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Using the Matsubara Green’s function formalism, we calculate the temperature dependence of the nonequi-
librium spin polarization induced by an external electric field in the presence of spin-orbit coupling. The model
Hamiltonian includes an isotropic k-cubed form of the Rashba spin-orbit interaction. Such a Hamiltonian captures
the electronic and the spin properties of a two-dimensional electron (hole) gas at the surfaces or interfaces of
transition metal oxides or in p-doped semiconductor heterostructures. The induced spin polarization is calculated
for the nonmagnetic as well as for a magnetic electron/hole gas. Relations of the spin polarization to the Berry
curvature is also discussed.
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I. INTRODUCTION

The efficient control of the electron spin is currently one of
the key issues in spintronics. It is known that the spin-orbit
interaction in low-dimensional systems is usually strongly
enhanced and leads to new phases of matter that emerge at
the interface [1–4], for instance, the chiral spin order, and
to a spin polarization. Thus, pure electrical control of the
spin degree of freedom seems to be a promising concept for
future applications in electronics. Moreover, such control is
also intriguing from a fundamental physics point of view.
Indeed, the physics of low-dimensional heterostructures based
on semiconductors, graphenelike materials, and oxides reveals
a diversity of particular phenomena dictating electronic and
spin transport [5–8].

One of the most prominent phenomena induced by the spin-
orbit coupling is the spin Hall effect [9–11]. This effect has
already become a standard tool for the generation and detection
of spin currents [12–15]. Furthermore, spin Hall currents can
generate a spin-torque and induce spin dynamics [16–19]. In
this scenario, one needs no magnetic polarizer as required for
spin-valve devices. The spin-orbit interaction may also lead
to a spin polarization (a phenomenon known as the Edelstein
effect or the inverse spin galvanic effect) when an external
electric field is applied to the system [20–26]. In magnetic
systems, this nonequilibrium spin polarization may interact via
the exchange coupling with the local magnetization, giving rise
to a spin torque.

In the context of the aforementioned issues, heterostruc-
tures of transition metal oxides are attracting much attention
recently. Current experimental techniques allow for epitaxial
growth of different high-quality perovskite oxides as to achieve
artificially tailored heterostructures with relatively sharp inter-
faces [27–30]. The discovery of a two-dimensional (2D) elec-
tron gas at the interface of such structures like LaAlO3/SrTiO3

(LAO/STO) [28,31] offers a new route for materials and spin-
tronics research, revealing a variety of interesting phenomena

in these hetrostructures such as the colossal magnetoresistance,
ferroelectricity, ferro-, and antiferromagnetism, through metal-
insulator transitions and high-temperature superconductivity,
and enhanced spin-orbit coupling [32–47].

Despite the fact that cubic perovskites, such as STO and
STO-based structures, have been studied intensively, there
are only a few experimental results that reveal properties of
their conduction bands. Moreover, the physical picture of the
spin-orbit interaction in 2D electron gas at the interfaces of
perovskite oxides, being under intensive discussions in recent
years, is still elusive.

First of all, the STO-based heterostructures reveal d-
electron spin-orbit coupling [48–51]. The strongly anisotropic
d-orbitals together with quantum confinement result in a com-
plicated spin-orbit texture that is much richer than in the case
of sp-electron gas in the conventional n-doped semiconductor
heterostructures [52]. In the case of cubic perovskites, such
as STO, the crystal field due to the octahedral coordination
with neighboring oxygen atoms splits the degenerate atomic
d-levels (originating mainly from Ti sites) into the three-
fold degenerate t2g states and twofold degenerate eg states
[50,53,54]. The energy distance between these orbitals is about
2 eV. Therefore, low-energy effective models of electronic
states in the vicinity of the � point of the Brillouin zone
account only for the t2g orbitals. The symmetry of the bottom
of the conduction t2g band (at the � point) is the same
as the symmetry of the corresponding p-states in p-doped
semiconductor heterostructures based on zincblende III–V
semiconductors [54,55]. Accordingly, the spin-orbit coupling
lifts the degeneracy at the � point further into heavy and light
electron bands (with the total angular momentum J = 3/2)
and a split-off band (with J = 1/2), similar to the heavy, light,
and split-off hole bands in III–V semiconductors.

Recent experimental results based on weak localization
and antilocalization effects in magnetoresistance indicate
unambiguously the k-cubed character of the Rashba spin-
orbit interaction in transition-metal oxides [55,56]. This is in

2469-9950/2018/97(23)/235302(11) 235302-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.235302&domain=pdf&date_stamp=2018-06-04
https://doi.org/10.1103/PhysRevB.97.235302


KARWACKI, DYRDAŁ, BERAKDAR, AND BARNAŚ PHYSICAL REVIEW B 97, 235302 (2018)

agreement with recent theoretical studies based on density
functional theory (DFT) simulations and tight-binding mod-
eling [54,60].

