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Optimal control of universal quantum gates in a double quantum dot
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We theoretically investigate electron spin operations driven by applied electric fields in a semiconductor double
quantum dot (DQD) formed in a nanowire with longitudinal potential modulated by local gating. We develop a
model that describes the process of loading and unloading the DQD taking into account the overlap between the
electron wave function and the leads. Such a model considers the spatial occupation and the spin Pauli blockade in
a time-dependent fashion due to the highly mixed states driven by the external electric field. Moreover, we present
a road map based on the quantum optimal control theory (QOCT) to find a specific electric field that performs
two-qubit quantum gates on a faster timescale and with higher possible fidelity. By employing the QOCT, we
demonstrate the possibility of performing within high efficiency a universal set of quantum gates {CNOT, H, and
T}, where CNOT is the controlled-NOT gate, H is the Hadamard gate, and T is the π/8 gate, even in the presence
of the loading/unloading process and charge noise effects. Furthermore, by varying the intensity of the applied
magnetic field B, the optimized fidelity of the gates oscillates with a period inversely proportional to the gate
operation time tf . This behavior can be useful to attain higher fidelity for fast gate operations (>1 GHz) by
appropriately choosing B and tf to produce a maximum of the oscillation.
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I. INTRODUCTION

Different proposals for quantum bits (qubits) in solid state
systems have been realized [1–5]. Among them, quantum dots
in semiconductors are promising candidates for quantum com-
putation platforms due to the mature stage of the technology for
semiconductor devices, including advanced growth material
processing as well as the possibility of integrating structures on
nanometer scales [6,7]. Essentially, the quantum dot provides
spatial confinement for quantization of the electronic motion
and also protects the qubit from the neighboring environ-
ment, therefore prolonging the quantum coherences. There are
proposals for quantum dots using either charge [8] or spin
[9,10] as qubits, or both [11], whereas spins seem to be more
favorable because of their longer decoherence times due to the
weaker nature of the magnetic interactions. Nonetheless, it is
common to have spin decoherence caused by charge dynamics
[12]. Of course, the coupling with the environment cannot
be completely suppressed, as for instance in the case of the
hyperfine interaction of the electron spin with nuclear spins
of the host material [13], or even because the qubits have to
interact externally to be controlled.

Among the proposals for semiconductor quantum dots
hosting qubits [3], there is a very controllable architecture
of a double quantum dot (DQD) created by local gates in
semiconductor nanowires [14–16], which in turn is connected
to source and drain leads [see Fig. 1(a)]. Applied voltages
to the gates modify the potential profile along the nanowire,
providing a versatile way of controlling the interdot tunneling
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as well as the electron occupation in each quantum dot. The
local gates can also serve as an input for time-dependent
electrical fields that, via spin-orbit coupling, act as effective
magnetic fields on the electron spins [16]. In essence, these
types of nanowire DQDs behave as quantum tunneling devices
in which the Coulomb blockade produces very distinctive
charge stability diagrams when measuring the current through
the DQD [14–16]. Moreover, the current depends on the spin
orientations of the unpaired electrons, an effect known as the
Pauli or spin blockade [17], which is useful to access the
spin configuration of two-electron states via charge current
measurements.

A common procedure for manipulating the electron spin in
nanowire DQDs consists of initializing the system in the spin
blockade regime, i.e., assuring that the pair of electrons has
parallel spins (triplet state), then applying a gate voltage to
reinforce the (Coulomb) blockade [3]. In this double-blockade
regime, the spin manipulation can be done by oscillating
magnetic fields (electron spin resonance, ESR) or oscillating
electric fields via effective magnetic field of the spin-orbit
effect (electron dipole spin resonance, EDSR). The latter is
technologically more attractive since it is an all-electrical
technique, which can be implemented locally controlling
the gate voltages. Magnetic field gradients due to implanted
micromagnets are also used to attain independent control of
spins occupying different dots in the DQD [4,18]. Finally, the
readout is done by lifting the Coulomb blockade and checking
whether the spin blockade has been lifted by the manipulation
procedure. If so, the final state would be a two-electron state
with antiparallel spins (singlet) and a current would flow
through the nanowire DQD. This scheme implies that the spin
manipulation procedure is carried out in gate voltages detuned
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FIG. 1. (a) Schematics of the system investigated. The nanowire is
connected to source and drain leads, and underneath it there are gates
to modulate the electrical potential to create and control the DQD
potential profile. (b) Potential profile of the DQD along the nanowire
used in our calculations. The effect of an applied electric field F is
shown. (c) Energy level diagram for the five lowest energy states as a
function of the source-drain applied electric field F (or detuning ε).
We scale �F = 100 V/cm to �ε = 1 meV for an average system
size of 100 nm and ε = 0 corresponds to F = 229 V/cm. (d) Singlet
character of the states shown in (c) as a function of the detuning. A
pure singlet state has character equals 1, whereas for a pure triplet
state the character is zero. Color scheme in (d) is the same as in (c).

from energy level alignments (i.e., in the Coulomb blockade
regime) where both ESR and EDSR need many oscillations of
the applied field to accomplished the desired spin rotation.

