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photoluminescence and nuclear magnetic resonance spectroscopy
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Lattice matched GaAs/AlGaAs epitaxial structures with quantum dots are studied at T = 4.2 K under static
uniaxial stress applied either along the [001] or [110] crystal directions. We conduct simultaneous measurements
of the spectral shifts in the photoluminescence of the bulk GaAs substrate, which relate to strain via deformation
potentials a and b, and the quadrupolar shifts in the optically detected nuclear magnetic resonance spectra of
the quantum dots, which relate to the same strain via the gradient-elastic tensor Sijkl . Measurements in two
uniaxial stress configurations are used to derive the ratio b/a = 0.242 ± 0.008 in good agreement with previous
studies on GaAs. Based on the previously estimated value of a ≈ −8.8 eV we derive the product of the nuclear
quadrupolar moment Q and the S-tensor diagonal component in GaAs to be QS11 ≈ +0.758 × 10−6 V for 75As
and QS11 ≈ −0.377 × 10−6 V for 69Ga nuclei. In our experiments the signs of S11 are directly measurable,
which was not possible in the earlier nuclear acoustic resonance studies. Our QS11 values are a factor of ∼1.4
smaller than those derived from the nuclear acoustic resonance experiments [Phys. Rev. B 10, 4244 (1974)].
The gradient-elastic tensor values measured in this work can be applied in structural analysis of strained III-V
semiconductor nanostructures via accurate modeling of their magnetic resonance spectra.
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I. INTRODUCTION

Electronic and optical properties of semiconductors depend
strongly on the symmetry of the underlying crystal structure
[1,2]. Many technologically important semiconductors, such as
Si, Ge, GaAs, and InP have high crystal symmetry belonging to
the cubic crystal system. Elastic deformation (strain) induced
by external stress or internal morphology leads to reduction
of the crystal symmetry, resulting in significant modification
of the optical and electronic properties. Strain-induced effects
not only serve as a tool in studying the physics and structure
of semiconductors, but have already found several important
applications, including pressure sensors and transducers, as
well as MOSFET transistors and semiconductor lasers with
improved performance. Semiconductor technologies under de-
velopment also involve strain effects. One example is quantum
information technologies based on semiconductor quantum
dots, where strain is used both in self-assembly growth of
the quantum dot nanostructures and for tuning their properties
[3–8].

The changes in semiconductor electronic properties in-
duced by strain originate from the changes in orientations
and overlaps of the electronic orbitals. One manifestation of
these changes is in the shifts of the energies of the elec-
tronic bands, and in lifting of their degeneracies. In GaAs
the strain-induced modification of the electronic structure
are commonly described by four parameters—the deforma-
tion potentials ac and av describe the overall shift of the
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conduction and valence bands, respectively, while b and d

describe lifting of degeneracy and splitting in the valence band
(VB) under nonhydrostatic stress. Deformation potentials of
GaAs have been measured [9–14] using photoluminescence,
photoreflectance, and electroreflectance techniques. The most
consistent experimental and theoretical [15–19] results are
available for the combination a = ac + av , which describes
the change of the direct band gap in a hydrostatically deformed
crystal [20,21]. The largest uncertainty is associated with the
individual values of ac and av . The b and d have been measured
as well, although the values quoted in different reports vary by
as much as a factor of ∼2.

The same strain-induced changes of the electronic bonds
are responsible for nonzero electric field gradients (EFGs) at
the sites of the atomic nuclei (EFGs vanish in an unstrained
crystal with cubic symmetry). This effect can be observed
as quadrupolar splitting of the nuclear magnetic resonance
(NMR) spectra of the nuclei with spin I > 1/2. The rela-
tion between strain and EFG is described by a fourth rank
“gradient-elastic” tensor Sijkl , which can be parametrized by
two components S11 and S44 in case of cubic crystal symmetry.
By definition, Sijkl is a phenomenological material parameter
which relates microscopic phenomena (atomic scale EFGs)
to the macroscopic state of the solid body (elastic strain
tensor whose definition ignores the atomic structure of the
solid). The need for accurate Sijkl values have re-emerged
recently in view of using NMR for nondestructive structural
analysis of nanoscale semiconductor structures [22–28] as well
as exploring the effect of nuclear quadrupolar interaction on
coherent electron-nuclear spin dynamics in solid state qubits
[29–33].
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The initial measurements of Sijkl in various crystal mate-
rials used static straining, but their accuracy suffered since
quadrupolar spectral shifts were not resolved and could only
be observed as broadening of the NMR spectra [34]. In later
experiments more reliable measurements were achieved as
NMR spectra with resolved quadrupolar satellites could be
obtained under static strain [35,36], but in the particular case
of GaAs, no accurate estimates of Sijkl could be derived [37].
Sundfors et al. have derived Sijkl for a wide range of materials
[38–41] including GaAs and other III-V semiconductors. The
experiments in these studies relied on measuring absorbtion
of the acoustic waves by the nuclei rather than on direct
detection of the quadrupolar shifts in NMR spectra. In a
more recent study optically detected NMR was measured in a
GaAs/AlGaAs quantum well under static bending strain [42].
Quadrupolar shifts were resolved for 75As and were found to be
consistent with the results of acoustic resonance measurement
[38,39]. However, the induced deformation was comparable
to the built-in strain, the accuracy of strain measurement was
limited, and oblique magnetic field configuration meant that
individual Sijkl components were not derived explicitly.

Here we study GaAs/AlGaAs quantum dot (QD) structures
and perform simultaneous measurements of optically detected
NMR on individual QDs and photoluminescence of free
excitons in bulk GaAs substrate in a submicrometer vicinity of
the QD. Large elastic deformations exceeding built-in strains
by more than an order of magnitude are induced by stressing the
samples mechanically. Optically detected NMR reveals spectra
with well-resolved quadrupolar satellites, so that quadrupo-
lar shifts are measured with an accuracy of ±1%. Using
the commonly accepted value for deformation potential
a, the energy shifts in the free-exciton photoluminescence
of the GaAs substrate are used to measure the magnitude of
the same strain field that is probed via QD NMR. From these
dual measurements we are able to relate elastic strain to the
directly measured nuclear spin quadrupolar shifts and deduce
the S11 components of the gradient-elastic tensor of 75As and
69Ga in GaAs. Our accurate measurements reveal S11 that are
∼30% smaller than the only other direct measurement based
on nuclear acoustic resonance [39]. The S11 constants derived
in this work can be used directly in analyzing and predicting
the nuclear quadrupolar effects in GaAs-based semiconductor
nanostructures. Furthermore, since gradient-elastic tensors
describe modification of the electronic orbitals in the vicinity
of the nucleus, the accurate experimental S11 values can be used
as a reference in fitting the calculated parameters in electronic
band-structure modeling [43–45].

II. STRAIN EFFECTS IN GaAs: DEFINITIONS

The electronic band structure of a bulk crystal can be
described by the Luttinger model where the effects of strain
are taken into account by the Bir-Pikus Hamiltonian [1,2].
The optical recombination properties of GaAs are determined
mainly by the states with momentum k ≈ 0 corresponding to
the center of the Brillouin zone, which simplifies the analysis.
The bottom of the conduction band is twofold degenerate due to
the electron spin, and as such remains degenerate under strain.
The only effect of strain on the conduction band is an overall
energy shift acεh, which depends only on the hydrostatic part

of the strain tensor εh = εxx + εyy + εzz (here and throughout
the text we use coordinate frame aligned with the cubic crystal
axes x ‖ [100], y ‖ [010], z ‖ [001]). In case of GaAs ac < 0,
so that under compressive strain (εh < 0) the conduction band
energy increases.

