels. Energy E = 0 refers to the unstrained GaAs valence band
edge. (b) Corresponding axial projection of the envelope angular
momentum.

uniform QD. Since V
(e)

SO is relatively small for both of the
dots, it is possible to obtain a reasonably good fit also for the
standard Fock-Darwin model (which corresponds to V

(e)
SO = 0).

However, at low magnetic fields, this produces a wrong spin
ordering of some states (in the case of the p shell, wrong
spin ordering appears at Bz < 1.61 T for the uniform QD,
and Bz < 10.7 T for the blurred QD). The overall spin-orbit
coupling in the p shell (V (e)

SO ) is caused by the interplay of the
abrupt material interfaces, the Rashba coupling, shear strain in
H6c8v and H6c7v , the Dresselhaus coupling, and the subband
mixing.

B. Hole states

The valence band states (directly resulting from the numeri-
cal simulations) are converted to the hole states by the operation
of time reversal, which inverts the envelope and band angular
momenta. The energy scale is reversed. The magnetic-field
dependence of the lowest-energy hole levels (s, p and the
two lowest states from the d shell) is shown in Fig. 4(a) and
the corresponding axial projections of the envelope angular
momenta are given in Fig. 4(b). Due to a complicated pattern
of the higher states, the angular momenta are shown up to the
p shell. Contrary to the electron case, the alignment of hole
energy levels does not exhibit a clear shell structure [34–37].
The energy splitting between the two lowest-energy states (s
type, Mz ≈ 0) is significantly larger than in the electron case.
The relevant effective g factor is gh = (Es⇑ − Es⇓)/μBBz =
−5.51. Note that with this sign convention, the exciton
g factor is given by gX = [EX(σ+) − EX(σ−)]/μBBz =
−ge + gh, where the energies EX(σ±) are related to the
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wrong spin ordering

FIG. 5. Magnetic-field dependence of the hole p-shell energy
levels in the uniform InAs QD. Solid lines denote the results obtained
from the effective model for a fitting (a) without SO parameter,
(b) with SO parameter included.

absorption of the circularly polarized (σ±) light [32]. The fitting
yielded diamagnetic parameter of α(h)

s = 4.955 μeV/T2.
The next four states belong to the p shell. Large splitting

between their spin doublets at B = 0 arises from a combination
of the spin-orbit coupling and the influence of the piezoelectric
potential. Unlike the electron states, even at low magnetic field
the Mz ≈ ±1 configurations are well defined. At about B =
10.2 T, there is an anticrossing, which involves the same spin
orientation but different envelope angular momenta. Finally,
at about B = 4.8 T there is a crossing between Mz ≈ −1 state
and the one from the d shell (with Mz ≈ 2). The considered p-
type states are mostly heavy holes with relatively small (below
10%) admixture from the other subbands, so their total axial
projections of the band angular momenta can be approximated
by j (h)

z ≈ ± 3
2 .

Similarly to the electron case, the magnetic-field depen-
dence of the p-type states can be described using the effective
model. We fitted the parameters of Eq. (1) to the hole p

shell. Figure 5 presents 14-band k·p results of the energy
branches compared to the effective model in two cases: (a)
the fitting without the SO term (V (h)

SO = 0) and (b) with SO
included. The first case corresponds to the pure Fock-Darwin
model, for which the results are not only inaccurate from
the quantitative point of view, but also predict a wrong spin
ordering. In particular, this leads to the lack of the pronounced
anticrossing at Bz = 10.2 T. On the other hand, the full
effective model [Fig. 5(b)] gives correct spin ordering and a
very good agreement with the numerical 14-band k·p results.
The width of the pronounced avoided crossing at B = 10.2 T
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TABLE II. The effective parameters for holep shell obtained from
a fitting procedure, (*) denotes a fitting without the SO parameter. The
superscript (h) refers to the hole.

