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We investigate nonperturbatively the effect of a magnetic dopant impurity on the edge transport of a quantum
spin Hall (QSH) insulator. We show that for a strongly coupled magnetic dopant located near the edge of a system,
a pair of transmission antiresonances appear. When the chemical potential is on resonance, interaction effects
broaden the antiresonance width with decreasing temperature, thus suppressing transport for both repulsive and
moderately attractive interactions. Consequences for the recently observed QSH insulating phase of the 1-T′ of
WTe2 are briefly discussed.
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I. INTRODUCTION

Two-dimensional (2D) topological materials like quantum
spin Hall insulators (QSHIs) have become a fascinating re-
search topic, with many potential applications [1–3]. Theoreti-
cally, QSHIs are predicted to possess gapless one-dimensional
(1D) edge states [3,4]. Disorder potentials that are invariant
under time-reversal symmetry (TRS) cannot cause Anderson
localization, which is otherwise ubiquitous in 1D systems.
Indeed, it has been shown [3–6] that for scalar and spin-
orbit (SO) disorder potentials, even in the presence of weak
electron-electron interactions, the 1D edge channels of QSHIs
exhibit perfect transmission, whose hallmark is a quantized
conductance at low temperatures [7]. On the other hand, strong
interactions can break TRS [4,5] and lead to complex edge re-
constructions [8,9], which jeopardize the perfect conductance
quantization.

Experimentally, the QSH effect arising from gapless
edge channels has been observed in HgTe/CdTe and
InAs/GaSb/AlSb semiconductor quantum wells (QWs) [2],
graphene submitted to a strong, tilted magnetic field [10],
Bi (111) bilayers [11,12] and, more recently, in the 1-T′
phase of the transition metal dichalcogenide WTe2 [13–16].
However, in HgTe/CdTe and InAs/GaSb/AlSb samples, long
edge channels (∼1 μm) in the topological phase exhibit rel-
atively short mean-free paths, and the conductance deviates
from quantization [2,17–19]. For the monolayer WTe2, the
conductance of the devices with longer edges does not ex-
hibit the expected quantized value [14,16]. Moreover, the
interpretation of the observations in InAs/GaSb QWs [18,19]
has also been questioned after the discovery of rather similar
edge-conduction features in the trivial phase [17].
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Deviations from perfect conductance quantization at low
temperatures arise from backscattering (BS) in the edge chan-
nels. Several BS mechanisms have been discussed using effec-
tive 1D models [3,20–24]. The latter often involve electron-
electron scattering in combination with scalar, SO coupling
and magnetic disorder [6,21–29]. Indeed, magnetic impurities
break TRS above the Kondo temperature, and therefore they
cause BS [5,28–31]. Nevertheless, the connection between the
effective 1D models of disorder and the 2D aspects of the
physics of QSHIs has not yet been fully investigated to the
best of our knowledge. With the exception of a few numerical
studies in the noninteracting limit [32,33], there appears to
be no systematic investigation about the validity of these 1D
models. Indeed, little is known about whether they actually
apply in the strong coupling limit where coupling strength to
the impurity becomes comparable or larger than the band gap of
the QSHI. The latter is an experimentally relevant regime given
the small band gaps exhibited by many of the experimentally
realized QSHIs. Below, we shall show that the problem of
a magnetic dopant impurity problem can be mapped, in the
strong coupling limit, to a generalized 1D Fano model [34]
describing two resonant levels coupled to an interacting 1D
channel. Using an RG analysis, we show that the transmission
coefficient is suppressed at low temperatures for repulsive
interactions. Interestingly, when the chemical potential of the
edge electrons resonates with one of the in-gap states, we find
that the transmission is also suppressed for weak to moderately
attractive interactions.

The rest of this paper is organized as follows: Sec. III
describes the solution of the scattering problem for a toy
model of a single magnetic impurity in the neighborhood of a
noninteracting QSH edge channel. In Sec. IV, we construct an
effective 1D model to describe this system, which allows us to
treat the effect of weak to moderate interactions. In this section,
we also discuss the effects not included in our toy model, such
as the Rashba coupling in the band structure and the nonplanar
alignment of the magnetic moment. Finally, in Sec. V, we offer

2469-9950/2018/97(23)/235402(13) 235402-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.235402&domain=pdf&date_stamp=2018-06-04
https://doi.org/10.1103/PhysRevB.97.235402


JUN-HUI ZHENG AND MIGUEL A. CAZALILLA PHYSICAL REVIEW B 97, 235402 (2018)

the conclusions of this paper and provide an outlook for future
research directions. The Appendix contains the most technical
details of the calculations. Henceforth, we work in units where
h̄ = 1.

II. MODEL

In this paper, we consider the effect of a magnetic dopant
impurity in a QSHI, taking into account the electron-electron
interactions along the edge. We shall assume a large spin-S
magnetic impurity at temperatures T well above the Kondo
temperature TK (TK is exponentially suppressed for large S

[35]). This allows us to treat the magnetic moment of the
dopant classically. For the sake of simplicity, we first solve
a model in which the moment lies on the plane perpendicular
to the spin-quantization axis of a QSHI, which is described
by the Kane-Mele (KM) model [7]. The more general case
when the magnetic moment is pointing in an arbitrary direction
and the QSHI is described by more realistic extensions of the
KM model will be discussed in Sec. IV C. Once the scattering
problem with the dopant impurity is solved, we obtain an
effective 1D model by fitting the scattering data. The effective
model allows us to introduce the electron-electron interactions
and treat them nonperturbatively.

With the above assumptions, the impurity potential is
written as follows:

Vimp = λimp(c†i0↑ci0↓ + H.c.) = λimp c
†
i0
sxci0 , (1)

with c
†
i = (c†i↑,c

†
i↓). As we will further elaborate below, for

λimp � �, where 2� is the band gap, two bound states appear
within the gap when the impurity is located deep inside the
bulk of the QSHI. As the position of impurity is shifted from
the bulk to the edge, the bound states hybridize with the edge
states inducing a pair of antiresonances in the transmission
coefficient. Thus, we show that the two-dimensionality arising
from the QSHI physics leads to a much richer interplay
between interactions and (magnetic) disorder than the one
encountered in simple models of structureless impurities in 1D
interacting electron systems [36–43]. These results provide the
foundation for future studies based on more realistic models of
the microscopic origins of the absence of quantization in the
QSH effect at low temperatures.