Without strain, the cubic symmetry of GaAs results in a
fourfold degeneracy at the top of the valence band. At small
strains the energies of the valence band at k = 0 can be ade-
quately described without coupling to the split-off band, which
reduces the model to a 4 × 4 Hamiltonian with a straightfor-
ward analytical solution. Strain does not break time reversal
symmetry, and thus at most can split the valence band into
two states each with a twofold degeneracy. The valence band

energy shifts are−avεh ±
√

b2ε2
b + 3

4b2ε2
η + d2ε2

s , where εb =
εzz − (εxx + εyy)/2 is the “biaxial” component of the shear
strain, and we denote εη = εxx − εyy and ε2

s = ε2
xy + ε2

yz + ε2
xz.

It is commonly accepted that under compressive hydrostatic
strain (εh < 0) the valence band moves to lower energy, cor-
responding to av < 0 with the sign convention used here [20].
The energy of the photoluminescence photons (measurable
experimentally) is the difference of the conduction and valence
band energies and can be written as

EPL = Eg + aεh ±
√

b2ε2
b + 3

4b2ε2
η + d2ε2

s , (1)

where Eg is the direct band gap energy of unstrained GaAs.
Under uniaxial compressive stress along z (characterized
by εzz < 0 and εxx = εyy > 0) the transition with lower PL
energy corresponds to the valence band light holes (LH) with
momentum jz = ±1/2, while higher PL energy corresponds
to the heavy holes (HH) with momentum jz = ±3/2.

In any crystal in equilibrium the electric field at the atomic
nucleus site is zero. However, the gradients of the electric
field components are not necessarily zero and are described
by a symmetric second rank tensor Vij of the second spatial
derivatives of the electrostatic potential V . In a crystal with
cubic symmetry, Vij vanishes at the nuclear sites, but when
the crystal is strained electric field gradients arise and in linear
approximation are related to the strain tensor εkl via Vij =∑

k,l Sijklεkl . A nucleus with a nonzero electric quadrupolar
moment eQ interacts with the electric field gradients (we
follow the convention where elementary charge e > 0 is taken
out of the definition of Q). In a simplest case of high static
magnetic field the effect of the quadrupolar interaction is to
split the NMR transition into a multiplet of transitions between
the states whose spin projections onto the magnetic field axis
differ by ±1. In case of spin I = 3/2 nuclei and static magnetic
field directed along the z axis a triplet of equidistant NMR
frequencies is observed with splitting [34,42,46]:

νQ = eQ

2h
S11εb,

(2)

where h is the Planck constant and we used Voigt notation
for the component of the gradient elastic tensor S11 = Sxxxx =
Syyyy = Szzzz. (For a detailed derivation see the Appendix A.)
Unlike the free-exciton energies measured in PL spectroscopy
[Eq. (1)], the shifts measured in NMR spectra [Eq. (2)] are
not sensitive to the hydrostatic strain and depend only on
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FIG. 1. (a) Sample structure showing the sequence of GaAs
and Al0.5Ga0.5As epitaxial layers. (b) Schematic of the experiment
geometry showing orientation of a sample, direction of the static
magnetic field Bz, radio frequency field Brf, and the direction of
the photoluminescence excitation and collection. External stress is
applied either along the [001] direction or the [110] direction. (c)
AFM image of a sample grown under similar conditions as the
studied structure but without overgrowing the Al0.5Ga0.5As layer with
nanoholes. (d) Profiles along the lines in image (c), which are oriented
along the [001] and [11̄0] directions. (e) Typical photoluminescence
spectrum at Bz = 0 showing emission from the quantum well (QW),
a single quantum dot (QD), as well as emission from the GaAs
substrate which includes free-exciton emission and impurity-induced
recombination. The excitation power is high enough to observe PL of
both the ground and excited QD states. Square-root vertical scale is
used to reveal weak spectral features.

shear strains of a particular symmetry (described by εb).
This property is exploited in this work to cross calibrate the
magnitudes of S11 and deformation potentials.

III. SAMPLES AND EXPERIMENTAL TECHNIQUES

The structure studied in this work was grown using molec-
ular beam epitaxy. The schematic cross section is shown in
Fig. 1(a). The first step in the growth is the deposition of
a 350 nm thick buffer GaAs layer onto an undoped ∼0.35
mm thick (001)-oriented GaAs wafer. This is followed by the
growth of a 100 nm thick bottom barrier Al0.5Ga0.5As layer.
Aluminum droplets are then grown and used to etch nanoholes
in the bottom barrier [47,48]. A layer of GaAs with a nominal
thickness of 3.5 nm is then deposited, resulting in formation of
quantum dots (QDs) due to filling up of the nanoholes, as well

as formation of a quantum well (QW) layer. A 100 nm thick
top Al0.5Ga0.5As barrier layer is then grown, followed by a
7 nm thick GaAs cap layer. A typical atomic force microscopy
(AFM) image of a bottom Al0.5Ga0.5As layer is shown in
Fig. 1(c) for a structure grown under similar conditions but
without overgrowing the nanoholes. Line scan profiles along
the two orthogonal directions are shown in Fig. 1(d) and show
that a typical nanohole is ∼40 nm in diameter and ∼5 nm deep.

The structure was cleaved into small rectangular paral-
lelepiped pieces with dimensions of ∼0.9 × 1.5 × 0.35 mm
along the [110], [11̄0], and [001] directions, respectively.
Three samples were prepared. The first sample is as grown
(unstressed). The second sample is glued between two flat
titanium surfaces and stressed compressively along the [110]
direction using a titanium screw and nut that press the two
titanium surfaces towards each other. The third sample is glued
between a titanium flat surface at the bottom and a flat surface
of a sapphire window at the top, to be stressed compressively
along the [001] growth direction. All of the samples are
studied in a configuration shown in Fig. 1(b). A magnetic
field up to 10 T is aligned along the z axis ([001]) within
±2◦, which is also the direction of the laser excitation and
photoluminescence (PL) collection. For the sample stressed
along the [001] direction, optical excitation and PL propagate
through the sapphire window.

All experiments are conducted in a helium bath cryostat at
a sample temperature ∼4.2 K. A small copper coil is mounted
close to the sample and is used to generate a radio frequency
(rf) magnetic field Brf along the [11̄0] direction in the NMR
experiments. Quantum dot NMR spectra are measured using
optical hyperpolarization of the nuclear spins (via circularly
polarized laser excitation) and optical detection of the electron
hyperfine shifts. The rf field is applied in the absence of optical
excitation to ensure the dot is free from electrons and holes
that can alter NMR spectra via Knight shifts [49]. The signals
of the quadrupolar nuclei are enhanced using “inverse” NMR
technique [22]. A detailed description and analysis of the
relevant NMR methods has been reported previously [22], and
is not repeated here: in this work we use these techniques as a
tool that gives an accurate spectral distribution of the resonant
frequencies of the nuclei within the volume of an individual
quantum dot. The excitation laser is focused into a spot of ∼1
μm in diameter, so that carriers are generated simultaneously
in the QW, the GaAs buffer layer, and the QDs within the area
of the laser spot. The photoluminescence signal is collected
and analyzed with a grating spectrometer and a charge coupled
device (CCD) camera.