There have been, however, alternative approaches for faster
spin manipulation utilizing energy level avoided crossings
[12]. If the system is forced, by a voltage change, to traverse
a spin-dependent avoided crossing, the Landau-Zener (LZ)
[19,20] effect can work either in favor of or in opposition
to a tunneling between two energy-level avoided branches of
opposite spins. This enables faster spin rotations in the spin
manipulation procedure. In fact, the LZ effect was shown
to produce much faster and stronger spin dynamics than the
EDSR excitation, for instance, giving rise to strong resonances
even for excitations with harmonic frequencies [15]. Here we
investigate the LZ dynamics in a DQD and the two main
contributions of this work are described in the two subsections
below.
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FIG. 2. (a) Schematics of the electron transfer representing the
loading and unloading of the DQD. (b) Flowchart of the loading and
unloading processes through the auxiliary state |(1,0)〉. Probability
for finding an electron, for each eigenstate, in the (c) left and (d) right
quantum dot of the DQD as function of the detuning. (d) Scale at right
shows the renormalized rates for loading the DQD, lα . (e) Unloading
rates uα as a function of the detuning. In (c)–(e), the color scheme is
the same as in Fig. 1(c).

A. Fast Landau-Zener spin dynamics
under charge transport cycle

LZ tunneling in a nanowire DQD introduces an adverse
effect that can be prejudicial in attaining control of coherent
spin dynamics. When the nanowire DQD is operated close to
the two-electron avoided crossings, the singlet state [S(2,0)
in Fig. 1(c)] can be populated, and since this state lifts the
spin blockade and it has a strong overlap with the drain lead,
it drives a charge transport through the DQD [see Figs. 2(a),
2(b)] introducing incoherent processes of the unloading and
loading of the DQD. Thus, from one perspective LZ can speed
up the coherent spin dynamics, but from another perspective it
can lead to decoherence due to charge dynamics [12,21]. Our
work investigates this situation to understand to what degree
LZ tunneling can be effective in the fast manipulation of two-
electron spins in nanowire DQDs.

The first main contribution of this paper is the model
developed to describe the noise due to transport cycle in
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this system. Our theoretical investigation starts with a model
Hamiltonian [22] describing the nanowire DQD as a quasi-one-
dimensional problem of two electrons (Sec. II A), in which both
spatial and spin degrees of freedom are treated. This is a unique
approach over the most commonly used phenomenological
few-level models, and it enables us to construct a charge
transport model, as discussed below. Our theoretical model has
been successfully used to interpret the experimental results in
Ref. [15], where it validated a simpler description by a system
of a few levels [23]. In these previous works [15,23], an applied
ac field forced the state to traverse rapidly the avoided crossing
many times. In this situation with a very large number of
LZ passages, the avoided-crossing induced decoherence and
relaxation processes were approximated by transition rates
taken as average constant values obtained from the experiment.
The present work is a completely different case, since our goal
is to investigate fast spin dynamics generated by a few LZ
passages. In this case, the wave function spends a considerable
portion of the operation time in the avoided-crossing region
and, therefore, a better model for the transition rates is needed.

Here we present a model for the loading and unloading
of the DQD, in which the transition rates depend on the
spatial and spin degrees of freedom of the eigenstates. In
this way, the loading/unloading rates are dependent on the
source-drain applied voltage (called here detuning for short),
which also means that time-dependent electric fields, applied
to perform spin rotations, render a time dependence to the rates.
This detuning/time-dependent transport cycle is important
to address properly the aforementioned question about the
effectiveness of LZ tunneling in the spin manipulation carried
out close to the avoided crossings [21]. In summary, we use the
Born-Markov approximation to describe the dissipative effects
through the Lindbladian form considering rates that depend on
the detuning and consequently depend on time.