Uniform QD* Uniform QD Blurred QD

V (h)
a (meV) 5.13 1.54 0.495

V
(h)

SO (meV) 0.0 −9.79 −7.31
g(h)

p −16.80 2.62 2.14
W (h)(meV/T) 0.0 −0.523 −0.425
α(h)

p (μeV/T2) 7.28 7.28 3.83

depends on the anisotropy. In the considered system, a large
contribution to it comes from the piezoelectric potential. The
anisotropy parameter can be extracted from the energy levels
by V (h)

a = [Eh5(10.2 T) − Eh4(10.2 T)]/2. Then, the SO term
is calculated from V

(h)
SO = −

√
[Eh5(0) − Eh4(0)]2 − 4(V (h)

a )2.
The other parameters are derived from the fitting procedure,
and all of them are listed in Table II. In contrast to the electron
case, both anisotropy (V (h)

a ) and spin-orbit parameter (V (h)
SO )

are larger in the case of the uniform QD. Hence, g(h)
p and

W (h) differ in their sign, the splitting of h5–h6 is larger than
h3–h4. This is consistent with the experimental results [7,38],
where the splitting between upper lines in the p shell is larger
compared to the lower doublet. On the other hand, the p-shell
anticrossing (h4–h5) is not clearly visible in the available
experiments [7,38]. This could be caused by the Coulomb
interaction. In the case of the neutral exciton in a single QD
[7], the Coulomb interaction mixes the exciton states with
the same total envelope angular momenta (Mexc = Me + Mh).
In consequence, the configuration (Me = ±1, Mh = ∓1) is
coupled to (Me = ∓1, Mh = ±1), and this leads to qualitative
spectrum reconstruction. On the other hand, in the C-V mea-
surements with hole charging [38], the Coulomb interaction
between holes also could play important role because it reduces
an anisotropy. In fact, it has been shown that the Coulomb
interaction leads to the reduction of the p-shell anticrossing
[6]. In order to reduce Coulomb effects, the magnetic-field
dependence of the single-hole energy levels can be measured
in experiments based on double quantum dots [39]. In such
a case, the single-particle energy levels are determined from
the spectrum of the indirect exciton, where the Coulomb
interaction is much weaker compared to the direct one [39].

The spin-orbit-induced reconstruction of the spectrum leads
to considerable mixing of spin states. This can be expected
to modify selection rules, both for p-shell optical transitions
and for tunnel coupling to a neighboring dot. It should also
induce strong admixture mechanisms in a double-QD struc-
ture, resulting in accelerated spin relaxation. Identification
of the most pronounced spin-orbit coupling mechanism for
a given system gives a possibility to control this effect by a
proper growth of the sample. For example, the abrupt material
interfaces could be softened by annealing, shear strain could
be reduced by using a strain-reducing layer, and the strength of
the Dresselhaus coupling could be (partially) controlled by the
material composition. In order to assess various contributions
to the overall spin-orbit coupling in the p shell, we performed
fitting to the results of calculation within several degrees of
approximation:

TABLE III. The effective spin-orbit parameter V
(h)

SO for hole p

shell obtained from various approximations. All of the parameter
definitions are given in the Appendix.

Value of V
(h)

SO (meV)

Uniform Blurred
No. Model QD QD

1. 14 k·p full −9.848 −7.312
2. 8 k·p full −9.916 −7.379
3. 8 k·p, neglected dv = 0 −3.460 −1.558
4. 8 k·p, neglected dv = 0, Ck = 0 −3.446 −1.532

and Dresselhaus terms H D = 0
5. 6 k·p full −10.512 −8.120
6. 6 k·p, neglected H (m) = 0 0.0 0.0

and γ3 = 0, dv = 0

(1) The full 14-band k·p model. All of the terms in the
Hamiltonian are present.

(2) The full 8-band k·p model. The Dresselhaus SO
coupling (which arises from the coupling to �8c and �7c)
is accounted for via perturbative terms (see H (D) in the
Appendix). The model inherently contains also the Rashba
coupling (except some relatively small contributions from the
coupling to �8c and �7c) and other spin-orbit mechanisms
related to the material inhomogeneity at the interfaces.

(3) The same as (2), but with dv = 0 hence with the
influence of the shear strain in the valence band neglected.

(4) The same as (3), with further reduction of spin-orbit
coupling by disabling the Dresselhaus terms (H D = 0) and
neglecting small contribution from Ck (k-linear terms).

(5) This approximation is based on the 6-band k·p model
(valence bands only). The deformation potential dv is present.
The Dresselhaus coupling is neglected and Ck = 0. The model
partially accounts for the Rashba coupling via position depen-
dence of the κ and q parameters in the magnetic Hamiltonian
(H (m) in the Appendix). However, this contribution is overes-
timated due to the lack of some terms with the opposite sign.