A typical broadband PL spectrum measured under HeNe
laser excitation (632.8 nm) is shown in Fig. 1(e). Spectral
features observed include emission from the QW (∼1.85 eV),
free-exciton emission of the bulk GaAs buffer and substrate
layers (∼1.515 eV), impurity-induced PL of bulk GaAs
(∼1.48–1.51 eV) including bound excitons, as well as recom-
bination involving donor and acceptor states [50–55]. Quantum
dot emission is observed at ∼1.60–1.63 eV and consists of
several narrow spectral lines corresponding to different exciton
states of a single QD. Since photoluminescence is excited
only in a small area of the sample, the spectrum of GaAs free
excitons can be used to probe local strain fields in a ∼1 μm
sized spot. Moreover, NMR is detected from the spectral shifts
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FIG. 2. Effect of strain on bulk GaAs photoluminescence (PL) and quantum dot NMR spectra. (a) Free-exciton PL from a GaAs substrate
measured at B = 0 T under excitation with a photon energy ∼1.54 eV and intensity ∼5 × 106 W/m2 in an unstressed sample (top), sample
stressed along [001] (middle), and sample stressed along [110] (bottom). In an unstressed sample emission has negligible splitting between
peaks detected in two orthogonal linear polarizations (π1, π2). Stress along [001] splits the luminescence spectrum into two nonpolarized peaks
corresponding to emission of light (LH) and heavy (HH) hole excitons. Stress along [110] splits luminescence spectrum into a stronger peak with
partial linear polarization corresponding to emission from a predominantly LH exciton, and a weak linearly polarized peak from a predominantly
HH exciton (parts of the spectra with ×10 vertical magnification are shown to reveal the HH peak). (b) Nuclear magnetic resonance spectra of
75As nuclei measured with σ+ polarized optical excitation at Bz = 8 T (ν0 ≈ 58.46 MHz) on GaAs/AlGaAs quantum dots in an unstressed (top),
[001] stressed (middle), and [110] stressed (bottom) samples. Each NMR spectrum in (b) is measured from the same spot as the corresponding
GaAs PL spectrum in (a). Spectra are offset vertically for clarity. Well-resolved NMR triplets arising from quadrupolar effects are observed. In
an unstressed sample small quadrupolar shift νQ is observed due to the residual strain of the GaAs/AlGaAs heterostructure. Under [001] ([110])
stress, the resulting strain shifts the −3/2 ↔ −1/2 satellite transition to lower (higher) frequency corresponding to negative (positive) νQ. (c)
Energies of HH (solid symbols) and LH (open symbols) bulk GaAs PL peaks plotted against quadrupolar shift νQ measured in multiple quantum
dots in an unstressed (circles), [001]-stressed (triangles), and [110]-stressed (squares) samples. GaAs PL energies and NMR frequencies are
derived from the spectra using Lorentzian and Gaussian peak fitting, respectively. Variation of νQ and PL energies in each sample is due to
the inhomogeneity of strain across the sample surface—the exception is the four points at νQ ≈ +200 kHz that were measured at an increased
stress along [110].

in the QD emission and thus probes an even smaller nanometer-
sized part of the optically excited area. In this way it is ensured
that GaAs PL spectroscopy and QD NMR probe the same strain
field. We also note that while QD exciton energies are sensitive
to strain, the achievable stress-induced shifts are comparable to
the heavy-light hole splitting induced by breaking of symmetry
at heterointerfaces (typically ∼10 meV in GaAs/AlGaAs QWs
[56]), resulting in complex dependence of exciton energies on
strain. For that reason calibration of strain in this work is based
on free-exciton emission of GaAs which has a straightforward
relation to strain [Eq. (1)].

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Effect of strain on GaAs photoluminescence and
nuclear magnetic resonance spectra

Figure 2(a) shows GaAs free-exciton PL spectra measured
in three different samples at Bz = 0, while Fig. 2(b) shows
75As NMR spectra measured at Bz = 8 T from the QDs in the
same optically excited spots as in Fig. 2(a). Since the size of

the optically excited spot is much smaller than the size of the
sample, and the stiffness tensors of GaAs and AlAs are very
similar [20], all significant variations of strain induced by
external stress occur on length scales that are much larger than
the studied spot size. As a result, the two types of spectroscopy
probe the effect of the same stress field.

Bulk GaAs PL is measured with laser excitation intensity
∼5 × 106 W/m2. On the one hand, it is high enough to saturate
the impurity-induced PL and make free-exciton emission
dominant, while on the other hand, it is low enough to avoid
excessive spectral broadening. In an unstressed sample PL
is detected with a variable orientation of linear polarization:
the top two spectra in Fig. 2(a) are measured along the
orthogonal polarization axes π1, π2 and reveal very small
polarization degree and a negligible splitting. This is expected
for unstrained GaAs PL, since the valence band state at k = 0
is fourfold degenerate. The corresponding NMR spectrum
[Fig. 2(b), top] reveals a triplet of lines with a small quadrupolar
splitting |νQ| ≈ 22.5 kHz, most likely related to the strain
arising from the residual lattice mismatch of the GaAs and
Al0.5Ga0.5As layers. Each line of the triplet corresponds to an
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individual dipolar nuclear spin transition Iz ↔ Iz+1 as labeled
in Fig. 2(b).

For the sample stressed along [001], GaAs free-exciton
PL is split into two nonpolarized lines [Fig. 2(a), middle].
This is expected, since deformation along [001] lifts the
degeneracy and splits the state at the top of the valence band
into a twofold degenerate state with momentum projection
jz = ±1/2 corresponding to the light holes (LH), and a twofold
degenerate state with jz = ±3/2 corresponding to the heavy
holes (HH). The effect of strain is also manifested in NMR
through a significantly larger triplet splitting |νQ| ≈ 219.8 kHz
[Fig. 2(b), middle].

The stress along [110] also splits the fourfold degenerate
top of the valence band into two doublets. These are nearly
pure heavy and light hole states with momentum quantization
axis along [110], and their recombination results in a linearly
polarized PL [Fig. 2(a), bottom]. The peak at ∼1.518 eV
is partially linearly polarized and corresponds to the state
with predominantly light hole character (LH). By contrast,
the peak at ∼1.525 eV is strongly polarized and corresponds
to a predominantly heavy hole state (HH). The intensity of
the HH peak is reduced mostly due to the relaxation into
the LH state. The NMR triplet splitting [Fig. 2(b), bottom]
is also significantly larger than in an unstressed sample with
|νQ| ≈ 141.7 kHz.