B. Optimal quantum control of the spin dynamics

Another aspect of the present paper is the demonstration
of the use of quantum optimal control theory (QOCT) as an
efficient tool to obtain the optimized two-qubit gates in DQD
systems. The progress of employing QDs as a platform for
quantum computation highly depends on the accomplishment
of efficient two-qubit gates in DQD systems [4]. There have
been many attempts to experimentally perform two-qubit gates
using DQD systems [4,24–27]. Very recently, researchers have
experimentally demonstrated the controlled-NOT (CNOT) gate
implementation in silicon spin qubits localized in DQDs [4]. To
accomplish such a task, they have employed a magnetic field
gradient together with microwave pulses and have achieved a
fidelity of 80%. All pulses used in Ref. [4] are of sinusoidal
type with frequencies at the resonance of the desired transition.
The fidelity of quantum gates should reach values higher than
99.9% to surpass the exceeding threshold of quantum-error
correction [28]. Moreover, the CNOT gate is related to the
transition between states (according to the state of the first
qubit), but the implementation of quantum gates that only
change relative phases between states such as the π/8 gate
is not easily accomplished by sinusoidal fields. Therefore,
the QOCT provides a road map to obtain the quantum gate
with higher fidelity on a faster timescale for each particular

DQD system, thereby improving the progress of the quantum
computer platform based on QDs. The QOCT has been applied
to control charge populations in DQD systems [29,30], but
neither the implementation of quantum gates nor the spin
dynamics has been considered. Here, QOCT is invoked to
design field control of spin-based operations for a universal set
of quantum gates {>CNOT, H, and T}, where H is the Hadamard
gate and T is the π/8 gate. We demonstrated gate control by
optimal field even in the presence of strong charge transport,
which otherwise could not be achieved by simpler profiles of
external fields.

C. Outline

In this paper, Sec. II describes the two-electron eigenstates,
their dynamical occupations, and the charge transport cycle
model. Section III A shows the dynamics of two-electron
states in applied pulses of electric field aiming to perform
spin rotations. In Sec. III B, the optimal quantum control
is used to demonstrate the feasibility of a set of universal
quantum gates. Section III C contains the results including
Gaussian noise effects, and Sec. III D presents the effects
of varying the applied magnetic field. Section IV contains
our final remarks. Appendices A and B show details of the
relaxation rates introduced by the charge transport cycle. The
multitarget formulation of QOCT is developed in Appendix C,
and details of the system dynamics under a sinusoidal pulse
are in Appendix D.

II. THEORETICAL FRAMEWORK

A. Eigenstates

We work within the effective-mass approximation consider-
ing two electrons in a nanowire as in Fig. 1(a). The Hamiltonian
can be written as [22]

H = h1 + h2 + Vc(|r2 − r1|), (1)

where Vc is the Coulomb repulsion between electrons. The
single-electron Hamiltonians are

hi = Ti + V (ri) + 1
2g(xi)μBBσxi + HSOi

, i = 1,2, (2)

with Ti being the kinetic energy operator, V (ri) the structure
potential, 1

2g(xi)μBBσxi the Zeeman term for magnetic field
along the nanowire (x axis), including a position-dependent
effective g factor g(x) [15], and HSOi

the spin-orbit interac-
tion given below. We assume a strong confinement for the
transverse directions of the nanowire, such that the electron
motion can be quantized in these directions and separated from
the motion along the longitudinal direction. For the transverse
quantized motion, we take the ground state in a cylindrical
potential and rewrite the Hamiltonian for the corresponding
quasi-one-dimensional problem along the nanowire as [22]

H =
∑
i=1,2

[
− h̄2

2m∗
∂2

∂x2
i

+ V (xi) + 1

2
g(xi)μBBσxi + HSOi

]

+Vc(|x1 − x2|), (3)

where Vc is given in Ref. [31], and the orbital effects of the
magnetic field are neglected, i.e., Ti = (h̄ki−Ai/e

2)2

2m∗ ≈ − h̄2

2m∗
∂2

∂x2
i

.
Again, due to the strong transverse confinement, the Rashba
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spin-orbit interaction, generated by electrostatic potentials of
the applied gates [32], can be approximated by [22]

HSOi
= α(σxi

kyi
− σyi

kxi
) ≈ −ασyi

kxi
, (4)

where α is the Rashba constant.
The Schrödinger equation is solved for the above Hamilto-

nian, Eqs. (3) and (4), to obtain the energies En and eigenstates

ψn(x1,x2) =

⎡
⎢⎣

φ1n(x1,x2)
φ2n(x1,x2)

−φ2n(x2,x1)
φ3n(x1,x2)