Notice that the model considered here is also drastically
different from models based on charge puddles resulting
from doping fluctuations [23]. Indeed, the situation envisaged
in this paper is more relevant to isolated strongly coupled
magnetic moments that are well localized on the lattice scale,
as is the case of vacancies in 2D materials [44] or isolated
magnetic dopant impurities in general QSHIs. On the other
hand, puddles are described [23] as extended quantum dots
containing many levels and many electrons, which resonate
with the QSH edge states. Furthermore, unlike the study
reported below, the authors of Ref. [23] neglected Luttinger
liquid effects in their treatment of the edge, which may be
a good approximation for the HgTe QWs due to the large
value of the dielectric constant. In the puddle model, BS is
induced by the edge electrons dwelling in the quantum dots and
undergoing inelastic scattering with other electrons in puddle
[23]. Thus, in the absence of interactions, the puddle model

FIG. 1. Sketch of (a) the zigzag edge with a single impurity at the
edge and (b) the “brick wall” lattice to which it maps.

will not lead to BS, whereas the model considered below BS
is present even in the absence of interactions.

III. SOLUTION OF SCATTERING PROBLEM

A. Solution of the clean Kane-Mele ribbon

To describe the QSHI, we consider the KM model [7] (cf.
Fig. 1),

H0 = −t
∑
〈i,j〉

c
†
i cj − iλSO

∑
〈〈i,j〉〉

νij c
†
i s

zcj , (2)

where λSO describes the intrinsic SO coupling [7] as an
imaginary next-nearest neighbor hopping and νij = ±1 de-
pends on the electron hopping path; sz is the electron spin
projection on the axis perpendicular to the 2D plane. For the
sake of simplicity, we first neglect Rashba SO coupling. This
approximation does not qualitatively modify our results, as we
discuss in Sec. V.

In the absence of interactions, the impurity problem is
described by the Hamiltonian:

H = H0 + Vimp. (3)

To solve this problem, we first obtain an analytical solution
of the clean KM model, Eq. (2), for a zigzag ribbon of width
L (cf. Fig. 1). The transmission coefficient of the edge state
for the system with an impurity Eq. (1) will be evaluated by
solving the Lippmann-Schwinger equation (LSE) in Sec. III B.

In the ribbon geometry, the Bloch wave vector parallel to
the edge, kx , is a good quantum number. However, ky = −i∂y

must be treated as an operator. The wave functions along the
y axis obey open boundary conditions [45]. The Hamiltonian
Eq. (2) in the Bloch basis can be obtained by using the Fourier
transform,

ci∈A =
∑

k

ckA√
Nt

eik·(Ri+rg), ci∈B =
∑

k

ckB√
Nt

eik·Ri . (4)

Here Ri∈A(B) is the position of A(B) sublattice sites and Nt is
the total number of unit cells. Because of the bipartite structure
of the honeycomb lattice, the Fourier transform of H0 is not
unique and depends on the relative phase k · rg . This gauge
freedom must be fixed by the boundary conditions (BCs). The
appropriate choice for the zigzag edge is

rg = −(a/2
√

3)ey, (5)
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so that the N th row of the A sublattice are effectively shifted
[see Eq. (4)] to overlap with the N th row of the B sublattice
(see Fig. 1). This maps the honeycomb lattice onto the so-called
brick wall lattice and thus the BCs become

� = (�B,�A)T = 0 for y = ±L/2. (6)

After identifying the BCs, we proceed to solve the 1D
Schrödinger equation:

Hs
0(α,β̂)�s(kx,y) = ε�s(kx,y), (7)

where we have used the following notation: β̂ = −i
√

3a
2 ∂y and

Hs
0 = ∑

i d
i
sσ

i , with

dx
s = −t(2 cos α + cos β̂),

dy
s = −t sin β̂,

dz
s = sλSO(2 sin 2α − 4 sin α cos β̂), (8)

respectively, (α = kxa/2). The Pauli matrices σ i (i = x,y,z)
are in the pseudospin space corresponding to the sublattice
(B,A) components. Furthermore, since sz is a good quantum
number, s = ±1. Below, we look for solutions that are combi-
nations of plane waves eikyy .

We are not interested in finite size effects and therefore take
L → ∞. In this limit, the coupling between the two edges
vanishes and we obtain the dispersion for the edge states (see
Appendix):

εs(kx) = ± 6sλSOt sin(kxa)√
t2 + [4λSO sin(kxa/2)]2

, (9)

where the + (−) sign corresponds to the bottom (top) edge
at y = −L/2 (y = +L/2) and s = ±1. The bands of edge
states cross at kx = π

a
[7] (for a bearded edge, they cross at

kx = 0 [46], see Appendix). For kx ≈ π
a

, Eq. (9) agrees with
the semianalytic results of Ref. [47]. For the bottom edge states,
below we use the notation |kx,s〉. A plot of the bands [7] for a
wide zigzag ribbon and the corresponding wave functions can
be found in the Appendix.

B. Effect of the magnetic impurity

To investigate the effect of the impurity on the electronic
transport, we next solve the LSE:

|�〉 = |�〉 + G0(ε)Vimp|�〉, (10)

where G0(ε) = (ε + i0+ − H0)−1 is the Green’s function for
Eq. (2). We assume the magnetic impurity to be located on
the B sublattice at the bottom edge since the wave function of
edge states on this edge is mostly localized on the B sublattice
(see Appendix). To extract the transmission and reflection
coefficients of the edge electrons, we assume the incident
electron has a Bloch wave number k0

x on the right-moving
edge channel, i.e., |�〉 = |k0

x,s = −1〉. Therefore, its energy
is ε−(k0

x) and its group velocity is v = ∂kx
ε−(kx)|kx=k0

x
. Let us

introduce

�(sσ,r) = 〈s,σ,r |�〉, (11)

�(sσ,r) = 〈s,σ,r |�〉, (12)

FIG. 2. Transmission coefficient T (ε) for an impurity on a B
sublattice site on (a) the first atomic row (i.e., N = 1), (b) N = 2, (c)
N = 3, and (d) N = 4. The spin-orbit coupling is λSO = 0.06 t .

where σ = (+,−) corresponds to the (B,A) sublattice. Thus,
the asymptotic behavior of the wave function becomes

|�〉 → (1 + ζt )|�〉 for x → +∞, (13)

|�〉 → |�〉 + ζr |�̃〉 for x → −∞, (14)

where |�̃〉 = | 2π
a

− k0
x,s = +1〉, and

ζt = −iλimpLx

�(+ + ,r0)�∗(− + ,r0)

v
, (15)

ζr = −iλimpLx

�(− + ,r0)�̃∗(+ + ,r0)

v
. (16)

Here Lx is the normalization length of system along the edge
and r0 ∝ Ri0 is the impurity position.

From the above results, the transmission and the reflection
coefficients are obtained from ζr as follows:

T (ε) = |1 + ζt |2, (17)

R(ε) = |ζr |2. (18)

The energy dependence of the transmission coefficient is
shown in Fig. 2. Note that, when the magnetic impurity is
located on the first atomic row (i.e., N = 1), the transmission
coefficient is essentially energy independent, which makes
it similar to a BS impurity in a purely 1D channel. This
behavior arises from weak coupling between the edge and
bulk states via the impurity (owing to the small weight of
the bulk states on the N = 1 row). This holds true even for
relatively large values of λimp. Thus, scattering is dominated
by the 1D edge states. However, we believe this behavior is
not a robust feature but a peculiarity of the present KM model.
On the other hand, for the second atomic row and beyond
(i.e., N � 2), the weight of the bulk states is larger, and a
strong impurity can thus lead to a sizable coupling between
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bulk and edge states. As a consequence, for large values of
λimp, a pair of narrow scattering antiresonances appears within
the energy gap. In the neighborhood of the antiresonances, the
transmission coefficient changes very rapidly with energy and,
on resonance, it vanishes for large λimp.