In this paper, we study in detail the current-induced
spin polarization for an effective Hamiltonian describing 2D
electron/hole gas with isotropic k-cubed Rashba spin-orbit
interaction. The model Hamiltonian under consideration has
the form of a 2 × 2 matrix, and has been derived by the
perturbation procedure from the 8 × 8 Luttinger Hamiltonian
for p-doped semiconductor quantum wells with structural
inversion asymmetry [61]. Such a model was used to describe
the experimentally observed 2D electron gas at the oxides
interfaces [55]. Therefore, in this paper, we focus on the spin
and the electronic transport properties of electron and hole
gases, that in the first approximation can be described by
the effective Hamiltonian with the isotropic k-cubed form of
Rashba spin-orbit interaction. To describe the current-induced
spin polarization we use the Matsubara Green’s function
formalism in the linear response regime. This allows us to
analyze the nonequilibrium spin polarization also beyond the
zero-temperature limit.

The paper is organized as follows. In Sec. II, we introduce
the effective Hamiltonian and the necessary concepts for the
analytical and numerical calculations. In Sec. III, we discuss
the current-induced spin polarization and its temperature de-
pendence in a nonmagnetic k-cubed Rashba gas. In Sec. IV,
we present our results for the system in the presence of the
exchange field. At first, we discuss some special cases, where
the magnetization is oriented perpendicularly to the 2D gas
plane and when it is oriented in the plane of 2D gas. At
the end of this section, we also discuss the case of arbitrary
oriented-exchange field. The final conclusions and outlook for
future research are presented in Sec. V.

II. THEORETICAL OUTLINE

A. Model

We consider the effective Hamiltonian describing a 2D
electron (hole) gas with an isotropic k-cubed Rashba spin-orbit
interaction and subject to an exchange field. With some as-
sumptions, such an effective Hamiltonian may be appropriate
for the description of 2D electron gases (2DEG) at the interface
between two oxide perovskites, for instance, LAO/STO [55], or
for heavy-hole gas that appears in semiconductor heterostruc-
tures [52]. This Hamiltonian takes the following matrix form:

Ĥ = h̄2k2

2m
σ0 + iλ

(
k3
−σ+ − k3

+σ−
) − 1

h̄
H · Ŝ, (1)

where the first term describes the kinetic energy with the
effective mass defined by electron rest mass m0 and Luttinger
parameters γ1,2 [61]:

m = m0

(
γ1 + γ2 − 256γ 2

2

3π2(3γ1 + 10γ2)

)−1

. (2)

The second term describes the isotropic k-cubed Rashba
spin-orbit interaction with k± = kx ± iky , σ± = (σx ± iσy)/2
(here, σα with α = 0,x,y,z are the unit and Pauli ma-
trices, respectively), and the Rashba coupling parameter

defined as [61]

λ = 512eFL4
zγ

2
2

9π2(3γ1 + 10γ2)(γ1 − 2γ2)
, (3)

where Lz and eF denote the width and the potential of the
quantum well, respectively. The last term in Hamiltonian
Eq. (1) describes the effect of exchange field due to the
exchange interaction between electrons and local macroscopic
magnetization. The exchange field H is oriented arbitrarily and
its three components in the spherical coordinate system can be
written as follows:

Hx = H0 sin θ cos ξ, (4)

Hy = H0 sin θ sin ξ, (5)

Hz = H0 cos θ, (6)

where H0 = h0[1 − (T/Tc)3/2] with h0 given in energy units
and proportional to the exchange parameter and the saturation
magnetization at T = 0, and Tc denoting the Curie tempera-
ture.

The Hamiltonian Eq. (1) has been obtained upon two
canonical transformations, so the spin-operators, Ŝα , after the
same unitary transformations have the form

Ŝx = −h̄s0kyσ0 + h̄s1(k2
−σ+ + k2

+σ−)

= −h̄s0kyσ0 + h̄s1
(
k2
x − k2

y

)
σx + 2h̄s1kxkyσy, (7)

Ŝy = h̄s0kxσ0 + ih̄s1(k2
−σ+ − k2

+σ−)

= h̄s0kxσ0 + h̄s1
(
k2
x − k2

y

)
σy − 2h̄s1kxkyσx, (8)

Ŝz = 3

2
h̄σz, (9)

where s0 and s1 are defined by the material parameters:

s0 = 512γ2L
4
zeFm0

9π6(3γ1 + 10γ2)(γ1 − 2γ2)h̄2 , (10)

s1 = L2
z

(
3

4π2
− 256γ 2

2

3π4(3γ1 + 10γ2)

)
, (11)

(for details, see Ref. [61]). Thus, the effective mass as well
as the Rashba parameter depend strongly on the material pa-
rameters. Variation of the Rashba parameter and the parameter
s0 with the quantum well width Lz and the electric field F

(describing the asymmetric quantum well potential) are shown
in Fig. 1. We present this dependence for Luttinger parameters
γ1,2 adequate for 2D hole gas (2DHG) in GaAs [52] [Figs. 1(a),
1(c), 1(e)] and for γ1,2 obtained from fitting to experimental
data and from DFT calculations for the LAO/STO interface
[53,55,56] [Figs. 1(b), 1(d), 1(f)]. Thus, for fixed Luttinger
parameters, the Rashba spin-orbit coupling increases with in-
creasing electric field and width of the quantum well. A similar
conclusion follows from the behavior of the s0 parameter,
which is shown in Figs. 1(e) and 1(f). Moreover, for chosen
values of Luttinger parameters, the spin-orbit interaction is
stronger in GaAs 2DHG than in LAO/STO 2DEG. We should
also note that the transformations leading to Eq. (3) take into
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FIG. 1. Spin-orbit coupling strength λ as a function of the quan-
tum well width Lz and the confining electric field F for GaAs
(a) and for perovskite oxide (b); cross-sections of λ as functions of
F for GaAs (c) and perovskite oxide (d); s0 parameter as a function
of quantum well width Lz and confining electric field F for GaAs
(e) and perovskite oxide (f). Luttinger parameters: (GaAs) γ1 = 6.85,
γ2 = 2.145 [52], (LAO/STO) γ1 = 1.9, γ2 = 0.12 [53,54] (see also
comment in the text).

account only γ1 and γ2 parameters of the original Luttinger
Hamiltonian. In the general case, however, an additional γ3

parameter is present and may play a role when estimating the
proper parameters of the system [52].