⎤
⎥⎦

| ↑↑〉
| ↑↓〉
| ↓↑〉
| ↓↓〉

(5)

which are written as spinors in the 1/2-spin basis {|σz1σz2〉}
along the z axis. The antisymmetry by the exchange of the two
electrons is reinforced by the fact that the spinor components
satisfy φin(x1,x2) = −φin(x2,x1) for i = 1,3. The method for
solving the Schrödinger equation was adapted from a split-
operator method [33] to act in the spinor Eq. (5). This method
evolves a trial wave function in imaginary time, resulting in
a preferential decay of high-energy components of the trial
wave functions, and is nonunitary. At each simulation step,
the wave functions are normalized, orthogonality between the
wave functions is ensured using a modified Gram-Schmidt
method [33], and the components φin(x1,x2) (i = 1,3) of
Eq. (5) are antisymmetrized. We used InAs parameters m∗ =
0.027m0, α = 11 meV nm [32], and the effective g factor
was taken from experiment [23], being g(x > 0) = 6.8 [g(x <

0) = 7.8] for the dot at the right (left) side of the DQD.
Figure 1(b) shows the double-well confinement potential V (x)
along the nanowire, where the interdot potential barrier was
adjusted [34] (35 meV) to produce a singlet-triplet manifold
splitting of 6 meV as measured in Ref. [23].

Panel (c) of Fig. 1 shows the energies of the five lowest
energy states as function of the detuning energy, ε = −e〈x1 +
x2〉F , due to an electric field F applied along the wire. From
now on, the detuning energy ε will be used taking as reference
the applied field at the anticrossing; i.e., zero detuning (ε = 0)
means applied electric field of F = 229 V/cm. All results in
this paper are for an applied magnetic field of B = 50 mT,
except in Sec. III D where B is varied.

It is noticed in Fig. 1(c) that only one state has a pronounced
dependence on the detuning. This state has a strong singlet
character [cf. panel (d)] with two electrons on the left dot of
the DQD; we denote it by S(2,0). The other four states, with
weaker dependence on the detuning, have one electron in each
dot: singlet S(1,1) and triplets T+(1,1), T0(1,1), and T−(1,1),
where the indices ±,0 give the total spin component of the
state, and (nL,nR) gives the left and right occupations of the
DQD. As the state S(2,0) approaches the (1,1) states, some
avoided crossings occur. The larger avoided crossing at zero
detuning, between the singlets S(2,0) and S(1,1), is due to the
interdot coupling and is spin independent. The smaller avoided
crossings between S(2,0) and T±(1,1) result from the spin-orbit
interaction and they are the ones that can produce LZ spin
rotations.

Not shown in the diagram of Fig. 1(c) is the triplet manifold
T(2,0) which is, as mentioned, ∼6 meV higher in energy
[34]. The T0(1,1) level splits from the S(1,1) away from the
anticrossing region, and it wiggles around zero detuning. These

effects result from the position-dependent g factor g(x). It
is important to stress the fact that all the states have mixed
singlet-triplet characters, and this is a function of the detuning.
In Fig. 1(d) we plot the singlet character of the states, defined by
the degree of exchange between the particles 1 and 2. It is seen
that the state S(2,0) is mostly singlet only for detunings away
from zero. However, as mentioned, the position-dependent g
factor mixes the singlet state S(1,1) with T0(1,1) for a broader
range of detuning values, whereas the spin-orbit interaction
mixes the singlet-triplet states as observed for the states S(2,0)
and T±(1,1) in the avoided crossing regions.

We notice that similar S-T mixing could be given by the
electron-nuclei spin interactions [13,35,36]. For the fast regime
(∼1 ns) we want to investigate, the nuclei contribution could be
considered quasistatically [36], and it has been shown [35,36]
that this contribution is weaker than the spin-orbit one for
relatively large B field, as it is our case of interest. This can
be seen in Fig. 1(c), where the anticrossings S(2,0)-T±(1,1)
are well apart from the anticrossing S(2,0)-S(1,1) due to large
B (50 mT). Moreover, our position-dependent g factor g(x) in
Eq. (3) plays a role similar to that of the difference hyperfine
field δb in Ref. [36]. Piezophonon [37] assisted hyperfine spin
relaxation has been shown to happen for a very narrow range
of values of the detuning close to ε = 0 [21]. This makes this
process less significant than the charge dynamic dephasing,
which our model accounts for by the charge transport cycle,
as given below. Therefore, the level structure presented in
Fig. 1(c), with spin-mixing contributions [albeit only from
spin-orbit andg(x), but for largeB], together with the dominant
dephasing due to charge transport [21], has the essential
elements needed to account for the relevant spin dynamics as
investigated in the following sections.