To understand the emergence of the pair of scatter-
ing antiresonances, we need to consider the poles of the
T-matrix,

T (ε) = [1 − VimpG0(ε)]−1Vimp. (19)

For a strong impurity potential located within the bulk of
the QSHI, the poles of the T-matrix are obtained from the
condition

det
[
1 − λimpG

B
0 (r0,r0,ε)sx

] = 0, (20)

where GB
0 is the Green’s function constructed from bulk

states. The latter is real for ε within the energy gap since
the density of states vanishes there and it is odd in ε (due
to the particle-hole symmetry of H0), therefore vanishing at
ε = 0, i.e., the middle of the gap. Thus, GB

0 (r0,r0,ε) ∝ ε for
small ε. Hence, at large λimp, two bound in-gap states appear
at ε ∝ ±t2/λimp, corresponding to the two eigenvalues of sx .
As the impurity location is shifted toward the edge, the bound
states hybridize with the continuum of edge states, leading
to the antiresonances in the transmission coefficient. We will
generalize this argument below in Sec. IV C when discussing
the effect of extensions to the present toy model.

IV. 1D EFFECTIVE MODEL

A. Noninteracting limit

After finding a nonperturbative solution to the scattering
problem of the edge electrons with a magnetic dopant impurity,
in this section we construct a 1D low-energy effective model
that describes a noninteracting edge channel in the presence
of magnetic impurity at large λimp/�, where � = 3

√
3λSO

(2� is the bulk band gap). The effective model is valid at
energies and temperatures smaller than � and therefore only
involves the degrees of freedom of the 1D edge and the in-gap
states.

The Hamiltonian of the effective 1D model describing the
coupling between the edge electrons and the in-gap states is
constrained by the existence of a number of symmetries of H =
H0 + Vimp. The KM model in the ribbon geometry described
by H0 [cf. Eq. (2)], is invariant under TRS (T ), spin rotations
about the z axis (i.e., Uθ = exp(−iθsz/2), U−1

θ H0Uθ = H0),
particle-hole symmetry (C), and lattice translations along the
edge direction. The impurity potential, Vimp, breaks all those
symmetries, but the composite system described by H = H0 +
Vimp is invariant under the subgroup span by the combinedUπT
and CT transformations. Therefore, according to the above
discussion, the effective model takes the form of a generalized
Fano model [34], describing two discrete levels coupled to the
continuum of edge states. Furthermore, this model is invariant
under UπT and CT . Since for |λimp| → ∞ the position of the
resonances approaches the center of the band gap at ε = 0, we
shall focus in the neighborhood of kx = π

a
, where linearization

of the edge state spectrum, i.e., ε±(kx) = ∓vF k, is a good
approximation. Thus, the effective Hamiltonian can be written

FIG. 3. Left: Transmission coefficient for an impurity strength
λimp = 40 � (� is the band gap). Dots are the transmission coefficient
obtained numerically for the Kane-Mele model with a backscatterer
at the edge. The red line is the fit to the effective model [cf. Eq. (21)].
Right: Effective model parameters as a function of λimp.

as follows:

Heff = HB + H+[u,t+ψ(0)] + H−[d,t−ψ(0)], (21)

HB = ivF

∫
dx ψ†sz∂xψ + VBa0ψ

†(0)sxψ(0), (22)

H±[f,χ ] = ±ε0
(
f †f − 1

2

) + Vca
1/2
0 [f †χ + H.c.], (23)

where ψ†(x) = (ψ†
L(x),ψ†

R(x)) is the spinor field operator
describing the edge states, u† and d† are the creation operators
of electrons in the bound states with sx eigenvalue and energy
sx = +1,ε = +ε0 and sx = −1,ε = −ε0, respectively, and
t± = (±1,1); a0 = vF /� is a short distance cutoff. In the above
model, VB describes a renormalized BS amplitude for the edge
electrons, and Vc the tunneling into and out of the bound states.
The reflection coefficient for the effective 1D model reads:

R(ε) =
∣∣∣∣∣∣
∑

p=±1

p

iV 2
c

(ε+pε0)� + (
1 − p iVB

2�

)
∣∣∣∣∣∣
2

, (24)

which accurately fits the results obtained (numerically) for
T (ε) = 1 − R(ε) from the nonperturbative solution of the
scattering problem. The left panel of Fig. 3 shows the quality
of fit of the transmission coefficient as a function of energy for
a magnetic dopant impurity located in the second atomic row
(i.e., N = 2). The behavior of the fitted parameters Vc, VB , and
ε0 as functions of the impurity potential strength λimp is shown
on the right panel. As expected from the above discussion,
ε0 decreases as λimp → +∞. Note that Vc,VB � �, which is
consistent with the assumption that the 1D model, Eq. (21)
describes only the edge and in-gap states.

B. Interaction effects

Finally, we study the effect of electron interactions on the
transport properties of the QSHI with a magnetic dopant.
Interactions are treated nonperturbatively using the bosoniza-
tion method [43]. Their characteristic energy scale is ∼e2/a0

(where e is the electron charge), which is assumed to be smaller
than the band gap, 2�.

To apply bosonization to the interacting model, we further
project the effective 1D model in Eq. (21) onto the subspace of
excitations within the neighborhood of the Fermi energy, εF .
In particular, when εF is away from ±ε0, the bound states can
be integrated out. To leading order, this yields a renormalized
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BS amplitude,

V ′
B � VB −

[
V 2

c

ε0 − εF

+ V 2
c

ε0 + εF

]
, (25)

and thus the 1D model reduces to the impurity model in a 1D
interacting channel studied by Kane and Fisher [36,38] [cf.
HKF in Eq. (27) below] with an impurity potential whose BS
amplitude VB = V ′

B .
On the other hand, on resonance, i.e., for εF � +ε0 (εF �

−ε0), we can integrate out only the nonresonant level at εF �
−ε0 (εF � +ε0). Assuming (without loss of generality) that
εF � −ε0 yields the following low-energy effective model:

H ′
eff = HKF + H−[d,t−ψ(0)] + (

d†d − 1
2

)
× [UF ψ†(0)ψ(0) + UB ψ†(0)sxψ(0)], (26)

HKF = HB + U

∫
dx ρRρL. (27)

The interactions between the edge electrons (with amplitude
U ) and between the edge electrons and the resonant level (with
amplitudes UF and UB ) have been included in the Hamiltonian.
We note that integrating out the nonresonant level at ε = +ε0

renormalizes the amplitude of VB − UB/2 in H ′
eff by an amount

� V 2
c /(εF − ε0) � −V 2

c /2ε0. In addition, forward scattering
is also generated but it is dropped since it can be eliminated by
a unitary transformation [36,43].