Our main focus is to work out the general behavior of
the nonequilibrium spin polarization for a Hamiltonian with a
specific functional form of the spin-orbit interaction. To be spe-
cific, we also discuss and compare experimental and numerical
data as well as results obtained based on DFT and tight-binding
calculations to estimate the Luttinger parameters suitable for
a description of perovskite oxides. These parameters may be
used further to check not only qualitatively but also quanti-
tatively the magnitude of spin polarization or other spin and

transport phenomena for specific perovskite interfaces. A sum-
mary of these parameters of concern are presented in Table. I.

B. Methods and general solutions

The nonequilibrium spin polarization created by the exter-
nal electric field is calculated in the Matsubara Green function
formalism. The general expression for the spin polarization
that appears as a response to the external electric field can be
written in the following form [62]:

Sα(iωm) = 1

β

∑
n

∫
d2k

(2π )2

× Tr{ŜαGk(iεn + iωm)ĤA(iωm)Gk(iεn)}, (12)

where β = 1/kBT (with T and kB denoting the temperature
and Boltzmann constant, respectively), εn = (2n + 1)πkBT

and ωm = 2mπkBT are the Matsubara energies, while Gk(iεn)
are the Matsubara Green functions (in the 2 × 2 matrix form).
The perturbation term which describes the interaction of the
electrons with an external electric field has the form

ĤE
A (iωm) = −ev̂jAj (iωm), (13)

with the amplitude of the vector potential Aj (iωm) determined
by the amplitudeEj (iωm) of electric field through the following
relation: Aj (iωm) = Ej (iωm)h̄

i(iωm) . The summation over Matsubara
frequencies in Eq. (12) can be performed using contour
integration, and we find

Sα(iωm) = −eEj h̄

iωm

Tr
∫

d2k
(2π )2

×
∫
C

dz

2π
f (z)ŜαGk(z + iωm)v̂jGk(z). (14)

In the expression above, f (z) is the meromorphic function
of the form [exp(βz) + 1]−1, which has simple poles at the
odd integers n (z = iεn), while C denotes an appropriate
integration contour. After an analytical continuation [62] we
find the general expression describing the nonequilibrium spin
polarization in the following form [63]:

Sα(ω) = −eh̄

ω
Ej Tr

∫
d2k

(2π )2

×
∫

dε

2π
f (ε)Ŝα

(
GR

k (ε + ω)v̂j

[
GR

k (ε) − GA
k (ε)

]
+ [

GR
k (ε) − GA

k (ε)
]
v̂jG

A
k (ε − ω)

)
(15)

where f (ε) is the Fermi-Dirac distribution function and
v̂j is the j -th component of the velocity operator, v̂j =
(1/h̄)∂Ĥ/∂kj .

To make our further expressions more clear, let us rewrite
the Hamiltonian Eq. (1) in the general form

Ĥ = n0σ0 + n · σ , (16)

where n = (nx,ny,nz) and σ = (σx,σy,σz). The coefficients ni

(i = 0,x,y,z) take then the following forms:

n0 = εk + s0(kyHx − kxHy), (17)

nx = −λ
(
k3
y −3k2

xky

)−s1Hx

(
k2
x −k2

y

) + 2Hys1kxky, (18)
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TABLE I. Experimental, ab initio, and estimated Luttinger parameters for 2D electron gas at interfaces of perovskite oxides and for 2D
hole gas at semiconductor interfaces (sharp parentheses denote parameters taken from other positions in the table).

System n[1012cm−2] m∗/m0 λ [meV nm3] eF [meV/nm] Lz [nm] γ1 γ2

Heeringen et al. [53,54] SrTiO3 1.2 〈2 − 1〉 10 〈10〉 0.81–0.82 0.03-0.02
LaAlO3/SrTiO3 7.2 0.5–1.5 〈0.8〉 1 10 1.9–0.63 0.12-0.04

Caviglia et al. [57] LaAlO3/SrTiO3 10.5 ∼1.45
Nakamura et al. [55] SrTiO3 2–8 1.5 2-1 450 〈10〉 0.66 0.003-0.002
Liang et al. [56] LaAlO3/SrTiO3 8–31 1.5 0.8-0.3