B. Dynamics under time-dependent detuning fields

In this section, we describe the time evolution of the two-
electron system when subjected to time-dependent detunings.
Consider that initially (t = 0) the system is in a given state
|ψ(t = 0)〉, for instance, one of the eigenstates of Fig. 1(c) for
a given detuning ε0. If the detuning is modified, say assuming
values ε(t), the initial states will evolve as a mixing of the
complete set of eigenstates. The dynamics can be calculated by
the master equation for the density matrix ρ(t) = |ψ(t)〉〈ψ(t)|:

∂ρ

∂t
= 1

ih̄
[H (t),ρ] + D[ρ], (6)

with H (t) being given by Eq. (3) with the inclusion of the
time-dependent applied electric field F (t) along the nanowire:
V (xi) → V (xi) − exiF (t), where e is the electron charge. The
last right-hand-side term in Eq. (6) is the dissipator that takes
into account incoherent effects as described below.

Equation (6) can be projected onto a set of eigenstates using
|ψ(t)〉 = ∑

n an(t)|ψn〉,
∂ρnm

∂t
= 1

ih̄

∑
l

(Hnlρlm − ρnlHlm) + Dnm[ρ]. (7)

The sum should run over a complete set of eigenstates, but
in our case we approximated it by the five states calculated
around zero detuning as given in Fig. 1(c). In the range around
ε = 0, this approximation proved to be good [34]. We call
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ε0 the detuning used to project Eq. (6) in the corresponding
set of states {|ψn〉}. Incoherent effects are included in Eq. (7)
within the relaxation-time approximation as transition rates
between different states in our vector space, and are given by
the Lindblad superoperators L[A]ρ (see Appendix A). While
Eq. (7) is projected onto the reference set {|ψn〉} calculated at
ε0, the incoherent state transitions have to be defined in terms
of the instantaneous set {|ψα〉} calculated at the instantaneous
detuning ε(t). We use for the latter states Greek letter indices.
The incoherent contribution to Eq. (7) reads

Dαβ[ρ] =
∑
γ,δ

�αβ,γ δ ργ δ, (8)

where �αβ,γ δ are defined for transitions between eigenstates
calculated at the instantaneous detuning ε(t). Before adding
Eq. (8) to Eq. (7), we must change basis {|ψα〉} → {|ψn〉},
yielding

Dnm[ρ] =
∑
p,k

Mnm,pk ρpk, (9)

Mnm,pk =
∑

α,β,γ,δ

〈ψn|ψα〉〈ψm|ψβ〉�αβ,γ δ〈ψγ |ψp〉〈ψδ|ψk〉.

(10)

The transition rates �αβ,γ δ are discussed in the next subsection
and they are explicitly given in Appendix A.

C. Charge transport cycle

Nanowire DQD systems work as tunneling devices. The
system has a charge transport cycle that loads and empties the
DQD. The specific charge cycle we consider starts with only
one electron in the left quantum dot, i.e., occupation (1,0) as
shown in Fig. 2(a). Then, a second electron is loaded into the
right quantum dot [closer to the source lead; cf. Fig. 1(a)],
creating a state with occupation (1,1). This state can be either
singlet, S(1,1), or triplet, T0(1,1), T±(1,1). The singlet has no
restriction imposed by the spin blockade and it can, if energy
level alignment favors, couple to the singlet S(2,0). This state,
with two electrons on the left quantum dot, being closer to the
drain lead, produces current and empties the DQD, returning
the system to the initial occupation (1,0). On the contrary,
the triplet states (1,1) are spin blocked, which allows for an
initialization procedure for the two-electron system in a known
spin configuration.

In this work, we construct a model for the charge trans-
port cycle representing the loading and unloading processes
described above. The model takes into account the spatial and
spin degrees of freedom of the states, given by the eigenstate so-
lutions from Sec. II A. For that, we introduce an auxiliary state
representing the one-electron state |(1,0)〉 [23,38]. This state
is added to the five two-electron eigenstates already discussed
(see Appendix A). As mentioned above, the loading/unloading
of the DQD is governed by singlet and triplet characters of the
states. However, as shown in Fig. 1(d), the spin characters are
functions of the detuning and, in addition, the dynamics is
intended to be done under time-dependent detunings. Because
of this singlet-triplet mixing, we have to ascribe rates for the
loading and unloading processes connecting |(1,0)〉 to all the
other five two-electron states. This is represented in Fig. 2(b),

where γL(U ) is a global prefactor that is used to control the
intensity of the processes and they are the only free parameters
in the model. The detuning-dependent rates for each state
{|ψα〉} are given by lα and uα as discussed next.