(6) The same as (5), but without the magnetic part of the
Hamiltonian (H (m)), influence of the shear strain is neglected,
dv = 0. The contribution from subband mixing [13] is removed
by setting γ3 = 0.
As shown in Table III, for both types of QDs the most important
contribution to V

(h)
SO comes from the shear strain, which enters

to the valence band block of the Hamiltonian with the deforma-
tion potential dv. The impact of the Dresselhaus terms is small.
Furthermore, the results from 8- and 14-band k·p are in very
good agreement. On the other hand, 6-band k·p overestimates
the p-shell spin-orbit coupling. The piezoelectric field is very
important for anisotropy (V (h)

a ) but its contribution to V
(h)

SO is
negligible.

We calculated also electron and hole g factors and
compared the accuracy of various multiband approaches.
Figures 6(a) and 6(b) show electron g factor as a function
of the dot composition. In the absolute values, there is a
good agreement between 8- and 14-band k·p, the relative
discrepancy between them increases with decreasing InAs
content (as the g factor decreases). The comparison 8-band k·p
to 2-band k·p is widely discussed in Ref. [40]. Figures 6(c) and
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FIG. 6. The electron (a), (b) and hole (c), (d) g factor as a function
of material composition in the case of uniform and blurred QD.

6(d) show the hole g factor obtained from 6-, 8-, and 14-band
k·p models. Due to the ellipticity condition in the 14-band k·p,
we reduced the optical matrix parameterQ → Qr = 0.8Q (see
the Appendix). As Q contributes to the g factors in the second
power, the discrepancy between 8- and 14-band models could
be larger by up to 36% as compared to the present values.
For both the electron and hole, the values of g factors for the
blurred QD are significantly reduced, which can be related to
the enhanced GaAs content in the dot.

IV. CONCLUSIONS

We have calculated the magnetic-field dependence of the
electron and hole states in a QD. We have investigated the
influence of the spin-orbit coupling on the structure of electron
and hole states. The results show that the dominant contribution
to the overall spin-orbit coupling in the hole p shell comes
from the shear strain, while the impact of Dresselhaus terms
is small. We have shown that numerical results can be very
well reproduced by an empirical Fock-Darwin model, if a term
representing spin-orbit coupling is included. Finally, we have
compared the values of electron and hole g factors obtained
from 8- and 14-band k·p models and have shown that these
methods are in a reasonably good agreement.
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APPENDIX: CALCULATION DETAILS

The kinetic part of the Hamiltonian can be expressed in
terms of the invariants [10]

H
(k)
8c8c = E′

g + �′
0,

H
(k)
7c7c = E′

g,

H
(k)
6c6c = Eg + kx

h̄2

2m′ kx + c.p.,

H
(k)
8v8v = − h̄2

2m0

{
kxγ

′
1kx − 2

(
J 2

x − 1

3
J 2

)
kxγ

′
2kx

−2γ ′
3{Jx,Jy}(kxγ

′
3ky + kyγ

′
3kx) + c.p.

}

+ 1√
3

[{
Jx,J

2
y − J 2

z

}
(Ckkx + kxCk) + c.p.

]
,

H
(k)
7v7v = −�0 − h̄2

2m0
kxγ

′
1kx,

H
(k)
8c7c = 0,

H
(k)
8c6c = −

√
3P ′(Uxkx + c.p.),

H
(k)
8c8v = − 2

3Qr({Jy,Jz}kx + c.p.) + 1
3�−,

H
(k)
8c7v = −2Qr(Uyzkx + c.p.),

H
(k)
7c6c = 1√

3
P ′(σxkx + c.p.),

H
(k)
7c8v = −2Qr(Tyzkx + c.p.),

H
(k)
7c7v = − 2

3�−,

H
(k)
6c8v =

√
3(Txkx + c.p.)P,

H
(k)
6c7v = − 1√

3
(σxkx + c.p.)P,

H
(k)
8v7v = − h̄2

2m0
[−6Uxxkxγ

′
2kx

−6Uxy(kxγ
′
3ky + kyγ

′
3kx) + c.p.]