LaVO3/SrTiO3 14-30 1.5 0.5-0.4
Hassan et al. [58] Ge/Si0.2Ge0.8 ∼0.6 ∼0.06 79.7 〈10 − 450〉 12 ± 2 15.1-16.3 2.2-0.34
Moriya et al. [59] Ge/Si0.5Ge0.5 1–1.5 ∼0.08 20-14 〈10 − 450〉 〈12〉 11.8-12.4 0.85-0.13

ny = −λ
(
k3
x − 3kxk

2
y

) − s1Hy

(
k2
x − k2

y

) − 2Hxs1kxky, (19)

nz = −3

2
Hz. (20)

The retarded Green function may then be written as

GR
k (ε) = GR

k0σ0 + GR
kxσx + GR

kyσy + GR
kzσz, (21)

with the coefficients

GR
k0 = 1

2

(
GR

k+ + GR
k−

)
, (22a)

GR
kx = nx

2n

(
GR

k+ − GR
k−

)
, (22b)

GR
ky = ny

2n

(
GR

k+ − GR
k−

)
, (22c)

GR
kz = nz

2n

(
GR

k+ − GR
k−

)
. (22d)

The Green functions GR
k± = [ε + μ − E± + i�sgn(ε)]−1

are determined by the chemical potential μ, eigenvalues E± =
n0 ± n (n =

√
n2

x + n2
y + n2

z) and the relaxation rate �. The
i-th component of the velocity operator is now given by the
expression

v̂i =
∑

j=0,x,y,z

1

h̄

∂nj

∂ki

σj ≡
∑

j

vij σj . (23)

We also introduce the general form for the spin operator
components:

Ŝα =
∑

j=0,x,y,z

sαjσj . (24)

Combining Eqs. (21)–(24) with Eq. (15) and performing the
trace, we obtain the following expressions for the components
of current-induced spin polarization:

Sx(ω)= eh̄

ω
Ey

∫
d2k

(2π )2

{
[sx0vy0 + sxxvyx]SA(ω)

− sxyvyySB(ω)

−
[nx

n
(sxxvy0 + sx0vyx)+ ny

n
(sxyvy0+sx0vyy)

]
SC(ω)

− i
nz

n
[sxyvyx − sxxvyy]SD(ω)

− 1

n2

[(
n2

y + n2
z

)
sxxvyx − n2

ysxyvyy

− nxny(sxyvyx + sxxvyy)
]
SE(ω)

}
, (25)

Sy(ω)= eh̄

ω
Ey

∫
d2k

(2π )2

{
[sy0vy0 + syxvyx]SA(ω)

− syyvyySB(ω)

−
[nx

n
(syxvy0 + sy0vyx)+ ny

n
(syyvy0+sy0vyy)

]
SC(ω)

− i
nz

n
[syyvyx − syxvyy]SD(ω)

− 1

n2

[(
n2

y + n2
z

)
syxvyx − n2

ysyyvyy

− nxny(syyvyx + syxvyy)
]
SE(ω)

}
, (26)

Sz(ω) = −eh̄

ω
Ey

∫
d2k

(2π )2

{nz

n
szzvy0SC(ω)

− i
szz

n
[nxvyy − nyvyx]SD(ω)

− nz

n2
szz[nxvyx + nyvyy]SE(ω)

}
, (27)

where the functions SA to SE have the form

SA = IRA
−− (ω) − IRR

−− (ω) + IRA
++ (ω) − IRR

++ (ω)

+ IAA
++ (−ω) − IRA

−− (−ω) − IRA
++ (−ω) + IAA

−− (−ω),

(28)

SB = IRR
−+ (ω) − IRA

−+ (ω) − IRA
+− (ω) + IRR

+− (ω)

+ IRA
−+ (−ω) − IAA

+− (−ω) + IRA
+− (−ω) − IAA

−+ (−ω),

(29)

SC = IRA
−− (ω) − IRR

−− (ω) − IRA
++ (ω) + IRR

++ (ω)

+ IAA
−− (−ω) − IRA

−− (−ω) + IRA
++ (−ω) − IAA

++ (−ω),

(30)

SD = IRA
−+ (ω) − IRR

−+ (ω) − IRA
+− (ω) + IRR

+− (ω)

− IAA
+− (−ω) + IAA

−+ (−ω) − IRA
−+ (−ω) + IRA

+− (−ω),

(31)
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SE = IRA
−− (ω) − IRA

−+ (ω) − IRR
−− (ω) + IRR

−+ (ω)

− IRA
+− (ω) + IRA

++ (ω) + IRR
+− (ω) − IRR

++ (−ω)

− IAA
−+ (−ω) + IAA

−− (−ω) − IAA
+− (−ω) + IAA

++(−ω)

− IRA
−− (−ω) + IRA

−+ (−ω) + IRA
+− (−ω) − IRA

++ (−ω),

(32)

and each IXY
αβ denotes integral over ε defined as

IXY
αβ (ω) = ∫

dε
2π

f (ε)GX
α (ε + ω)GY

β (ε) and IXY
αβ (−ω) =∫

dε
2π

f (ε)GX
α (ε)GY

β (ε − ω). These integrals in their general
forms have been derived in Refs. [63] and [64].