The measurements of GaAs free-exciton PL and 75As NMR
were repeated on multiple spots in all three samples and spectra
similar to those shown in Figs. 2(a) and 2(b) were observed.
For each spot PL energies and NMR frequencies were derived
by fitting the spectral peaks. The resulting summary in Fig. 2(c)
shows PL energies of HH (solid symbols) and LH (open
symbols) excitons as a function of the quadrupolar splitting νQ

in an unstressed (circles), [001]-stressed (triangles), and [110]-
stressed (squares) samples. It can be seen that in the unstressed
sample νQ varies in a small range between 15 and 30 kHz
with root-mean-square (rms) deviation of 〈�ν2

Q〉1/2 ≈ 4.7 kHz
due to the differences in the residual strains in the individual
quantum dots. At the same time GaAs PL peak energies vary in
a small range between 1.5145 and 1.5155 eV most likely due
to the local residual strains arising from crystal imperfections.
The spectral shifts in the stressed samples are significantly
larger than the random variations in the unstressed sample.
There is a clear trend in Fig. 2(c) that larger quadrupolar shifts
are correlated with larger GaAs PL energy shifts. On the other
hand, the stress-induced spectral shifts (both in PL and NMR)
vary across the surface area of the sample, since nonuniform
contact between the sample and the titanium stress mount leads
to spatial nonuniformity of the stress and strain fields. However,
these nonuniformities have characteristic lengths much larger
than the laser excitation spot, so that the strain detected in
optical PL and NMR spectra can be treated as homogeneous
for each individual spot.

For the purpose of quantitative analysis it is convenient to
replot the data of Fig. 2(c) in a different form. This is shown in
Fig. 3 where the average energy of LH and HH (solid symbols,
left scales) as well as the splitting of the LH and HH (open
symbols, right scales) are plotted as a function of νQ for the
[001]-stressed (a) and [110]-stressed (b) samples.

In case of the [001]-stressed sample [Fig. 3(a)], the average
energy of LH and HH shows significant random variations.
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FIG. 3. Data of Fig. 2(c) plotted in terms of the arithmetic average
PL energy of the LH and HH excitons (solid symbols, left scales) and
the difference of the LH and HH exciton PL energies (open symbols,
right scales) as a function of 75As quadrupolar shift νQ. (a) Results for
the unstressed (circles) and [001]-stressed (triangles) samples. LH-
HH splitting is well described by a linear function with a slope k−

[001] =
46.5 ± 0.8 μeV/kHz (dashed line). (b) Results for the unstressed
(circles) and [110]-stressed (squares) samples. The average LH-HH
PL energy is well described by a linear function with a slope k+

[110] =
54.8 ± 1.5 μeV/kHz (solid line).

By contrast, the LH-HH splitting is very well described by a
linear dependence on νQ: the best fit is shown by a dashed
line in Fig. 3(a) and the rms fit residual 〈�ν2

Q〉1/2 ≈ 4.9 kHz is
essentially the same as the dot-to-dot variation in an unstressed
sample. The fitted slope is k−

[001] = 46.5 ± 0.8 μeV/kHz (95%
confidence interval), which can be rewritten in dimensionless
units as k−

[001]/h = (1.12 ± 0.02) × 107. The intercept point
is at νQ ≈ 24.6 kHz which characterizes the average constant
offset in the magnitudes of strain inside the QD and in the
underlying GaAs buffer layer due to the lattice mismatch at the
GaAs/AlGaAs interfaces of the dot. The situation is reversed
for the sample stressed along [110] as shown in Fig. 3(b).
While the LH-HH splitting shows variations, the dependence
of the average LH and HH recombination energies is well
described by a linear function (solid line) with a fitted slope
k+

[110] = 54.8 ± 1.5 μeV/kHz (rms deviation from the fit is
〈�ν2

Q〉1/2 ≈ 4.2 kHz), or in dimensionless units k+
[110]/h =
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(1.32 ± 0.04) × 107. As we show below, such a difference
between the cases of [001]-stressed and [110]-stressed samples
is not a coincidence. With some basic assumptions about
the spatial distribution of strain in the stressed samples the
measured k−

[001] and k+
[110] values are used to derive the gradient

elastic tensor component S11 as show in Sec. IV D. Prior to
this derivation, in the next subsections we present analysis
of the properties of the gradient-elastic tensor that require no
assumptions about strain configuration.

It is worth noting that rigorous analysis of bulk GaAs PL
spectra requires taking into account effects such as electron-
hole exchange interaction and polaritons [55]. However, these
effects are of the order of ∼0.25 meV, which is significantly
smaller than the strain induced spectral shifts observed here.
More importantly, it has been shown that the strain-induced
spectral shifts of all the PL components are well described by
the free electron and hole deformation potentials [55]. Since
our subsequent analysis relies only on the ratios of the strain-
induced PL and NMR spectral shifts (rather than absolute GaAs
PL energies), it is sufficient to use a simplified “free-exciton”
description of the GaAs PL ignoring polariton effects.

B. Measurement of the sign of the S-tensor components

We now show how the sign of the gradient-elastic tensor can
be determined directly, as long as it is possible to identify the
spin projections of the nuclear spin states corresponding to each
NMR transition. The nuclear spin states can be identified from
the hyperfine interaction effects, if the sign of the electron spin
polarization is known. In order to define the sign of the electron
spin polarization we start by considering the signs of the carrier
g factors. The electron g factor in the studied QDs [57], as
well as in thin GaAs/AlGaAs quantum wells [58], is small
and the shifts of the excitonic levels induced by magnetic field
along the growth axis are dominated by the hole Zeeman effect.
The sign of the hole g factor [57,58] is such that at positive
magnetic field Bz > 0 the exciton with a positive (negative)
hole momentum projection jz = +3/2 (−3/2) labeled ⇑ (⇓)
has higher (lower) energy. In order to be optically active the
high- (low-) energy exciton must have electron spin projection
sz = −1/2 (+1/2) denoted ↓ (↑). Figure 4(a) shows PL spectra
of a neutral exciton in a typical QD at Bz = 8 T measured under
σ+ and σ− optical excitation at ∼1.65 eV. Each PL spectrum
is a doublet of optically allowed (“bright”) excitons. Based on
the sign of the hole g factor the high- (low-) energy Zeeman
component is attributed to recombination of a ⇑↓ (⇓↑) exciton.

Two effects are observed under circularly polarized ex-
citation in Fig. 4(a): (i) the emission intensity of the high-
(low-)energy Zeeman component is enhanced under σ+ (σ−)
excitation, and (ii) the spectral splitting increases (decreases)
under σ+ (σ−) excitation due to the buildup of nuclear spin
polarization. These two effects are related: to understand their
origin we first consider the case of σ+ excitation [Fig. 4(b)],
which generates predominantly ⇑↓ excitons. During repeated
optical excitation the sz = −1/2 electrons transfer their po-
larization to the nuclei of the dot via the flip-flop process
[59] enabled by the hyperfine interaction whose Hamiltonian
is Ĥhf = A(ŝ · Î). Since the flip-flops are spin conserving,
the nuclei become predominantly polarized into the states
with negative spin Iz < 0. The net nuclear spin polarization

FIG. 4. Derivation of the sign of the gradient elastic tensor.
(a) Photoluminescence spectra of a QD neutral exciton measured
at Bz = 8 T under σ+ (solid line) and σ− (dashed line) polarized
excitation at ∼1.65 eV. The σ+ excitation predominantly populates
the exciton state with hole momentum jz = +3/2 (⇑) and electron
spin sz = −1/2 (↓), while σ− excitation predominantly populates the
⇓↑ exciton. Electron spin s can be transferred to a nuclear spin I via
hyperfine interaction (inset) resulting in dynamic nuclear polarization,
which in turn leads to hyperfine shifts of the exciton transitions.
(b) Schematic of spin effects under σ+ excitation which increases
population of the sz = −1/2 excitons (thicker horizontal line) and
reduces population of the sz = +1/2 exciton (thinner line). Dynamic
nuclear polarization enhances the populations of the Iz = −3/2 and
Iz = −1/2 nuclear spin states. This is observed as a hyperfine shift of
the sz = −1/2 excitons to higher energy and enhanced amplitude of
the −3/2 ↔ −1/2 NMR transition with frequency γBz

2π
+ eQ

2h
S11εb.