The Hamiltonian H ′
eff in Eqs. (26) and (27) is akin to a

model of a (side-coupled) resonant level in an interacting 1D
channel [48,49]. Thus, we apply an analysis similar to the
one carried out by Goldstein and Berkovits in Ref. [48] to
H ′

eff . After bosonizing [43] Eq. (26), we perform a unitary
transformation to eliminate the forward interaction term ∝UF

at the expense of renormalizing the scaling dimension (�c) of
the operator (Oc ∝ Vc) describing the tunneling between the
1D edge channel and the resonant level. Thus,

〈O†
c (τ )Oc(0)〉 ∼ V 2

c

τ 2�T
, (28)

where τ is the imaginary time and (see Ref. [48] and appendix)
and

�T (K,UF ) = 1
4

[
K + K−1

(
1 − UF K

πv

)2]
. (29)

In this expression,

K =
√

2πvF − U

2πvF + U
(30)

is the Luttinger parameter and

v = vF

√
1 −

(
U

2πvF

)2

(31)

the velocity of the edge plasmons [43]. Hence, tunneling into
the resonant level becomes relevant in the renormalization-
group (RG) sense for �c(K,UF ) < 1. There are two different
interaction regimes for which this happens: For repulsive
interactions (i.e., K < 1) and for weak to moderate attraction
(i.e., K � 1). In the former case, both tunneling Vc and the
BS (∝ VB,UF ) are renormalized to strong coupling by the
charge-density wave fluctuations dominant in the 1D channel

with K < 1 [43]. At T = 0, transmission through the edge
channel is completely suppressed [48,49].

Interestingly, on resonance, the transmission through the
edge channel of the QHSI is also suppressed for moderately
attractive interactions i.e., K � 1. In this regime, BS is naïvely
irrelevant [36] and therefore UB is initially suppressed by the
dominant superconducting fluctuations in the edge channel
(see below). However, the tunneling amplitude Vc is still a
relevant perturbation since �c(K,UF ) < 1. Physically, this is
because tunneling is a strongly relevant perturbation in 1D, also
in the presence of interactions (see, e.g., Ref. [43], Chap. 8).

As the tunneling amplitude renormalizes to strong coupling
with decreasing energy scale/temperature, the second-order
RG flow equations (where yB ∝ UB , yt ∝ Vc, δF ∝ UF , etc.
are dimensionless couplings, see Appendix D for derivation
details):

dyB

d ln ξ
= (1 − K)yB + y2

t , (32)

dyt

d ln ξ
= [1 − K/4 − (1 − δF )2K−1/4]yt + yt (yB + vB),

(33)

dδF

d ln ξ
= 4(1 − δF )y2

t , (34)

dvB

d ln ξ
= (1 − K)vB, (35)

show that this runaway flow of yt ∝ Vc drags along both the
BS amplitude yB ∝ UB and δF ∝ UF . This ultimately leads to
an effective suppression of the transmission through the edge
channel as the temperature (or the energy scale) is reduced
[48,49].

C. Rashba SOC and general magnetic moments

The main results obtained using the toy model introduced
above can be easily generalized to account for the Rashba SO
coupling in the band structure, i.e., adding to Eq. (2) a term
of the form (dij is the vector joining the two nearest neighbor
sites i and j on the honeycomb lattice):

HR = iλr

∑
〈i,j〉

c
†
i (s × dij )cj , (36)

and to the case of a more general coupling to the magnetic
impurity (n is a unit vector):

V̄imp = λimpc
†
i0

(s · n)ci0 . (37)

In absence of Rashba and for n perpendicular to the
spin-quantization z axis, we can implement rotation along sz

direction to change the magnetic moment in Eq. (37) to the
form Eq. (1), which maps the problem to the toy model studied
above.

The presence in the system of a uniform Rashba SOC,
Eq. (37), violates the conservation of the total sz as well as the
particle-hole symmetry of the model. Yet, for weak to moderate
Rashba SOC, the topological phase is stable and exhibits robust
helical edge states [7]. In the following, we prove that in the
limit λimp → ∞, a magnetic dopant impurity in the bulk still
generates in-gap bound states, which can resonate with the
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edge states when the impurity is located near the boundary of
the insulator.

For an arbitrary orientation of the magnetic dopant in the
bulk of a QSHI, the positions of bound states are determined
by the equation [see Eq. (19)]

det
[
1 − λimp(n · s)GB

0 (r0,r0,ε)
] = 0, (38)

where GB
0 (r0,r0,ε) is the local Green’s function on the B

sublattice, which is a 2 × 2 matrix in spin space. However,
TRS implies that its off-diagonal elements vanish [50,51]
GB

0,↑↓(r0,r0,ε) = GB
0,↓↑(r0,r0,ε) = 0 and GB

0,↑↑(r0,r0,ε) =
GB

0,↓↓(r0,r0,ε). Hence, GB
0 (r0,r0,ε) is indeed proportional to

the unit matrix, i.e.,

GB
0 (r0,r0,ε) = gB(ε)

2
1, (39)

where the function gB(ε) is related to the local density of
states (LDOS) on the B sublattice. If we apply a rotation
to align the spin quantization axis with the direction of
n, i.e., U †(n)(n · s)U (n) = sz, Eq. (38) yields the following
conditions for the existence of in-gap bound states:

gB(ε) = ±2λ−1
imp (40)

The function gB(ε) becomes real for ε within the band gap
because the LDOS vanishes there. In addition, since the
LDOS is positive for ε outside the band gap, Kramers-Kronig
relationships imply that gB(ε) must have a zero within the
gap, i.e., gB(ε) = z−1(ε − εc), where z−1 is the proportionally
constant and εc is an energy within the band gap. For the KM
model, particle-hole symmetry further requires that εc = 0,
which corresponds to the middle of the gap. Rashba SOC
breaks particle-hole symmetry and, in general, we expect
εc �= 0. Hence for sufficiently large λimp, the in-gap states will
be located at the energies:

ε±
0 = εc ± 2z

λimp
. (41)

However, notice that for λimp ∼ � and/or large particle-hole
asymmetry (i.e., εc ∼ �), one or both solutions to Eq. (40) may
not be real. Indeed, this the case when energy of the in-gap
states overlaps with the continuum of states in the conduction
or valence bands. However, the above analysis shows that
for λimp � �, two in-gap states will always be present. The
existence of the in-gap bound states can be further explicitly
demonstrated by numerically computing the LDOS of QSHI
in the presence of the magnetic dopant impurity. Figure 4
shows the results obtained for the KM with a Rashba SOC
of λr = 0.06t and n along the x axis. We have also checked
the existence of the in-gap bound state(s) for other choices of
λr and n (not shown here).