III. NONMAGNETIC CASE

In this section, we revisit the model of a nonmagnetic
gas with the isotropic k-cubed form of Rashba spin-orbit
interaction. In such a case, the Hamiltonian Eq. (1) reduces
to the following form:

Ĥ = h̄2k2

2m
σ0 + iλ

(
k3
−σ+ − k3

+σ−
)
, (33)

and the retarded Green’s function corresponding to the Hamil-
tonian Eq. (33) can be presented as

GR
k (ε) = GR

k0σ0 + GR
kxσx + GR

kyσy, (34)

with the coefficients

GR
k0 = 1

2

(
GR

k+ + GR
k−

)
, (35)

GR
kx = sin(3φ)

(
GR

k+ − GR
k−

)
, (36)

GR
ky = − cos(3φ)

(
GR

k+ − GR
k−

)
, (37)

where φ is the angle between the wave vector k and the
axis x, E± = h̄2k2

2m
± λk3 denote the energy eigenvalues, and

GR
k± = [ε + μ − E± + i�sgn(ε)]−1. The main mechanism re-

sponsible for the relaxation is assumed to be the scattering
on randomly distributed pointlike impurities. The relaxation
rate is obtained as the imaginary part of the self-energy in
the Born approximation [62], � = h̄

2τ
= −iIm[�R] (where

τ is the relaxation time). This model has been discussed in
the literature also in the context of spin Hall effect [65] and
current-induced spin polarization [61] for the 2D hole gas in
the zero-temperature limit.

In the nonmagnetic case, only the x component of spin
polarization is nonzero and Eq. (25) takes the following form
in the dc limit:

Sx = eh̄Ey

s0

4π

[
3λ

∫
dkk4

2�
[f ′(E+) − f ′(E−)]

+ h̄2

m

∫
dkk3

2�
[f ′(E+) − f ′(E−)]

]

− eh̄Ey

s1

4π

[
3λ

∫
dkk5

2�

(
f ′(E+) + f ′(E−)

1 + (λk3/�)2

+ f ′(E+) + f ′(E−)

)

+ h̄2

m

∫
dkk4

2�
[f ′(E+) − f ′(E−)]

]
. (38)

The integrals over k in the expression above have analytical
solutions in the low-temperature limit and lead to the following
expression:

Sx = −eEy

4�
h̄s0

[
3λ

(
k3
F+ν+−k3

F−ν−
)+ h̄2

m

(
k2
F+ν+ + k2

F−ν−
)]

+ eEy

4�
h̄s1

[
3λ

(
k4
F+ν++k4

F−ν−
)+ h̄2

m

(
k3
F+ν+ − k3

F−ν−
)

+ 3λ

(
k4
F+ν+

1 + (
λk3

F+/�
)2 + k4

F−ν−

1 + (
λk3

F−/�
)2

)]
, (39)

where kF± and ν± are the Fermi wave vectors and densities of
states corresponding to the E± energy subbands, respectively.
The Fermi wave vectors are connected with the chemical
potential μ and electron (hole) density ρ by the following re-
lations: μ = E+(kF+) = E−(kF−) and ρ = (k2

F+ + k2
F−)/4π .

Thus, after some algebraic transformations one finds

Sx = −eEy

4�
h̄s0

[
2μ

(
ν+ + ν−

) + λ
(
k3
F+ν+ − k3

F−ν−
)]

+ eEy

4�
h̄s1

[
2μ(kF+ν+ − kF−ν−) + λ

(
k4
F+ν+ + k4

F−ν−
)

+3λ

(
k4
F+ν+

1 + (λk3
F+/�)2

+ k4
F−ν−

1 + (λk3
F−/�)2

)]
. (40)

Equation (40) may be treated as a counterpart of the
Edelstein result for the linear Rashba model [22]. As the
main contribution to the current-induced spin polarization
is determined by the diagonal matrix elements of the spin
operators (proportional to s0), the leading term in the equation
above is the first one. Thus, similarly as in the case of k-linear
Rashba coupling, the external electric field applied to the
system induces the nonequilibrium spin polarization, which
is aligned in the plane of the 2D gas and perpendicular to the
external electric field. In both cases, we also observe linear
dependence on the relaxation time τ = h̄

2�
and on the Rashba

coupling constant. The main difference between the k-linear
and k-cubed Rashba models appears in their dependence on
the chemical potential. The Edelstein formula does not depend
on the chemical potential, whereas the zero-temperature spin
polarization for the cubic Rashba model depends almost
linearly on μ. This opens the possibility to control the strength
of the spin polarization by an external gating or by doping. The
dependence of the spin polarization on the chemical potential
is a consequence of the fact that the difference between the
Fermi wave vectors kF+ − kF− depends on the position of the
chemical potential in the case of a cubic Rashba coupling.
Thus, the shift of the Fermi circles in the presence of an external
electric field gives the μ-dependent imbalance between the
nonequilibrium spin states in subbands. Note that kF+ − kF− is
μ-independent for k-linear Rashba interaction and the original
Edelstein formula does not depend on the chemical potential.
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FIG. 2. Current-induced spin polarization in the nonmagnetic
case (h0 = 0) as a function of the chemical potential μ (a), (c), (e);
temperature T (b), relaxation rate � (d), and the spin-orbital coupling
parameter λ (f) for fixed parameters as indicated. The external electric
field and the effective mass are chosen as Ey = 1eV/mm and m =
0.12m0, while the Luttinger parameters: γ1 = 7 and γ2 = 0.27γ1.
Other parameters (unless otherwise specified): λ = 0.04eV nm3, T =
5K, and � = 1.65 · 10−2meV. Cutoff for the integration over k vector
has been assumed as kc = k0/2, where k0 = h̄2/3mλ [65].