(c) Excitation with σ− light leads to the opposite sign of electron
and nuclear spin polarizations, enhancing the +1/2 ↔ +3/2 NMR
transition at frequency γBz

2π
− eQ

2h
S11εb. By matching the signs of the

exciton spectral shifts in (a) and the sign of the NMR spectral shifts
[cf. Fig. 2(b)] it is possible to deduce the sign of the gradient elastic
tensor component S11 (see Sec. IV B).

back-acts on the electron spin via Overhasuer field originating
from the same hyperfine interaction [60,61]. The electron
hyperfine constant A is positive for Ga and As nuclei due
to their positive gyromagnetic ratios γ > 0, whereas hole
hyperfine interaction is an order of magnitude smaller and
can be neglected here [62]. As a result the ⇑↓ exciton shifts
to higher energy under σ+ excitation. In a similar manner,
under σ− excitation [Fig. 4(c)] the population of the ⇓↑
exciton is enhanced, and it also shifts to higher energy since
now both sz and Iz are positive. This is indeed observed
experimentally as shown in Fig. 4(a): the Zeeman component
whose intensity is enhanced by circularly polarized excitation
always shifts to higher energy. This observation confirms the
positive sign of A and that the spin flip-flops are the source of
dynamic nuclear spin polarization. Taking also into account
the signs of the electron and hole g factors, we conclude
that circularly polarized excitation that enhances the high-
(low-)energy exciton population and labeled here σ+(σ−),
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populates predominantly the nuclear spin states with negative
(positive) projection Iz.

For the NMR spectra measured with σ+ optical excitation
the population of the Iz = −3/2 and Iz = −1/2 states is
enhanced as discussed above. As a result the amplitude of
the −3/2 ↔ −1/2 satellite NMR peak exceeds the amplitude
of the +1/2 ↔ +3/2 satellite [63]. The spectra of Fig. 2(b)
were measured under σ+ optical excitation (i.e., excitation
that enhances the intensity of the high energy Zeeman exciton
component). For the case of compressive stress along [001]
the −3/2 ↔ −1/2 NMR peak has a lower frequency than the
−1/2 ↔ +1/2 central peak [middle spectrum in Fig. 2(b)],
corresponding to νQ < 0. The quadrupolar shift νQ is related
to strain via Eqs. (A9) and (A10) and we find that νQ =
eQ

2h
S11εb < 0 in this experiment. In case of [001] compression

εb < 0, and since the quadrupolar moment of 75As is positive
[64] Q > 0, we finally concluded that S11 > 0 for 75As.

While in the above calculations we assumed Bz > 0, the
opposite assumption Bz < 0 leads to the same conclusions
about the signs of the gradient elastic tensor components S11.
Finally, we note that in previous work on InGaAs/GaAs [22]
and GaAs/AlGaAs [57] QDs, the shift of the −3/2 ↔ −1/2
satellite peak to lower frequency was arbitrarily assigned
a positive νQ value since the sign of S11 was undefined.
By contrast, in the present work the sign of νQ is strictly
determined by Eqs. (2), (A9), and (A10) and the signs of S11

and Q.

C. Measurement of the ratio of the electric field gradients
on As and Ga lattice sites

Measurement of NMR via optical detection of the hyperfine
shifts in the PL spectra of a quantum dot guarantees that
only the nuclei of a single quantum dot contribute to the
NMR spectrum. Thus if NMR spectrum is measured on As
and Ga nuclei of the same quantum dot, one can ensure that
the nuclei of the two isotopes belong to the same nanoscale
volume and probe the same strain field. The equivalence of
strain for cations and anions follows from the requirement of
the integrity of the sample and its crystal structure. Mathe-
matically this means that the displacement fields u(x,y,z) of
the cation and anion sublattices cannot differ by more than
a small fraction of the crystal lattice constant. And since
u(x,y,z) is a smooth function, the strain tensor composed
of its derivatives [Eq. (A1)] is constrained to have similar
values for the two sublattices. According to Eq. (2), the
ratio of the quadrupolar shifts of the two isotopes is simply
ν

69Ga
Q /ν

75As
Q = (Q

69GaS
69Ga
11 )/(Q

75AsS
75As
11 ) and does not depend

on the actual strain magnitude εb. Figure 5(a) shows NMR
spectra of 69Ga (top) and 75As (bottom) measured on the same
quantum dot at Bz = 5.5 T using σ+ optical excitation. Both
isotopes have spin I = 3/2 giving rise to the well-resolved
NMR triplets with different quadrupolar splittings νQ. We note
that the satellite peak with higher amplitude, corresponding
to the −3/2 ↔ −1/2 transition, appears on the low (high)
frequency side for Ga (As) implying opposite signs of νQ

and hence opposite signs of QS11 for the two isotopes. Since
S11 > 0 for 75As and Q > 0 for both 69Ga and 75As we
conclude that S11 < 0 for 69Ga. Since EFGs are very similar
and Q > 0 for both Ga isotopes we deduce that S11 < 0 for

FIG. 5. (a) NMR spectra of a single quantum dot measured at
high magnetic field Bz ≈ 5.5 T on 75As nuclei (ν0 ≈ 40.27 MHz,
dashed line) and 69Ga nuclei (ν0 ≈ 56.46 MHz, solid line). Both
isotopes are spin-3/2 and exhibit well resolved quadrupolar triplets
with different splittings νQ. Spectra are offset vertically for clarity.
(b) Dependence of the 69Ga quadrupolar splitting ν

69Ga
Q on the 75As

splitting ν
75As
Q measured on different individual quantum dots in an

unstressed sample as well as in samples stressed along [001] or [110]
crystal axes (symbols). Linear fitting is shown by the solid line and
its slope k69Ga/75As = −0.497 ± 0.009 gives an estimate of the ratio

(Q
69GaS

69Ga
11 )/(Q

75AsS
75As
11 ) between the products of the quadrupolar

moments Q and gradient elastic tensor components S11 of 69Ga and
75As in GaAs.

71Ga as well. Similar measurements of 69Ga and 75As NMR
were conducted on a subset of quantum dots used for Figs. 2 and
3 in an unstressed and stressed samples and are summarized
in Fig. 5(b), where ν

69Ga
Q is shown as a function of ν

75As
Q by

the symbols. The linear fit is shown by the line and yields
the slope k69Ga/75As = (Q

69GaS
69Ga
11 )/(Q

75AsS
75As
11 ) = −0.497 ±

0.009 (95% confidence level). The rms fitting residual in
terms of ν

69Ga
Q is only ≈1.9 kHz confirming the validity of

the linear model and hence confirming that Ga and As nuclei
inside a dot are subject to the same strain. Taking the values
of quadrupolar moments [64] Q

69Ga = 0.171 × 10−28 m2 and
Q

75As = 0.314 × 10−28 m2 we calculate for the ratio of the
components of the gradient elastic tensors: S

69Ga
11 /S

75As
11 =

−0.912, so that the magnitude of the strain-induced EFG is
found to be smaller at the gallium sites.