The eigenstates calculated in Sec. II A are used to obtain
the detuning-dependent loading/unloading rates lα/uα . The
proximity of the two-electron state to the source and drain leads
is important for generating current, so we show in Figs. 2(c)
and 2(d) the probabilities of finding one electron on the left and
right quantum dots of the DQD, respectively. We create a rate
for the loading process lα to be proportional to the probability
of the state to be closer to the source lead at the right, Fig. 2(d).
Now, the probability for unloading uα is given by the product of
the probabilities of the state to be closer to the drain [Fig. 2(c)]
times the singlet character of the state, given in Fig. 1(d). The
latter is to ensure the lift of the spin blockade. The resulting
unloading rates uα as function of detuning are in Fig. 2(e).

Finally, the rates lα and uα are used to obtain �αβ,γ δ

in Eq. (8) in the instantaneous basis set {|ψα〉}. We use
Lindblad superoperators to take into account the incoherent
contributions and the details of such a derivation are described
in Appendix A. The numerical procedure used to include the
detuning-dependent rates in the time evolution Eqs. (7) and (8)
is given in Appendix B.

D. Multitarget optimal control

QOCT is often concerned with driving an initial known
state to a desired target state by means of the shaping
of an external control field [39]. There are several control
algorithms to perform this goal. In particular, the control
field can be efficiently designed through a monotonically
convergent algorithm known as the two-point boundary-value
quantum control paradigm, where the optimized control field
is found interactively [40]. Of extreme relevance for quantum
computing is the fact that we can formulate the QOCT problem
to optimize several transitions simultaneously with the same
external field. This kind of optimization is closely related to
the implementation of a quantum gate, which is a unitary
transformation that acts on any linear combination of the
logical basis states. The key is to construct an optimized field
that acts appropriately on each state of the logical basis plus a
particular linear combination of all states of the logical basis.
This last constraint imposed on the optimized field is necessary
to avoid relative phase errors [41,42]. We refer to this approach
as the multitarget optimal control algorithm and we apply this
procedure to our system in order to find optimized electric
fields F (t) aiming at performing the set of universal quantum
gates. Details of the multitarget QOCT used here are in the
Appendix C.

III. RESULTS AND DISCUSSION

In this section we present the simulation results and discuss
the effects of the incoherent processes due to the charge
transport cycle and charge noise.

A. Spin dynamics under charge transport cycle

To illustrate the control of the spin dynamics in the nanowire
DQD, we present results for applied detuning pulses which
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FIG. 3. (a), (b), (c) The initial state is |(1,0)〉 and the detuning
is kept constant at ε0 = −0.09 meV. Charge cycle rates are γU (L) =
2 GHz. (a) State occupations as function of time. (b) |(1,0)〉occupation
and (c) the other state occupations after 30 ns of simulation. (d)
Simulation with a stepped detuning pulse given in (f) by the green
curve. The state projections are in the eigenstate basis calculated at ε0.
The color scheme is the same as in (a). (e) Simulation with a sinusoidal
pulse given in (f) by the blue curve. Insets in (d) and (e) show similar
dynamics but with zero charge cycle γU (L) = 0. (f) Detuning pulse
profiles as a function of time.

force the state to traverse an energy avoided crossing. In
Fig. 3(a) we demonstrate the charge cycle effects, first without
the detuning pulses. The system is prepared in the initial state
|(1,0)〉 and the detuning remains fixed at ε0 = −0.09 meV [or
F = 220 V/cm; cf. Fig. 1(a)]. The charge cycle intensity is
set as γU = γL = 2 GHz [15]. The evolution shows the initial
state being distributed among the other two-electron states,
and a stationary regime sets in with the occupation of the
triplet states T±(1,1) being ∼50% each, all the other being
close to zero. This evolution has been mentioned before as the
initialization process under spin blockade, in this case without
the thermalization effects, i.e., processes that favor transitions
from the more energetic state to the less energetic states.

The time necessary to reach the stationary regime and the
steady-state values of the triplets (1,1) depends on the detuning
ε0, as shown in Fig. 3(c), where we note a strong ε0 dependence
of the occupations around zero detuning. The reason for the
unbalance between steady values of triplets (1,1) has to do with
the loading/unloading rates which are detuning dependent. For
instance, in the case ε0 � 0, T−(1,1) mixes more with S(2,0)
than T+(1,1) does; consequently for T−(1,1) the unloading
rate is stronger than its (re)load rate, therefore favoring a larger
steady occupation of T+(1,1). It is also interesting to note the
increase of the T0 steady occupation around zero detuning, an
effect which is related to the position-dependent g factor g(x).
All this is consistent with the dependence of the rates on the
detuning as given in Figs. 2(d) and 2(e). Figure 3(b) shows
the occupation of the state |(1,0)〉 which gives a measure of
the steady current through the DQD, I ∼ γL