Note that the above results have been obtained in the
single loop approximation [62], i.e., the electron scattering is
included only in the Green function through the relaxation
rate. However, it was reported that for randomly distributed
pointlike scatterers, the impurity vertex correction does not
provide additional contribution to the transport properties—in
other words, the vertex correction to the velocity operator
vanishes in this model [66]. Furthermore, the relaxation rate �

(obtained as an imaginary part of the self-energy in the Born
approximation) is the same for both subbands.

Numerical results corresponding to Eq. (38) are presented
in Fig. 2. Figures 2(a) and 2(b) show the temperature behavior
of the spin polarization. Since the temperature leads to some
smearing of the carrier distribution in both subbands, one
observes a nonzero spin polarization for negative chemical
potentials. Note that in our approach, the chemical potential
is fixed while the number of particles can vary. Moreover, spin
polarization increases with increasing chemical potential. In a
broad range of chemical potentials, this dependence is linear
with μ [see Figs. 2(a), 2(c) and 2(e)]. Figures 2(c) and 2(d)
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FIG. 3. The ratio of Sx(s1 = 0)/Sx(s1 	= 0) ≡ S(0)
x /Sx in the non-

magnetic case. All parameters are taken as in Fig. 2. This figure shows
that the contribution to the spin polarization, related to the parameter
s1 is generally significant and cannot be neglected.

highlight the dependence of spin polarization on the relaxation
rate �. These plots clearly show a fast decrease of the spin po-
larization with increasing �. This decrease, however, depends
strongly on the position of the Fermi level, which means that
destructive effects associated with scattering on impurities may
be slightly tuned by doping/gating of the system. Finally, as
the current-induced spin polarization considered here is driven
by the spin-orbit interaction, it vanishes for λ = 0, as shown in
Figs. 2(e) and 2(f). The spin polarization also depends linearly
on λ as the difference between E− and E+ bands changes
linearly with λ for a fixed Fermi level.

In our calculations, we have included the terms proportional
to s0 and s1. The latter was neglected in previous studies [61].
However, from our analysis, it follows that the term propor-
tional to s1 plays a remarkable role and should be included. In
Fig. 3, we show the ratio of spin polarization calculated without
(i.e., Sx(s1 = 0) = S(0)

x ), and with the terms proportional to
s1 taken into account. Indeed, this figure shows that the term
proportional to s1 can lead to a correction of an order of up
to 10% or even larger at higher temperatures and larger Fermi
levels, as shown in Figs. 3(a) and 3(b). When the temperature
increases, the correction to the spin polarization due to the
terms proportional to s1 decreases with decreasing T for small
values of the chemical potential μ, so the corresponding ratio
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FIG. 4. Current-induced spin polarization in a magnetic case. The x component of the spin polarization for the exchange field normal to the
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λ (d), the temperature T (f), and the relaxation rate � (h) for fixed parameters, as indicated. Other parameters are the same as in Fig. 2.

S(0)
x /Sx becomes close to 1, see Fig. 3(b). In turn, the ratio

S(0)
x /Sx only weakly depends on the impurity scattering rate �,

as follows from Fig. 3(d). When the Rashba spin-orbit coupling
is weak, S(0)

x becomes larger than Sx , i.e., the contribution from
the terms proportional to s1 has opposite sign to that from
terms proportional to s0 and the ratio S(0)

x /Sx exceeds 1, see
Fig. 3(f). A similar situation also happens for large values of the
chemical potentials, see Fig. 3(e). When the Rashba parameter
λ increases, one observes a rapid decrease in S(0)

x /Sx until this
ratio saturates at a certain level, see Fig. 3(f).

IV. MAGNETIZED 2D k-CUBED RASHBA GAS

In this section, we consider the general case, when the time-
reversal symmetry of the system is broken by the effective
exchange field [see Hamiltonian Eq. (1)]. Since the spin-orbit
torques play an important role in various spintronics devices,
we will analyze a general solution for an arbitrary oriented-
exchange field. Such a solution allows one to determine the
spin-orbit torque induced by electric field in the system under
consideration. Before this, however, we consider two special
cases—when the exchange field is oriented perpendicularly to
the plane and when the exchange field is oriented in plane of
2D gas.

A. Exchange field perpendicular to the plane of 2D gas

The case of the exchange field being perpendicular to
the plane of the 2D gas, i.e., Hz 	= 0 and Hx = Hy = 0,
corresponds either to ferromagnetic LAO/STO layers or to
antiferromagnetic system with uncompensated interface. The
nonequilibrium spin polarization has then two components,
namely the Sx component (which remains also finite for zero
exchange field), and the Sy component that is absent in the limit

of zero exchange field. The numerical results are presented in
Figs. 4 and 5.