D. Derivation of the gradient-elastic tensor
component S11 in GaAs

We now discuss how simultaneous measurements of GaAs
free-exciton PL and QD NMR presented in Sec. IV A can
be used to calibrate the fundamental material parameters of
GaAs. First we consider the case of a sample stressed along the
[001] direction. If the stress is produced by applying a uniform
z-oriented pressure to the top and bottom (001) surfaces of
the sample, the resulting strain has a very simple configuration
where εh and εb are finite, while εη and εs vanish for symmetry
reasons (εxx = εyy and εxy = εyz = εzx = 0). In this case,
according to Eq. (1) the splitting between the LH and HH
PL transition energies is simply 2|bεb|. Since both the LH-HH
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exciton splitting and the NMR shift [Eq. (2)] now depend only
on εb, their ratio can be taken to eliminate εb and we find

e

h
k−

[001] = − 4b

QS11
, (3)

where the minus sign is added to account for the fact that the
PL of the LH exciton has a lower energy at εb < 0. The k−

[001]

has been measured experimentally for 75As [see Fig. 3(a) and
Sec. IV A].

In a real sample, the pressure on the surfaces of the sample
is not necessarily uniform and aligned to the z axis. In this case
Eq. (3) holds only at the geometrical center of the top (001)
surface (for symmetry reasons), while away from the center the
nondiagonal strain components may arise leading, e.g., to εs �=
0. According to Eqs. (1) and (2) the effect of finite εs or εη would
be to induce an additional splitting of the HH and LH free
excitons in the GaAs substrate without affecting the QD NMR
spectral splitting νQ, in which case the dependence of the LH-
HH splitting on νQ would no longer be linear when measured
over the surface of the sample. In experiment, multiple spots
of the [001]-stressed sample, both at the center of the sample
surface and close to the edges were investigated. The strain can
be seen to vary significantly across the sample surface: νQ is
found to range from −400 to −180 kHz [Fig. 3(a)] indicating
variation of εb, while the spread in the average GaAs PL ener-
gies [full triangles in Fig. 3(a)] indicates variation of εh. On the
other hand, the resulting dependence of the LH-HH splitting on
νQ is still well described by a linear function [open triangles and
dashed line in Fig. 3(a)]. This can only be if εs and εη are small
indicating that the stress configuration in the studied sample
can be considered as uniaxial along [001], with only the stress
magnitude exhibiting lateral variations. Consequently, the
experimentally measured ratio k−

[001] = 46.5 ± 0.8 μeV/kHz
describes the relation of the fundamental parameters b and S11

of GaAs according to Eq. (3).
We now consider the case of a sample stressed along the

[110] direction. If the stress is produced by applying a uniform
pressure along [110] to the (110) surfaces of the sample the
resulting strain will have nonzero εh, εb, as well as εs arising
from the εxy component. (Recall that x and y axes are aligned
along [100] and [010], respectively, so that εxy ≈ εxx = εyy

under uniform stress along [110].) Even in an ideal case the
GaAs PL energies [Eq. (1)] under [110] stress involve the d2ε2

s

term, making it difficult to relate to the NMR shifts given by
Eq. (2). In a real sample, the nondiagonal shear strain εxy is not
necessarily constant across the surface of the sample and εη is
not necessarily zero due to the inevitable nonuniformities of the
stress induced by the titanium strain mount. This is evidenced
in Fig. 3(b) where the LH-HH splitting (open squares) is seen
to deviate considerably from a linear dependence on νQ, which
is proportional only to εb.

However, it is possible to eliminate the effect of the
unknown shear strain components εs , εη in a [110]-stress
configuration. For that we notice that the top (001) surface of
the sample which is studied optically is free from external stress
(traction free). As a result, the boundary conditions dictate [65]
that three of the components of the mechanical stress tensor
vanish σzx = σzy = σzz = 0, and the only nonzero components
are σxx , σyy , σxy . Writing down the strain-stress relation one
can easily verify that in a GaAs crystal (cubic symmetry), the

ratio of the biaxial and hydrostatic strains at the free (001)
surface does not depend on the actual σxx , σyy , σxy values and
equals εb/εh = σxx+σyy

2c12+c11
/

σxx+σyy

2c12−2c11
= 2c12+c11

2c12−2c11
≈ −1.742, where

c11 and c12 are the stiffness constants of GaAs [21]. Now we
use this relation to express εb through εh in Eq. (2) to make
quadrupolar shift νQ depend only on εh. Since the average LH-
HH shift of the GaAs PL energy aεh also depends only on εh

[Eq. (1)] it can be related to νQ by eliminating the strain to find

e

h
k+

[110] = 4a

QS11

c12 − c11

2c12 + c11
. (4)

The solid symbols and the line in Fig. 3(b) demonstrate that the
average GaAs PL energy is indeed a linear function of νQ, con-
firming the invariance of εb/εh at the surface of the studied sam-
ple. Thus Eq. (4) relates the a and S11 parameters through the
experimentally measured value k+

[110] = 54.8 ± 1.5 μeV/kHz.
Since the absolute values of stress and strain are not

measured in our experiment, the results presented above can
be used to estimate the ratios of the GaAs parameters. The
absolute value of a parameter can then be estimated by taking
the values of other parameters from previous studies.

The elementary charge e and the Planck constant h are
known with very high accuracy. The stiffness constants of
GaAs c11 and c12 are also known with a good accuracy. While
c11 and c12 in GaAs exhibit some temperature dependence,
the ratio c11/c12 used in our analysis is reported to be nearly
invariant from cryogenic to room temperature [66]. Here we
use the c11, c12 values at 300 K from Ref. [21]. This leaves
three GaAs parameters: the deformation potentials a = (ac +
av), b, and the QS11 product of 75As. Since there are two
experimentally measured ratios [Eqs. (3) and (4)], these three
parameters can be linked by two independent relations.

One of the relations can be obtained by dividing Eqs. (3) and
(4) to eliminate QS11 which gives the ratio of the deformation
potentials:

b

a
= k−

[100]

k+
[110]

c12 − c11

2c12 + c11

= (0.844 ± 0.027)
c12 − c11

2c12 + c11
= 0.242 ± 0.008, (5)

where the error estimate is purely due to the experimental
uncertainty in k−

[100] and k+
[110] and there can be an additional

error due to the ∼ ± 2% uncertainty in the c11, c12 values. Our
estimate of b/a is in excellent agreement with the ratio derived
from the recommended [20,21] values of a and b based on a
number of independent experimental and theoretical studies.
Such agreement supports the validity of our experimental
method based on relating PL and NMR spectral shifts. The
estimates derived in this work are summarized in Table I
together with the results of the earlier work.