As the position of the magnetic impurity is shifted toward
the edge, the in-gap states hybridize with the topological
edge states, which results in antiresonances in edge channel
transmission. This phenomenon is still described by the gener-
alized Fano model introduced in Sec. III with different energy
values for the energy of the in-gap state(s) and the tunneling
Vc treated as an energy dependent function. Nevertheless,
provided the Fermi level of the 1D edge (εF ) is off resonance,
both in-gap states can be integrated out, resulting in a local BS
potential, which can be treated as a nonmagnetic impurity in
an interacting 1D channel [7,39]. For εF on resonance with

FIG. 4. Local density of states at the position of a magnetic dopant
impurity located in the bulk of a QSHI insulator described by the
Kane-Mele model [see Eqs. (2) and (36)] with a strength of the bulk
Rashba spin-orbit coupling (SOC) λr = 0.06t . The impurity magnetic
moment points along the x axis [see Eq. (1)]. Notice that the positions
of the sharp peaks indicating the existence of impurity-induced in-gap
states is not symmetrical with respect to the center of the band gap.
This is a consequence of the particle-hole symmetry breaking caused
by the Rashba (SOC).

one of the in-gap state(s), the other nonresonant state can
be integrated out, giving rise to the similar model to the one
studied at the end of Sec. IV B, H ′

eff [cf. Eq. (27), the possible
energy dependence of Vc being irrelevant in the RG sense].
A similar argument applies even when the impurity strength is
not weak or the particle-hole symmetry strong, so that only one
bound state exists. An exception to the phenomena described
in the effective model of Eq. (27) is found when there is a
symmetry that prevents the hybridization between the in-gap
bound states and the electronic states at the edge. Although
this is not generic, it is indeed the case for a dopant whose
magnetic moment n points along the spin-quantization axis
of the KM, Eq. (2). Thus, the total sz is conserved and the
Hilbert space of the problem splits into two subspaces labeled
by different sz without any matrix element connecting them.
Thus, conservation of total sz prevents the existence of BS [28].

Therefore, although we have based our calculations in a
simplified model of the QSHI and the impurity, the phenomena
described above does not depend on the specific microscopic
details of the model in the large λimp limit. The emergence
of transmission antiresonances and the interaction induced
renormalization of the antiresonance linewidth [48,49] stems
from the coupling between the edge states and the impurity-
induced in-gap states. This will generically be present as long
as the wave functions of the edge states and the states bound
by the magnetic impurity overlap. Similar arguments can be
applied to magnetic dopants described by more sophisticated
models of of Z2 topological insulators. However, if λimp is
decreased continuously, the bound states will merge into the
continuum of bulk states (together or one by one, depending
on the degree of particle-hole asymmetry) and finally the
resonances will disappear.

V. SUMMARY AND OUTLOOK

In summary, we have investigated the transport properties
of a QSHI in the presence of a strongly coupled magnetic
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impurity. By obtaining a nonpertubative solution of the scatter-
ing problem, we have derived a 1D effective low-energy Hamil-
tonian describing the system. In the strong coupling limit,
the impurity induces in-gap bound state, which, in proximity
to the edge state, broadens into transmission antiresonances.
When the chemical potential of the edge electrons is not
resonant with any of the in-gap states induced by the magnetic
impurity, the system can be effectively mapped to the problem
of a nonmagnetic impurity in a Tomonaga-Luttinger liquid
[36–38] with a renormalized BS strength at sufficiently low
energy/temperatures (the latter energy scale being set by the
separation between the Fermi level and the nearest resonant
state). For strong attractive interactions in the channel, this
suppression is absent and the 1D channel becomes increasingly
transparent at low T . On the other hand, when the Fermi energy
is on resonance, repulsive and weak to moderately attractive
interactions lead to temperature-dependent broadening of the
transmission antiresonance, which effectively suppresses the
conductance of the edge channel as the temperature T is
decreased.

For many of the current physical realizations of QSHIs
[2,14,16], the regime in which λimp � � is not at all unre-
alistic, as the size of the band gap is typically rather small
[2,3,14–16], and its size can be tuned close to the topological
transition. In addition, in 2D materials, localized moments can
appear, e.g., from dangling bonds at vacancies [44], rather than
from magnetic dopants alone. Based on the analysis provided
here, we believe that the presence of such localized magnetic
defects in proximity to the edge of the recently observed can
induce significant BS in the newly observed QSHI in the
1-T′ phase of WTe2. The mechanism described here provides
additional BS sources to account for the experimentally ob-
served [14,16] deviations from conductance quantization at
low temperatures. Indeed, if the chemical potential of the edge
electrons happens to be at (or near) resonance with in-gap states
induced by a magnetic dopant, tunneling in/out of the in-gap
states will suppress conductance through the edge channel
more effectively than ordinary BS [for comparable strength of
the bare BS yB,vB and tunneling yt dimensionless couplings,
cf. Eqs. (32) to (35)]. This is because tunneling in/out of the
(nearly resonant) in-gap state is a more relevant perturbation
than BS, as manifested by its smaller scaling dimension [i.e.,
typically �(K,UF ) < K , cf. Eq. (29)], for both repulsive and
moderately attractive interactions. A more detailed analysis
relevant to this system will be reported in a future publication.
Furthermore, in the future, we also plan to study extensions
to the model studied here beyond the dilute impurity regime
(i.e., the multi-impurity case). Another interesting direction is
to treat the spin degrees of the magnetic impurity quantum
mechanically. This is especially important to describe spin-
1
2 impurities below the Kondo temperature. Finally, another
interesting research direction, relevant to the study of Majorana
bound states, is to the study of the competition of the type
of magnetic disorder considered here and the proximity to a
nearby s-wave superconductor [52].
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APPENDIX A: SPECTRUM AND WAVE FUNCTIONS

Here we provide the analytical approach to solve for the
spectrum and the wave functions of both bulk and edge states
for a generalized KM model [7],

Ĥ0 = −t
∑
〈i,j〉

c
†
i cj − iλSO

∑
〈〈i,j〉〉

νij c
†
i s

zcj + λv

∑
i

ξic
†
i ci ,

(A1)
where a staggered potential with ξi = +1 for Ri ∈ B and
ξi = −1 for Ri ∈ A sublattice has been included for generality.
As mentioned in the main text, there is a gauge degree of
freedom for the Fourier transformation of ĉ

†
i (or ĉi) due to the

biparticle structure of the lattice. The gauge freedom allows us
to effectively shift the lattice yielding different geometries for
the edge.

Besides the zigzag edge of interest in the main text, it is
also interesting to consider the beard edge in parallel. They
correspond to two different gauge choices: (1) zigzag edge,
rg = −(a/2

√
3)ey , and (2) beard edge, rg = (a/

√
3)ey . In

our convention, σ z = (+,−) denotes the sublattice pseudospin
components corresponding to the (B,A) sublattices.