The Sx component of spin polarization is only weakly
modified by the perpendicular exchange field which intro-
duces, e.g., small nonlinearities in the dependence of Sx on
the chemical potential, clearly seen in Figs. 4(a), 4(c), 4(e)
and 4(g). These nonlinearities can be attributed to the presence
of an energy gap between the subbands. For small values of
chemical potential, the component Sx varies monotonically
with increasing the magnitude of exchange field, whereas
for larger values of μ, this behavior is nonmonotonous, see
Fig. 4(b). In the latter case, we observe a local minimum which
appears when the Fermi level crosses the bottom edge of the
higher subband. For larger values of |h0|, only one subband
is occupied and the spin polarization increases with a further
increase in the exchange field, see Fig. 4(b). The x component
of spin polarization changes linearly withλ, as shown explicitly
in Fig. 4(d). The temperature dependence, Fig. 4(f), is similar to
that in the absence of exchange field. However, some kinks are
well pronounced when the temperature approaches the Curie
temperature and the system becomes nonmagnetic.

As the x component of the current-induced spin polarization
is only slightly modified by the perpendicular exchange field,
the y component of spin polarization appears solely when
the exchange field is nonzero. For the perpendicular exchange
field, Eq. (26) leads to the following expression for Sy :

Sy = eEyh̄s1

∫
d2k

(2π )2

9Hzk
4λ

4n3
[f (E+) − f (E−)]

− eEy h̄s1

∫
d2k

(2π )2

9Hzk
4λ

4n2

�2

n2 + �2
[f ′(E+) + f ′(E−)],

(41)
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FIG. 5. The contributions SI
y and SII

y to the y component of current-induced spin polarization for the exchange field normal to the plane of
the 2D gas, plotted as a function of the chemical potential μ (for indicated values of the exchange field h0) (a); temperature T (b); and relaxation
rate � (c). Other parameters as in Fig. 2.

where n is reduced to the following form: n =√
(3Hz)2 + (2λk3)2/2.
It should be noted that the current-induced spin polarization,

similar to the anomalous or the spin Hall effect, may contain
two contributions: A contribution related to the states at the
Fermi level, SI

α , and the second one related to all states below
the Fermi level, SII

α :

Sα = SI
α[f ′(E±)] + SII

α [f (E±)]. (42)

The intrinsic (topological) contribution is easy to identify in
Eqs. (25)–(27). In these formulas (when the time-inversion
symmetry is broken), the imaginary component of SD con-
tributes to the final results and is responsible for the system
response from the states below the Fermi level. Thus, the topo-
logical contribution appears in our results as a consequence of
nonzero exchange coupling and is mostly pronounced in these
components which are determined by the exchange field (that
is Sy and Sz components). Thus, according to the introduced
notation, Eq. (41) may be expressed as Sy = SI

y + SII
y , where

SI
y =−eEy h̄s1

∫
d2k

(2π )2

9Hzk
4λ

4n2

�2

n2 + �2
[f ′(E+) + f ′(E−)]

(43)

and

SII
y = eEyh̄s1

∫
d2k

(2π )2

9Hzk
4λ

4n3
[f (E+) − f (E−)], (44)

which is robust against scattering from impurities.
Two important features of the spin polarization follow from

the above expression. First, the Sy is linear with respect to the
parameter s1 (which determines the off-diagonal elements of
spin operators). This means that even though the contributions
associated with s1 lead only to a small correction to the x

component of spin polarization (see the discussion in the
preceding section), they are responsible for the appearance
of additional components of nonequilibrium spin polarization,
e.g., the y component in the case considered in this subsection.
Therefore, one cannot ignore the terms related to s1 if one
wants to describe properly the physics of spin polarization in
the model under consideration. Second, the Sy component is
related to the topological properties of the system and may be
expressed in terms of the Berry curvature. For long a relaxation
time (� → 0), the topological component determines the

behavior of y component of spin polarization and Sy reduces
to SII

y .
As the Berry curvature, Bj , for the j -th subband, is defined

by the Berry connection Aj (k), Aj (k) = i〈�j |∇k|�j 〉, i.e.,

Bj = ∇k × Aj (k), (45)
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fixed parameters as indicated. Other parameters as in Fig. 2.
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FIG. 7. Current-induced spin polarization in a magnetic case. The spin polarization is shown for the exchange field in the plane of 2DEG
(2DHG). The components Sx , (a), Sy , (e), and Sz, (i), as a function of the angle ξ describing the orientation of the in-plane exchange field and
for the indicated values of the electrochemical potential μ. The component Sx , Sy , and Sz as a function of the exchange field h0, (b), (f), (j);
Rashba coupling strength λ, (c), (g), (k); and temperature T , (d), (h), (l), respectively. Other parameters as in Fig. 2.

we find for a k-cubed Rashba gas confined in the xy plane, the
following explicit form of Bz

±:

Bz
± = ±54Hzλ

2k4

(2n)3
. (46)

Thus, combining Eq. (46) with Eq. (44), we get the following
simple expression for the y-component of spin polarization:

Sy = SII
y = eh̄Ey

s1

3λ

∑
j=±

∫
d2k

(2π )2
Bz

j f (Ej ). (47)

Figure 5 presents the behavior of the individual components
of Sy with respect to the change of chemical potential for
fixed values of the exchange field, h0, relaxation rate, �, and
temperature, T. It is evident that the contribution related to
the Berry curvature is five orders of magnitude larger than
the contribution related to the states at the Fermi level and
therefore determines the y component of the spin polarization.
Moreover, as the SII

y component increases with increasing
h0 and decreasing T [Figs. 5(a), 5(b)], the SI

y component
behaves the opposite way—i.e., it decreases with increasing
h0 and increases with increasing temperature. Figure 5(c)
shows that SI

y is highly sensitive to changes in the relaxation
rate, �, whereas SII

y is robust against the scattering from
impurities.