−i

√
3

2
[Uyz(Ckkx + kxCk) + c.p.],

where c.p. denotes the cyclic permutation of indices; {A,B} =
(AB + BA)/2, Eg,E

′
g are the energy gaps between �8v–�6c

and �8v–�7c, respectively, �0,�
′
0,�

− are parameters related
to the spin-orbit coupling, P,P ′,Qr are proportional to the
interband momentum matrix elements, m0 is the free-electron
mass, m′ and γ ′

i are modified values of the effective mass
and Luttinger parameters. The relations between the modified
and the original parameters (listed in Table IV) are given
further. The matrices σi are the Pauli matrices, Ji are the
matrices of angular momentum j = 3/2, Ui , Uij are Hermitian
conjugates ofTi ,Tij , respectively (definitions are given in given
in Refs. [10,30,32]). ki is represented as a spatial derivative
in the real space. Then, a discretization is performed using
the finite-difference method [41]. We avoid spurious solution
problem related to the first-order derivatives [42] by applying
the central four-point scheme.
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TABLE IV. Material parameters used in the calculations [10,43].

GaAs InAs Bowing

m∗
e 0.0665m0 0.0229m0 0.0091m0

Ev 0.0 eV 0.21 eV
Eg 1.519 eV 0.417 eV 0.477 eV
E′

g 4.488 eV 4.390 eV

P Calculated from P =
√

EP h̄2/(2m0)
P ′ 4.78i eV Å 0.873i eV Å
Q 8.165 eV Å 8.331 eV Å

Qr Reduced value Qr = 0.8Q

γ1 6.98 20.0
γ2 2.06 8.5
γ3 2.93 9.2
Ck −0.0034 eV Å −0.0112 eV Å
�0 0.341 eV 0.39 eV 0.15 eV
�′

0 0.171 eV 0.24 eV
�′ -0.05i eV 0.0
ac −7.17 eV −5.08 eV 2.61 eV
av 1.16 eV 1.00 eV
bv −2.0 eV −1.8 eV
dv −4.8 eV −3.6 eV
g −0.44 −14.9
κ 1.2 7.6

q Calculated from q = 2m0
h̄2

2
9

(
Q2

E′
g

− Q2

E′
g+�′

0

)

Strain enters into the Hamiltonian via terms [10]

H
(str)
6c6c = acTr [ε],

H
(str)
8v8v = avTr [ε] − bv

[(
J 2

x − 1

3
J 2

)
εxx + c.p.

]

− dv√
3

[
2{Jx,Jy}εxy + c.p.

]
,

H
(str)
7v7v = avTr [ε],

H
(str)
6c8v = −2

√
3

⎛
⎝Tx

∑
j=x,y,z

kj εxj + c.p.

⎞
⎠P,

H
(str)
6c7v = 2√

3

⎛
⎝σx

∑
j=x,y,z

kj εxj + c.p.

⎞
⎠P,

H
(str)
8v7v = −3bv(Uxxεxx + c.p.) −

√
3dv(2Uxyεxy + c.p.),

where ac, av, bv, dv are deformation potentials. Magnetic
interaction is accounted for via the following terms [32]:

H
(m)
8c8c = g0

3
μB J · B,

H
(m)
8c7c = −g0μBU · B,

H
(m)
7c7c = −g0

6
μBσ · B,

H
(m)
6c6c = i

h̄2

4m0
[(kxg

′ky − kyg
′kx)σz + c.p.],

H
(m)
8v8v = −i

h̄2

m0
[(kxκ

′ky − kyκ
′kx)Jz + c.p.]

−i
h̄2

m0

[
(kxq

′ky − kyq
′kx)J 3

z + c.p.
]
,

H
(m)
7v7v = −i

h̄2

m0
[(kxκ

′ky − kyκ
′kx)σz + c.p.]

−μBσ · B,

H
(m)
8v7v = −i

3h̄2

2m0
[(kxκ

′ky − kyκ
′kx)Uz + c.p.]