For the second relation we use Eq. (4) to link the de-
formation potential a with the component of the gradient
elastic tensor S11. The variation of the GaAs fundamental
gap under hydrostatic strain characterized by a = ac + av has
been studied experimentally by several authors [3–7]. There is
some variation, but most experiments as well as calculations
[16] are consistent and it is commonly accepted [20,21] that
a ≈ −8.8 eV. By contrast there are only few reports on exper-
imental gradient-elastic tensors in GaAs [37,39,42] with only
one series of experiments where S11 and S44 were measured
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TABLE I. GaAs parameters.

Parameter Units This work Previous work

a = ac + av eV −8.7 [9]; −8.9 [10]; −8.7 [11]; −8.93 [12]; −8.72 [13];
−10.19 [14]; −8.33 [20]; −8.8 [21]

b eV −2.1 [9]; −1.96 [10]; −1.76 [12]; −2.00 [13];
−2.00 [14]; −2.0 [20]; −1.85 [21]

b/a 0.242 ± 0.008 0.24 [9]; 0.22 [10]; 0.20 [12]; 0.23 [13];
0.20[14]; 0.24 [20]; 0.21 [21]

c11 GPa 122.1 [20]; 118.8 [21]

c12 GPa 56.6 [20]; 53.8 [21]

c44 GPa 60.0 [20]; 59.4 [21]
2c12+c11

2c12−2c11
−1.796 [20]; −1.742 [21]

Q
69GaS

69Ga
11

Q
75AsS

75As
11

−0.497 ± 0.009 −0.508 [39]

Q
75AsS

75As
11 10−6 V +0.758 ±1.06 [39]

Q
69GaS

69Ga
11 10−6 V −0.377 ∓0.543 [39]

Q
69Ga 10−28 m2 0.171 [64]

Q
75As 10−28 m2 0.314 [64]

S
75As
11 1021 V/m2 +24.2 ±34.0 [39]

S
69Ga
11 1021 V/m2 −22.0 ∓31.7 [39]

directly [38,39]. Thus we use a ≈ −8.8 eV [21] to evaluate
Q

75AsS
75As
11 ≈ +0.76 μV. The uncertainty of this estimate

arising from the experimental uncertainty in k+
[110] is only ±3%,

so the main error is likely to arise from the uncertainty in a,
which is approximately ±5% based on the spread of the values
derived in different independent studies. Using the k69Ga/75As

ratio measured in Sec. IV C we also estimate Q
69GaS

69Ga
11 ≈

−0.38 μV for 69Ga with a similar relative uncertainty. These
values are ∼30% smaller than those derived by Sundfors [39]
from the nuclear acoustic resonance measurements (Table I).
We point out here that normally it is the QS11 product and not
S11 that is measured in NMR experiments and is used to predict
the NMR spectra in strained semiconductor structures—the
individual values for Sijkl and Q are not accessible in conven-
tional NMR measurements. Nonetheless, for the reference, we
quote in Table I the S11 values derived in this work and those
reported in Ref. [39], where in both cases we divided the mea-
sured QS11 products by the most recent recommended values
[64] of quadrupolar moments Q. For practical applications, it is
preferable to use the QS11 product values, or when using Sijkl

and Q separately, take their values from the same source. We
also note that the S11 values in Ref. [39] are in the c.g.s. units
of statcoulomb/cm3 and are multiplied here by 2 997 924.580
to convert them to the SI units V/m2.

V. DISCUSSION AND CONCLUSION

An important feature of this work is that elastic strain is
probed optically through the spectral shifts in the free-exciton
PL in bulk GaAs. This method offers certain advantages:
there is no need to measure the stress or control precisely the
size and the shape of the sample, moreover the strain can be

probed locally on a micrometer scale, so that modest strain
inhomogeneities across the sample are not a limitation. The
downside is that the accuracy of the measured strain is limited
by the current uncertainty in the deformation potentials. On the
other hand, the detection of the nuclear quadrupolar effects in
this work is achieved in a most straightforward way—by mea-
suring the quadrupolar splitting of the NMR spectral triplet.
This is different from the previous studies on GaAs [38,39]
where detection was rather indirect and relied on measuring
the changes of the quality factors of mechanical resonances.

The ∼30% difference in the measured S11 values between
this work and the work of Sundfors [38,39] appears to be
too large to be attributed to the uncertainty in deformation
potentials of GaAs. Contribution of the AlGaAs barriers to the
QD NMR signal is unlikely to affect our derivations either:
it has been found previously that the fraction of the electron
wave function density in the barriers is small (∼10%) and
nuclear spin polarization in the AlGaAs barriers is lower than
in the GaAs volume of the dot [59]. More importantly, the
presence of a small strain induced by lattice mismatch at the
GaAs/AlGaAs interface [observed in Fig. 2(b) as a finite NMR
quadrupolar splitting νQ in an unstressed sample] suggests that
the contribution of the AlGaAs barrier to the overall NMR
spectrum must have νQ different from that of the QD volume.
This weak and spectrally shifted NMR signal of the AlGaAs
barrier is then most likely eliminated by the line-shape fitting
procedure used to derive νQ of the GaAs volume of the dot. An
electron occupying a quantum dot interacts with the nuclear
spins, but the dominant effect is of magnetic origin (Knight
field) and in GaAs/AlGaAs QDs leads to broadening and shifts
of the NMR spectra on the order of tens of kHz [49]. Both the
EFGs and the deformation of the lattice [67] induced by a
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conduction band electron are small. Even these small effects
are suppressed in our NMR measurements since the rf field is
applied when QD is not illuminated and therefore does not
contain charges. The neutral (empty) state is confirmed by
observing that in most QDs the −1/2 ↔ +1/2 NMR transition
is narrow (<4 kHz for 75As, and still resolution limited). In
some individual QDs the −1/2 ↔ +1/2 transition is broader
(up to 10 kHz for 75As) indicating intermittent occupation of
the dot by electrons, but there is no systematic deviation of
νQ in such dots. Based on these observations we conclude that
the difference in S11 between this work and the earlier nuclear
acoustic resonance experiments is of systematic nature.

On the other hand, we note that our ratio of S11 for Ga and
As is in remarkably good agreement with the previous result
[38,39]. Moreover, it was pointed out by Sundfors [38] that
his room temperature acoustic resonance measurements of S11

for 115In in InSb were notably larger than the corresponding
S11 values obtained in two independent studies on InSb using
static strain [34,37] at 77 K. One possibility is that all of
the Sijkl values reported in Refs. [38,39] were overestimated
due to a systematic scaling error arising from a number of
parameters that needed to be calibrated for acoustic resonance
measurements. Moreover, the deviation in the results may arise
from the fundamental differences in how nuclear spin system
responds to static and dynamic (acoustic wave) strain, as well
as from the temperature dependence—these aspects remain
largely unexplored for GaAs, whereas studies on hexagonal
metals reveal a ∼10%–20% variation of EFGs [44,68] for
temperatures between 0 and 300 K.

The PL/NMR method for derivation of the gradient-elastic
tensor reported here have potential to be extended further. For
example, the S44 component of GaAs that was not probed
here, can be measured. Such a measurement would require
shear strain and magnetic field which is not parallel to one of
the cubic axes (e.g., [001]). The GaAs/AlGaAs pair is unique
since it permits nearly lattice matched epitaxial growth. As
a result, external stress can induce deformations significantly
exceeding the built-in strain, making it possible to use band gap
shifts to gauge the strain. Application to other materials, e.g.,
InAs/GaAs quantum wells and dots may require alternative
methods for probing the strain, such as x-ray diffraction.