∑
α lαρ66, where

the index 6 refers to the |(1,0)〉 state. The current is more intense
around zero detuning, meaning that the Coulomb and spin
blockades are lifted at ε0 
 0 [13,35,36]. The double-humped
curve reflects the fine details of the remnant spin blockade, or
the triplet occupations [Fig. 3(c)], which however has not been
experimentally observed [35]. One can expect this, since our
model lacks additional relaxation channels [21]: (i) inelastic
scattering processes, (ii) hyperfine contributions, and more
importantly (iii) charge noise effects (treated in Sec. III C) that
can hide the double-hump feature.

Subsequently, the initial state is driven through an avoided
crossing by a detuning pulse. The initial state is now chosen
to be the triplet T+(1,1) at ε0 = −0.05 meV. We exemplify
an attempt to make the transition T+(1,1) → S(1,1), starting
and finishing at the same detuning ε0. The electric field pulse
[Fig. 3(f), green color] has a forward ramp (increasing ε) that
is faster than the return ramp. This choice is intended to control
the LZ tunneling probability which depends on the speed of
approaching the avoided crossing. The initial fast approaching
to the avoided crossing T+(1,1)-S(2,0) favors the state to
remain T+(1,1), and the slow return favors the transition to
S(1,1). Figure 3(d) shows the occupations ρn′n′ in time as seen
by projections of the state on the eigenstate basis at ε0, {|ψn′ 〉}.
As expected, the forward passage through the avoided crossing
kept mostly the state at T+(1,1), and the slow return enhanced
the transition to the target state S(1,1) with an efficiency of
∼20% right at the end of the pulse (t = 2 ns). Applying the
same scheme, but with zero charge cycle rates γU (L) = 0, the
inset in Fig. 3(d) shows a much higher efficiency of ∼90%.

The above example of spin dynamics with detuning pulses
operating at the avoided crossings shows an important aspect of
the nanowire DQD system which we have already mentioned
in Sec. I A. The spin dynamics is mediated by the state S(2,0),
which is also the state that triggers the charge cycle and its
corresponding incoherent dynamics. The slow return ramp in
the pulse profile of the above example, needed to enhance the
LZ transition T+(1,1) → S(1,1), populates S(2,0). Moreover,
the slow speed of this ramp makes things worse because
the system stays in the strong charge cycle regime while
performing the desired transition. As a result, we obtained
a small efficiency for the transfer T+(1,1) → S(1,1) when
including charge cycle relaxation.

There are however means to overcome this prejudicial
aspect by controlling several parameters that define the
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FIG. 4. Implementation of the CNOT gate. Panels (a) to (d):
Occupation dynamics for the system initially prepared in states
T+(1,1), S(1,1), T0(1,1), and T−(1,1), respectively. (e) Optimal
detuning field for the CNOT gate, and (f) corresponding power
spectrum, in arbitrary units. The initial and final detuning is ε0 =
−0.03 meV.

dynamics of the LZ transitions. These parameters alter the
phase differences between the state components when the
state traverses an avoided crossing, and therefore they affect
significantly the interference effects behind the LZ transition.
Similarly, there is the possibility of using multiple and brief
passages through the avoided crossing. This is interesting
because it can have a cumulative effect. Consequently, faster
detuning ramps can be repeatedly used to accomplish a
desired transition, however without the nanowire DQD being
subjected to the strong charge cycle for long period of times.
In Fig. 3(f), the blue curve depicts a pulse profile of another
attempt to perform the transition T+(1,1) → S(1,1), starting
and finishing at the same detuning ε0. It consists of an initial
very fast drive from ε0 = −0.04 meV to εc = 0.01 meV,
through the avoided crossing T+(1,1)-S(2,0), followed by
five back and forth avoided crossing passages in a sinusoidal
form, ε(t) = εc + εac sin(2πf0t), with εac = 0.03 meV and fre-
quency (f0 = 4.45 GHz) matching the energy of the transition
T+(1,1) → S(1,1) at ε0. Finally, the detuning is returned to ε0.
In Fig. 3(e), we plot the state occupations as function of time
for projections onto the eigenstate basis for ε0. The cumulative
effect is clearly seen as the initial state T+(1,1) is progressively
transferred to the target state S(1,1). In this case, the transfer
efficiency is ∼52% (at t = 1.2 ns) for the charge cycle rates
γU (L) = 2 GHz, and ∼86% (inset) without charge cycling,
i.e., γU (L) = 0.