Variation of the total y component of the spin polarization
with μ, h0, λ, and T is presented in Fig. 6. When the Fermi
level increases, starting from small values, the Sy component
also increases until it reaches its maximal value that depends
mainly on the s1 parameter as well as the strength of the
exchange field and the Rashba spin-orbit coupling. Then, the
Sy component decreases with a further increase in the Fermi
energy, as shown in Figs. 6(a) and 6(b). Furthermore, the
maximum in Sy shifts to higher Fermi levels with increasing
exchange energy. It is worth noting that the Sy component
can change its sign when the magnetization is reversed. For
relatively small Rashba spin-orbit coupling strength and small
values of μ, the Sy component increases monotonously with
λ, as shown in Figs. 5(c) and 5(d). However, for larger values
of μ, the Sy component initially increases with λ and then,
upon reaching a maximum, it decreases with a further increase
in λ. This behavior is different from that found for the Sx

component. Since the Sy component is strongly dependent on
the exchange field, it is also highly sensitive to changes in
temperatures, as shown in Figs. 6(e) and 6(f). For small Fermi
levels, the maximal value of Sy occurs when T approaches
Curie temperature TC = 150 K and then it quickly disappears
when the exchange field vanishes, i.e., when Hz(T = TC) = 0.
For higher Fermi levels, the maximal value occurs at low
temperatures.
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B. Exchange field in the plane of 2D gas

We consider now the case when the exchange field is in
the plane of the 2DEG, i.e., when Hz = 0 and Hx,Hy 	= 0.
Similarly, as in the case described above, the x component
of spin polarization is only weakly modified by the in-plane
exchange field—see Figs. 7(a)–7(d). On the other hand, when
the exchange field is in the plane of 2D gas, both y and z

components of the spin polarization can occur and significantly
depend on the orientation and strength of the exchange field.
For example, the Sy component [see Fig. 7(e)] is absent when
the in-plane field is parallel to either x or y axis (i.e., when
ξ = 0◦ or ξ = 90◦), whereas the Sz component vanishes for the
in-plane field oriented along the x axis and takes its maximal
value for exchange field oriented along the y axis, see Fig. 7(i).
The x and y components are both nonzero when the in-plane
exchange field is aligned between the x and y axes. The specific
positions of the maxima in Sy depend on the Fermi level.
Both Sy and Sz components, however, are one to two orders of
magnitude smaller than the Sx component.

The behavior of the spin polarization presented in Fig. 7
indicates a strong interplay between the effective field induced
by the spin-orbit coupling and the in-plane exchange field.
The dependence of the Sy component on the exchange field
and the Rashba coupling parameter is presented in Figs. 7(f)
and 7(g), for ξ = 60◦. This component behaves symmetrically
with respect to the magnetization reversal, and its sign can
be changed by tuning the magnitude of the exchange field or
the spin-orbit coupling strength. The temperature-dependence
of Sy , shown in Fig. 7(h), indicates that relatively low tem-
peratures are necessary to have remarkable values of Sy and
that the Sy component vanishes when T approaches the Curie
temperature.

The Sz component, in turn, is antisymmetric with respect
to the sign reversal of the in-plane exchange field. A nonzero
value of Sz means that the vector of spin polarization is tilted
out of the plane of 2D gas. In Figs. 7(j)–7(k), the dependence
of z component of the spin polarization on the magnitude of the
exchange field and the Rashba coupling parameter is presented
for two orientations of the field, i.e., for ξ = 22.5◦ (when
the z component assumes its maximal values) and ξ = 60◦.

The Sz component is larger for higher values of the chemical
potential. For ξ = 22.5◦, the |Sz| component displays only one
peak in the dependence on |h0|, see Fig. 7(j). For ξ = 60◦,
the |Sz| curve displays two peaks. This might be attributed
to the anisotropy introduced by the in-plane field and greater
separation in the k-vector space of the E− and E+ states for
ξ = 60◦ than for ξ = 22.5◦. Similar behavior is visible in
Fig. 7(k), where the Sz component is shown as a function of the
Rashba spin-orbit coupling strength λ. Similarly, as in the case
of the Sy component, the Sz component is substantial for low
temperatures and disappears when the temperature approaches
the Curie temperature, where the exchange field vanishes.

V. SUMMARY

We presented a detailed study of the current-induced spin
polarization in a 2D electron gas with an isotropic k-cubed
Rashba spin-orbital coupling. The model under consideration
is useful for understanding the nonequilibrium spin polariza-
tion and the spin dynamics in some p-doped semiconductor
quantum wells, as well as in electron gases at the interfaces of
oxides perovskites.

We have shown that the contribution related to the parameter
s1 should not be omitted. This contribution in a nonmagnetic
case modifies the spin polarization by about 10%; however, in
the magnetic case, it is responsible for the components that are
absent in the limit of a zero exchange field. We also discussed
briefly the relation of some terms in the spin polarization with
the Berry curvature. Generally, one can expect that the induced
spin polarization in a magnetic system leads to a torque on
the local magnetization, which in turn can modify the spin
dynamics.
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