For practical applications the QS11 for GaAs can be taken
directly from the values measured here (Table I). Since GaAs
and InAs were found previously to have very similar gradient
elastic tensors [39], we recommend using the GaAs S11 values
from Table I for InAs.
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APPENDIX: RELATION BETWEEN STRAIN AND
NUCLEAR QUADRUPOLAR EFFECTS

The second spatial derivatives of the electrostatic potential
V (x,y,z) at the nuclear sites form a second rank symmetric

tensor Vαβ = ∂2V
∂α∂β

(α,β = x,y,z). Small deformation of a solid
body is described via the second rank elastic strain tensor

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
(i,j = x,y,z), (A1)

where ui are the components of the vector field of displace-
ments u(x,y,z) characterizing the deformation. In the limit of
small deformation, Vij is related to εkl via

Vij =
∑
k,l

Sijklεkl (i,j,k,l = x,y,z), (A2)

where Sijkl is a fourth rank “gradient-elastic” tensor. Not all of
its 81 components are independent, and the number of indepen-
dent parameters is greatly reduced further in crystal structures
with high symmetry. In case of a zinc-blend crystal (cubic
symmetry group Td ) the nonvanishing elements of Sijkl are [34]

Sxxxx = Syyyy = Szzzz,

Syzyz = Szxzx = Sxyxy, (A3)

Sxxyy = Syyzz = Szzxx = Sxxzz = Szzyy = Syyxx.

Moreover, since Vij and εij are both symmetric, the gradient
elastic tensor has an additional symmetry with respect to the
pair of the first and second indices as well as to the pair of the
third and fourth indices (Sijkl = Sjikl = Sijlk = Sjilk). Thus
in a coordinate frame aligned with the crystal axes x ‖ [100],
y ‖ [010], z ‖ [001] there are in total 21 nonzero components
and the tensor is fully characterized by three independent
parameters Sxxxx , Sxxyy , and Syzyz. Taking into account the
symmetries of Sijkl we can evaluate Eq. (A2) to find the
explicit expression for the electric field gradients:

V1 = Vxx = Sxxxxεxx + Sxxyy(εyy + εzz)

= Sxxxx[εxx − (εyy + εzz)/2],

V2 = Vyy = Sxxxxεyy + Sxxyy(εxx + εzz)

= Sxxxx[εyy − (εxx + εzz)/2].

V3 = Vzz = Sxxxxεzz + Sxxyy(εxx + εyy)

= Sxxxx[εzz − (εxx + εyy)/2],

V4 = Vyz = Vzy = 2Syzyzεyz,

V5 = Vxz = Vzx = 2Syzyzεxz,

V6 = Vxy = Vyx = 2Syzyzεxy,

(A4)

where the right-hand side parts of the first three equations were
obtained by setting Sxxyy = −Sxxxx/2, which is a common
convention to take into account the fact that only the traceless
part of Vij is observable in NMR [69]. We have also introduced
EFG components Vm (m = 1..6) in Voigt notation, using
which we can rewrite Eq. (A4) as

V1 = S11[ε1 − (ε2 + ε3)/2],

V2 = S11[ε2 − (ε1 + ε3)/2],

V3 = S11[ε3 − (ε1 + ε2)/2],

V4 = S44ε4,

V5 = S44ε5,

V6 = S44ε6,

(A5)
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where S11 = Sxxxx and S44 = Syzyz. While Voigt notation
simplifies the equations and is commonly accepted it needs
to be used with care. Unlike Sijkl , the 2 × 2 matrix Smn is
not a tensor and does not follow the tensor transformation
rules. One of the consequences of this is that the definition
of the nondiagonal components of strain should include an
additional factor of 2, so that ε4 = 2εyz, ε5 = 2εxz, ε6 = 2εxy ,
while this factor of 2 is not needed in the definition of V4,
V5, V6 [see Eq. (A4)]. A similar situation is encountered in
the strain-stress relation σij = ∑

k,l=x,y,z cijklεkl expressed
in Voigt notation where the shear strains ε4, ε5, ε6 require a
factor of 2 in their definition, while there is no such factor for
the stress components σ4, σ5, σ6 (see Chap. 10 in Ref. [70]).

The Hamiltonian ĤQ describing the interaction of the
nucleus with spin I and quadrupolar moment Q with the
electric field gradients is [71]

ĤQ = eQ

6I (2I − 1)h

∑
i,j=x,y,z

Vij

(
3

2
(Îi Îj + Îj Îi) − δij I

2

)
,

(A6)

where e > 0 is the elementary charge, h is the Planck constant,
δij is Kronecker’s delta, Îi are spin operator components in
Cartesian coordinates, and the Hamiltonian is in frequency
units (Hz). Static magnetic field gives rise to the Zeeman
Hamiltonian

ĤZ = −γBz

2π
Îz, (A7)

where γ is the nuclear gyromagnetic ratio, and we explicitly
consider the case of the field Bz aligned along the z axis. For
the spin-3/2 nuclei the total Hamiltonian HZ + HQ is a 4 × 4
matrix and can in principle be diagonalized analytically to find
the eigenstates.

A much simpler approximate solution can be found for
the case of large magnetic field. In our experiments the
effects induced by magnetic field (characterized by Larmor
frequency >40 MHz) are at least two orders of magni-
tude larger than the quadrupolar effects (characterized by
quadrupolar shifts <0.4 MHz). Thus with good accuracy
quadrupolar effects can be treated as a perturbation, and
to the first order we can omit all off-diagonal terms of

the total Hamiltonian [72]. The resulting eigenstates are the
eigenstates of the Îz operator with eigenenergies (in Hz units)

E−3/2 = 3γBz

4π
+ eQ

4h
S11εb,

E−1/2 = γBz

4π
− eQ

4h
S11εb,

E+1/2 = −γBz

4π
− eQ

4h
S11εb,

E+3/2 = −3γBz

4π
+ eQ

4h
S11εb, (A8)

where we have substituted the EFG values from Eq. (A4), the
energies are indexed by their corresponding Îz eigenvalue, and
the effect of elastic deformation on the nuclear spin states
is manifested only via the biaxial part of strain εb = εzz −
(εxx + εyy)/2. The dipolar transitions are allowed for the pairs
of states where Iz changes by ±1, and the NMR frequencies
are obtained by taking the differences of the corresponding
energies in Eq. (A8):

ν−3/2↔−1/2 = γBz

2π
+ eQ

2h
S11εb,

ν−1/2↔+1/2 = γBz

2π
,

ν+1/2↔+3/2 = γBz

2π
− eQ

2h
S11εb. (A9)

Equations (A9) describe a triplet of NMR transitions with a
central transition −1/2 ↔ +1/2 and two satellite transitions
on either side of the central transition, separated by the
quadrupolar shift

νQ = eQ

2h
S11εb,

(A10)

which is the same as Eq. (2). The frequency of the −1/2 ↔
+1/2 transition is unaffected by quadrupolar interactions
according to Eq. (A9) since we neglect here the small second
order quadrupolar effects.
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