1. Spectrum of edge states

For the case with zigzag edge, after the Fourier transforma-
tion, we obtainHs

0(α,β̂) = ∑
i d

i
sσ

i , we have used the notation
where Pauli matrices σ i (i = x,y,z) is in the pseudospin
space corresponding to the sublattice (B,A) components of
the single-particle spin-wave function and

dx
s = −t(2 cos α + cos β̂), (A2)

dy
s = −t sin β̂, (A3)

dz
s = λv + sλSO(2 sin 2α − 4 sin α cos β̂), (A4)

with α = kxa/2, and β̂ = −i
√

3a
2 ∂y . We set a = 1 for sim-

plicity. In addition, we treat β̂ as an operator and β as its
eigenvalues.

Substituting �s(kx,y) = χse
κy to Eq. (7), we get the fol-

lowing secular equation:

Xf 2 + Yf + Z = 0, (A5)

where the variables

f ≡ cosh

√
3κ

2
, (A6)

X = −
(

4λSO sin
kx

2

)2

, (A7)

Y = 8sλSO sin
kx

2
(λv + 2sλSO sin kx) − 4t2 cos

kx

2
, (A8)

Z = ε2 − t2 − 4t2

(
cos

kx

2

)2

− (λv + 2sλSO sin kx)2. (A9)
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Hence, we obtain the following two roots:

f1,2 = (−Y ±
√

Y 2 − 4XZ)/2X, (A10)

Thus, there are four roots for κ , corresponding to ±κ1,2

with κ1,2 = 2√
3

cosh−1 f1,2. For the edge states, we have that
Re κ1,2 �= 0. Thus, we use the convention that Re κ1,2 > 0 for
the function κ1,2 = 2√

3
cosh−1 f1,2.

Note that only two linearly independent wave functions
satisfy the open BCs corresponding the zigzag edge, namely
�s(kx, ±L/2) = 0 for each value of ε. They are

g1
c (kx,y) − g2

c (kx,y), (A11)

g1
s (kx,y) − g2

s (kx,y), (A12)

where [45]

gi
c(kx,y) = cosh(κiy)

cosh(κiL/2)
, (A13)

gi
s(kx,y) = sinh(κiy)

sinh(κiL/2)
. (A14)

The eigenfunctions can be expressed as the linear combination
of the above wave functions. By introducing a 2 × 2 matrix
of coefficients L = [lij ], the eigenfunctions can be written as
follows:

�s(kx,y) = L
[
g1

c (kx,y) − g2
c (kx,y)

g1
s (kx,y) − g2

s (kx,y)

]
. (A15)

Substituting this function into Eq. (7), and using that gi
c,s

are linearly independent, we obtain the following conditions
relating the column vectors of the matrix L:

L2 = tanh(κ1L/2)M1L1, (A16)

L2 = tanh(κ2L/2)M2L1, (A17)

L1 = 1

tanh(κ1L/2)
M1L2, (A18)

L1 = 1

tanh(κ2L/2)
M2L2, (A19)

where

L1 = (l11,l21)T , (A20)

L2 = (l12,l22)T , (A21)

Mi = σy{(−2t cos α − t cos βi)σ
x + (λv + 2sλSO sin 2α

− 4sλSO sin α cos βi)σ
z − ε}/(t sin βi), (A22)

βi = −i

√
3

2
κi, (A23)

respectively. Note that, in the above derivation, we
have used the fact cos β̂gi

c,s(kx,y) = cos βig
i
c,s(kx,y),

sin β̂gi
c(kx,y) = sin βi tanh(κiL/2)gi

s(kx,y), and sin β̂

gi
s(kx,y) = sin βi

tanh(κiL/2)g
i
c(kx,y).

The combinations of equations in the same column in
Eq. (A16) give the secular Eq. (A5), which relates κi and

spectrum ε. The other two independent equations are obtained
by combining diagonal terms in Eq. (A16), which yields

L2 = T M1M2L2 = 1

T
M2M1L2, (A24)

where

T = tanh(κ1L/2)

tanh(κ2L/2)
. (A25)

Expressing κi as functions of ε, this equation is exactly the
constraint for spectrum ε. In the following, we will solve this
equation. Equation (A24) implies that

MtL2 = 0, (A26)

where Mt ≡ T M1M2 − 1
T
M2M1. To have a nontrivial solution

for L2, the condition det Mt = 0 is required, which gives(
T + 1

T

)2

= 4D2
0

/(
D2

0 − D2
x − D2

y − D2
z

)
, (A27)

where

Dx = t(cos β1 − cos β2)ε, (A28)

Dy = it(λv + 6sλSO sin 2α)(cos β1 − cos β2), (A29)

Dz = 4sλSO sin α(cos β1 − cos β2)ε, (A30)

and D0 = t2(2 cos α + cos β1)(2 cos α + cos β2) + (λv +
2sλSO sin 2α − 4sλSO sin α cos β1)(λv + 2sλSO sin 2α −
4sλSO sin α cos β2) − ε2. For L → ∞, T = 1 because
Re κ1,2 > 0. Thus, it becomes

D2
x + D2

y + D2
z = 0, (A31)

which gives the dispersion

ε±
s = ± t(λv + 6sλSO sin 2α)√

t2 + (4λSO sin α)2
. (A32)

Note that Eq. (A24) gives an additional constraint for the
spectra. From MtL2 = 0 and T = 1, we obtain

(Dxσx + Dyσy + Dzσz)L2 = 0. (A33)

Combining it with L2 = M1M2L2 (Eq. (A24)), we obtain the
following the constraint:

−D0 = t2 sin β1 sin β2. (A34)

The second constraint is Re κ1,2 > 0. These constraints restrict
a region kx ∈ [�−

s ,�+
s ], where edge states exist. We show the

resulted spectra in Fig. 5.

2. Wave functions for a semi-infinite system

To investigate the wave functions at one of the edges only,
it is helpful to shift the coordinate origin so that the QSHI
occupies the upper half plane (0 � y � L with L → ∞). For a
semi-infinite system, the wave function satisfying the boundary
condition �skx

(0) = �skx
(L → ∞) = 0 has a much simpler

form:

�skx
(y) = Cs(kx)χs(kx)(e−κs,1y − e−κs,2y). (A35)

Thus, what is left is to determine the 2 × 1 matrixχs(kx) and the
normalization factor Cs(kx). For each kx , we obtain the spectra
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FIG. 5. Band structure of a zigzag ribbon described by Eq. (A1). Left panel: λSO = 0.06t and λv = 0; central panel: λSO = 0.06t and
λv = 0.1t < 3

√
3λSO; right panel: λSO = 0.06t and λv = 0.4t > 3

√
3λSO.