−3μBU · B,

where g0 = 2, g′, κ ′, and q ′ are related to the electron and hole
g factors. In the case of a nanostructure, the above elements
are nonzero even at B = 0 and κ ′ introduces the Burt-Foreman
operator ordering, which represents boundary conditions at the
interface [31,44]. In the presence of magnetic field knkm −
kmkn = −iεnmkeBk/h̄, where εnmk denotes the Levi-Civita
symbol. For the calculation in 14-band k·p, the contributions
from �8c, �7c, and �6c need to be removed. The modified
parameters are then given by [10,29]

m0

m′ = m0

m∗
e

− 2

3

EP ′

Eg − E′
g − �′

0

− 1

3

EP ′

Eg − E′
g

− 2

3

EP

Eg

− 1

3

EP

Eg + �0
,

g′ = g + 2

3

EP ′

Eg − E′
g − �′

0

− 2

3

EP ′

Eg − E′
g

+ 2

3

EP

Eg

− 2

3

EP

Eg + �0
,

γ ′
1 = γ1 − 1

3

EQr

E′
g + �′

0

− 1

3

EQr

E′
g

− EP

3Eg + �
,

γ ′
2 = γ2 + 1

6

EQr

E′
g

− EP

6Eg + 2�
,

γ ′
3 = γ3 − 1

6

EQr

E′
g

− EP

6Eg + 2�
,

κ ′ = κ − 7

18

EQr

E′
g + �′

0

+ 5

9

EQr

E′
g

− EP

6Eg + 2�
,

q ′ = q − 2

9

EQr

E′
g

+ 2

9

EQr

E′
g + �′

0

,

where EP = 2m0P
2/h̄2 is the Kane energy, analogously

EP ′ = 2m0|P ′|2/h̄2 and EQr = 2m0Q
2
r /h̄

2. In order to avoid
spurious solutions related to losing the ellipticity [45], we
reduce the values of EP and Q. In the first case, we use the
rescaling relation [46]

EP =
(

m0

m∗
e

− 1

)
Eg(Eg + �0)

Eg + 2�0/3
.

For the latter, we reduce the parameter Q → Qr to 80% of the
original value. Due to the inconsistency of the reported values
[10,47], following Ref. [32], we take q from the perturbative
formula (see Table IV). Although 14-band k·p inherently
describes the Dresselhaus coupling, in the case of the reduced
Q there is a need of compensation via perturbative formulas.
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The relevant part of the Hamiltonian is given by [10]

H
(D)
6c8v = i

√
3

2
[Tx(kyB

+
8vkz + kzB

+
8vky) + c.p.]

+
√

3

2

[
(Txx − Tyy)

(
2

3
kzB

−
8vkz

−1

3
kxB

−
8vkx − 1

3
kyB

−
8vky

)

− Tzz(kxB
−
8vkx − kyB

−
8vky)

]
,

H
(D)
6c7v = − i

2
√

3

[
σx(kyB7vkz + kzB7vky) + c.p.

]
,

where

B+
8v = 1

2i
P ′(Q − Qr)

(
1

Eg − E′
g − �′

0

− 1

E′
g + �′

0

+ 1

Eg − E′
g

− 1

E′
g

)
,

B−
8v = 1

2i
P ′(Q − Qr)

(
− 1

Eg − E′
g − �′

0

+ 1

E′
g + �′

0

+ 1

Eg − E′
g

− 1

E′
g

)
,

B7v = 1

i
P ′(Q − Qr)

(
1

Eg − E′
g − �′

0

− 1

E′
g + �0 + �′

0

)
.

For the eight-band k·p calculations, we perform the substitu-
tion P ′ = 0, Qr = 0, and �− = 0 which decouples �8c + �7c

from the �6c + �8v + �7v block. Further reduction by P = 0
and H (D) = 0 gives the six-band k·p Hamiltonian.

The 4 × 4 matrix which represents the effective model
H eff

p can be split into two 2 × 2 matrices and diagonalized
analytically, with the eigenvalues

E1(Bz) = 1
2μBgpBz

−
√(

WBz + 1
2VSO

)2 + (Va)2 + αpB2
z ,

E2(Bz) = − 1
2μBgpBz

−
√(

WBz − 1
2VSO

)2 + (Va)2 + αpB2
z ,

E3(Bz) = 1
2μBgpBz

+
√(

WBz − 1
2VSO

)2 + (Va)2 + αpB2
z ,

E4(Bz) = − 1
2μBgpBz

+
√(

WBz + 1
2VSO

)2 + (Va)2 + αpB2
z .
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