εs and the wave number κs,i = 2√
3

cosh−1 fs,i with i = 1,2 in
the last section. Substituting Eq. (A35) into the Schrödinger
Eq. (7), we obtain

χs(kx) =
[−[

Hs
0

]
12

/{[
Hs

0

]
11 − εs

}
1

]
≡

[
χs,1

1

]
. (A36)

Explicitly,

χs,1 = 2t cos kx

2 + t exp(
√

3κs,1/2)

λv + 2sλSO[sin kx − 2 sin(kx/2) cosh(
√

3κs,1/2)] − εs

.

(A37)

Recall that the above wave functions only make sense when
evaluated on the discrete set of points of the honeycomb lattice:

ψskx
(n) = Cs(kx)χs(kx)(e−κs,1ny0 − e−κs,2ny0 ), (A38)

where y0 = √
3a/2. The normalization factor is

Cs(kx) = (1 + |χs,1|2)−1/2C0
s (kx), (A39)

where

C0
s (kx) = [ϒ(2 Re κs,1) + ϒ(2 Re κs,2)

−ϒ(κ∗
s,1 + κs,2) − ϒ(κs,1 + κ∗

s,2)]−1/2, (A40)

and ϒ(k) ≡ 1/[1 − exp(−ky0)]. Upon denoting �skx,σ (r)
as the σ components of �skx

(r), we find |�skx,+(r)|2 �
|�skx,−(r)|2 for the case λv = 0 and λSO � t , which suggests
the bottom edge states “prefer” B-sublattice.

3. Wave functions for bulk states

For the bulk states with periodic boundary conditions,
crystal momentum k = (kx,ky) is treated as a good quantum
number in both the x direction and y direction. Thus, upon

setting κ = iky in Eq. (A5) (with β =
√

3ky

2 ), we obtain the
(bulk) dispersion:

Esη(k) = Esη(kx,ky) = η
√

t2 + 4t2 cos α cos β + 4t2 cos2 α + [λv + 2sλSO(sin 2α − 2 sin α cos β)]2, (A41)

where s,η = ±1.
However, for open boundary conditions and in the limit

L → ∞, the spectrum of the bulk state is not modified from
the above form because the boundary effects become negligible
in the thermodynamic limit. On other hand, wave functions
are modified and become different from Bloch waves because
of the scattering with the boundary. Thus, from the secular

Eq. (A5), for each κ1 = iky(ky is real) and thus f1 ≡ cos
√

3ky

2 ,
we can find another root, f2 = − Y

X
− f1. In total, four dif-

ferent roots for κ exist, i.e., ±κ1,2 with κ1,2 = 2√
3

cosh−1 f1,2,
corresponding to a same energy ε. Note that f1 and thus f2

are real. Thus there are two different cases: (1) |f2| > 1, the
plane wave decays at the edge and (2) |f2| � 1, different modes
interference with each other:

Case 1: For |f2| > 1, we have κ2 = 2√
3

cosh−1 f2 with
Re κ2 > 0. Thus the full solutions of the secular Eq. (A5) for κ

are ±iky and ±κ2. The mode ∼eκ2y diverges for y → ∞, so it
will not emerge and there are only there modes left: e±κ1y and
e−κ2y . After using the boundary condition �sη,k(y = 0) = 0,

only two linear independent wave functions are left. The
general wave function has the following form:

�sη,k(y) = Csη(k)√
Ny

L
[

exp(ikyy) − exp(−κ2y)

exp(−ikyy) − exp(−κ2y)

]
, (A42)

where L =[lij ]2×2 is a 2 × 2 matrix, and Csη(k) is the nor-
malization constant. Obviously, such a kind of wave function
is a combination of the extended state and local state, which
decays at the edge.

Now we need to calculate out the matrix L. Substituting
Eq. (A42) into Schrödinger Eq. (7), and using the fact that
exp(±ikyy) and exp(−κ2y) are linear independent, we obtain
the following results:

L1 = c1

[
l1
1

]
, L2 = c2

[
l∗1
1

]
, (A43)

L1 + L2 =
[
l2
1

]
, (A44)
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where

L1 = (l11,l21)T , (A45)

L2 = (l12,l22)T , (A46)

li = −
[
Hs

0(α,βi)
]

12[
Hs

0(α,βi)
]

11 − Esη(k)
, (A47)

and c1, c2 are constants, β1 =
√

3
2 ky , β2 = i

√
3

2 κ2. Solving these

equations, we find c1 = l2−l∗1
l1−l∗1

and c2 = −l2+l1
l1−l∗1

.
The next step is to calculate the normalization coefficient

Csη(k). For large L limit, exp(−κ2y) does not influence
normalization. Using the orthogonality of exp(±ikyy), we
obtain

Csη(k) = 1√
|c1|2 + |c2|2

√
|l1|2 + 1

. (A48)

As a result, in real space, we have

�sη,k(n) = Csη(k)√
Ny

L
[

exp(ikyny0) − exp(−κ2ny0)
exp(−ikyny0) − exp(−κ2ny0)

]
.

(A49)
Case 2: For |f2| � 1, we have κ2 = 2√

3
cosh−1 f2 = ik′

y with
k′
y � 0. The full solutions of the secular Eq. (A5) for κ

are ±iky and ±ik′
y . The boundary conditions �sη,k(y =

0) = 0 require these four running waves inference with each
other, and thus there are only three linear independent wave
functions. Following the method used in the previous case,
we can construct the eigenfunctions by combining the three
wave functions. However, we shall proceed in a differ-
ent way here. Similar to the previous case, there is one
eigenfunction,

|1〉 = 1√
Ny

Csη(k)L
[

exp(ikyy) − exp(−ik′
yy)

exp(−ikyy) − exp(−ik′
yy)

]
, (A50)

where L is same as the one in Eq. (A42) except for
the replacement of κ2 with ik′

y and thus the normalization
becomes

Csη(k) = 1√
(|c1|2 + |c2|2)(|l1|2 + 1) + (|l2|2 + 1)

. (A51)

The second eigenstate |2〉 can be obtained by the replacements:
ky → k′

y (which implies that l2 → l∗1 ). We denote the corre-
sponding parameters as L′

1, L′
2, c′

1, c′
2, and Csη(k′). Note that

these two eigenstates are not orthogonal.
In the following, we construct an orthogonal and symmetric

basis by means of

|+〉 = |1〉 + ϑ |2〉, |−〉 = |2〉 + ϑ |1〉. (A52)

Using the orthogonality condition together with 〈1|1〉 =
〈2|2〉 = 1, we obtain

|ϑ |2 = 1, Re ϑ = −Re 〈1 |2〉, (A53)

where 〈1|2〉 = Csη(k)Csη(k′)[−c∗
2(|l1|2 + 1) − c′

2(|l2|2 + 1)].

We use the convention that Im ϑ =
√

1 − (Re ϑ)2 � 0,
and finally, we obtain the orthonormalized wave

functions:

�sηk(n) = 1√
2 + 2Red[ϑ〈1 |2〉] |+〉, (A54)

�sηk′ (n) = 1√
2 + 2Re[ϑ〈2 |1〉] |−〉. (A55)

APPENDIX B: GREEN’S FUNCTION FOR THE
KANE-MELE MODEL IN A SEMI-INFINITE SYSTEM

So far, we have obtained the eigenvalues and the complete
set of eigenfunctions for the model of Eq. (A1). Hence, the
Green’s function can be expressed in terms of them:

Ĝ0(ε) =
∑
k,sη

|k,s,η〉〈k,s,η|
ε + i0+ − Esη(k)

+
∑
kx ,s

|kx,s〉〈kx,s|
ε + i0+ − εs(kx)

,

(B1)
where |k,s,η〉 = �sηk. In the real space,

Gs
0,σσ ′(r,r′,ε) = 〈r,s,σ |Ĝ0(ε)|r′,s,σ ′〉, (B2)

where σ = ±1 represents the different components of σ z.
Thus, using 〈r,s,σ |k,s,η〉 = �sηk,σ (r) and 〈r,s,σ |kx,s〉 =
�skx,σ (r), where �sηk,σ (r) and �skx,σ (r) are the σ components
of �sηk(r) and �skx

(r) respectively, we have

Gs
0,σσ ′(r,r′,ε) =

∑
k,η

�sηk,σ (r)�∗
sηk,σ ′(r′)

ε + i0+ − Esη(k)

+
∑
kx

�skx,σ (r)�∗
skx ,σ ′(r′)

ε + i0+ − εs(kx)
. (B3)

APPENDIX C: SPECTRUM OF THE BEARD EDGE

For comparison purposes, we also study the edge spec-
trum for the beard edge. Using a gauge choice where rg =
(a/

√
3)ey , and following the same steps as for the zigzag case,

we obtain the spectrum for the edge state:

ε±
s = ± t[2sλSO sin α + cos α(λv + 2sλSO sin 2α)]√

(t cos α)2 + (2λSO sin α)2
. (C1)

In this case, the constraint becomes

−D0 = 4t2 cos2 α sin β1 sin β2, (C2)

where

D0 = t2w1w2 + u1u2 − ε2,

wi = 1 + 2 cos α cos βi,

ui = λv + 2sλSO sin 2α − 4sλSO sin α cos βi. (C3)

The resulting band structure is shown in Fig. 6. Note that the
edge states intersect at kx = 0 [46].

APPENDIX D: RENORMALIZATION GROUP ANALYSIS

Next, to deal with the effects of interactions in a nonper-
turbative way, we shall rely upon the bosonization technique.
The resulting model is analyzed along the lines of the analysis
reported in Ref. [48].

In bosonization, the electron field operator for the right- (R)
and left-moving (L) edge electron can be expressed in terms

235402-10
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FIG. 6. Band structure of a bearded-edge ribbon described by Eq. (A1). Left panel: λSO = 0.06t and λv = 0; central panel: λSO = 0.06t

and λv = 0.1t < 3
√

3λSO; right panel: λSO = 0.06t and λv = 0.4t > 3
√

3λSO.

of a set of bosonic fields θ (x) and φ(x) as follows:

ψR(L)(x) = UR(L)√
2πvξ

e−i[±φ(x)−θ(x)], (D1)

where ξ is a short-distance cutoff, v is the plasmon velocity
[cf. Eq. (31)], UR and UL are the so-called Klein factors
satisfying {Ur,Ur ′ } = 2δr,r ′ , which allows us to satisfy the
anticommutation relations between the two fermion chiralities
R and L. The bosonic fields obey

[φ(x),θ (x ′)] = i
π

2
sgn(x ′ − x). (D2)

The chiral densities are given by

ρR(L)(x) = − 1

2π
(∂xφ ∓ ∂xθ ). (D3)

After bosonizing the low-energy effective model and upon
applying a unitary transformation generated by

S = exp[iζ θ0,] (D4)

with ζ = δF (d†d − 1
2 ), δF = KUF

πv
, and using the factor

e−iζ θ(0)∂xφ(x)eiζθ(0) = ∂xφ(x) − iζ [θ (0),∂xφ(x)]=∂xφ(x)+
ζπδ(x), the forward scattering term ∝ UF can be eliminated

from H ′
eff [cf. Eq. (27)], and the resulting Hamitonian,

H ′′
eff = S†H ′

effS reads

H ′′
eff = H∗ + vB

ξ
[URULe2iφ0 + ULURe−2iφ0 ]

+ 2yB

ξ

(
d†d − 1

2

)
[URULe2iφ0 + ULURe−2iφ0 ]

+ yt

ξ
[d†(URe−i(φ0−λθ0) − ULei(φ0+λθ0))

+ (URei(φ0−λθ0) − ULe−i(φ0+λθ0))d], (D5)

where

H∗ = v

2π

∫
dx[K(∂xθ )2 + K−1(∂xφ)2] − ε0

(
d†d − 1

2

)
.

(D6)

Here ε0 denotes the distance of the bound state from the Fermi
energy of the edge channel, εF . In what follows, we focus on
the resonant case for which ε0 = 0. In addition, λ = 1 − δF ,
φ0 = φ(x = 0), θ0 = θ (x = 0), vB , yB , yt are dimensionless
couplings, and K is the Luttinger parameter, and v is the edge
plasmon velocity.

FIG. 7. The sketch of the RG flows for the couplings that parametrize the effective low-energy model.
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Using Cardy’s approach [53] and taking into account that

〈e2iφ0(τ )e−2iφ0(0)〉 ∼ |τ |−2K, (D7)

〈ei[φ0(τ )−λθ0(τ )]e−i[φ0(0)−λθ0(0)]〉 ∼ |τ |−α(K,λ), (D8)

α(K,λ) = K

2
+ λ2K−1

2
, (D9)

we arrive at the set of RG equations valid to second order in
the couplings describing BS and tunneling in and out of the
resonant level given in Eqs. (32)–(35). The RG equations are
similar to those derived in Ref. [48] for a model of a resonant
level that is side-coupled to an interacting 1D electron system.
As described in the main text, the equations show that for weak

to moderate attractive interactions (i.e., K � 1), the tunneling
operator ∝ yt is flows to strong coupling. On the other hand,
both the BS interaction (∝ yB) and potential (∝ vB) will be
initially suppressed. Eventually, the runaway flow of yt drags
along δF and yB , quickly driving the forward interaction with
the level to its fixed point δ∗

F = 1. As a result, the transmission
through the impurity will be suppressed, as discussed in the
main text.

Figure 7 shows a sketch of the typical RG flows for mod-
erately repulsive (i.e., K � 1) and moderately attractive (i.e.,
K � 1) interactions. In both regimes, all couplings [except for
the BS potential vB for K > 1, cf Eq. (35)] rapidly reach values
of order unity, which, in the perturbative approach, corresponds
to a runaway flow to strong coupling.
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