FIG. 5. Mean fidelity as a function of the charge cycle intensity
(γ = γL = γU ) for the universal set of quantum gates: CNOT [red
solid (open) spheres without (with) the change noise effect], H ⊗ 1
(open triangles), 1 ⊗ H (open squares), T ⊗ 1 (solid triangles), and
1 ⊗ T (solid squares). All cases with detuning ε0 = −0.03 meV and
tf = 1.2 ns. The inset shows the mean fidelity for the CNOT* gate
as a function of the detuning noise spread σ0, for ε0 = −0.03 and
−0.06 meV, and γ = 1 GHz.

In Appendix D we explore details of the sinusoidal
excitation by varying the parameters defining its detuning
pulse.

B. Implementation of quantum gates

We now turn our attention to the implementation of quantum
gates. The pulse profiles we search for are now much more
elaborated than the examples discussed in the previous section.
So, we make use of the multitarget control algorithm (see
Appendix C) to find the optimized pulses for some quantum
gates. In Fig. 4 we show the results of the implementation of
the controlled-NOT gate in the DQD. The CNOT gate operates
on two qubits, flipping the second qubit only if the first qubit
is in the state |1〉. In DQD, the qubit basis has been identified
as follows: |00〉 ↔ T0(1,1), |01〉 ↔ T−(1,1), |10〉 ↔ T+(1,1),
and |11〉 ↔ S(1,1).

The multitarget algorithm calculations have been carried
out to find the optimal electric field with the final time fixed to
tf = 1.2 ns and the charge cycle is omitted (γU (L) = 0) in order
to keep computational times in an acceptable range. Once the
optimal electrical field pulse is found [panel (e)], we turn on
the charge cycle intensity to γU (L) = 0.5 GHz and calculate
the occupation dynamics for the optimal field. The results are
in panels (a) through (d) for the system initially prepared in
states T+(1,1), S(1,1), T0(1,1), and T−(1,1), respectively. It
can be noticed that the gate is implemented with relatively high
efficiency even under the effects of the very fast decoherent
channel, as also shown in Fig. 5 for varying γU (L). It should be
emphasized that the single optimal electrical field [panel (e)]
is capable of performing the CNOT gate and drives the states
|00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and |11〉 → |10〉 with
fidelity higher than 0.85, as is also shown in Fig. 5. The analysis
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of the Fourier power spectrum of the optimal electrical field,
shown in panel (f), reveals its frequency structure, comprising
a broad frequency range up to 70 GHz. Some of the main
peaks can be related to state-to-state transition frequencies. For
instance, the highest peaks at around 4.2 and 7.7 GHz are close
to the resonance frequencies of the T+(1,1) ↔ S(1,1) and
S(1,1) ↔ S(2,0) transitions, respectively. Nevertheless, such
optimal field cannot be obtained by adjusting a few parameters
in a guessed pulse, which emphasizes the relevance of quantum
control theory in the implementation of universal quantum
gates.

Furthermore, we have made an analysis of the influence of
decoherence effects on the following universal set of quantum
gates {>CNOT, H ⊗ 1, 1 ⊗ H, T ⊗ 1, and T ⊗ 1}, where H is the
Hadamard gate, T is the π/8 gate, and 1 is the identity. In Fig. 5,
we plot the mean fidelity for these gates as a function of the
charge cycle intensity γ = γL = γU . A relatively small ∼15%
decrease of the mean fidelity is observed when increasing the
charge cycle frequency up to 2 GHz. The fidelity F (ρ,σ ) =
(Tr[

√√
ρσ

√
ρ])2 is the measure of the distance between the

density matrices ρ and σ , whereas the mean fidelity of a gate
is defined as the mean of fidelities between different initial
density matrices ρi evolved [like in panels Fig. 4(a)–;4(d)] up
to the final time tf and the density matrices obtained from
the application of the gate operator O in the respective initial
density matrices, as follows:

Fm = 1

5

5∑
j=1

F (ρj (tf ),Oρj ), (11)

where ρ1 = |00〉〈00|, ρ2 = |01〉〈01|, ρ3 = |10〉〈10|,
ρ4 = |11〉〈11|, ρ5 = |ψ5〉〈ψ5|, where |ψ5〉 =
(|00〉 + |01〉 + |10〉 + |11〉)/2. As previously mentioned,
ρ5 is included to prevent relative phase errors that could
occur when dealing separately with ρi , i = 1 . . . 4. The pulse
duration tf and the reference detuning ε0 are parameters that
influence the effectiveness of the mean fidelity. The final
time tf = 1.2 ns and the reference detuning ε0 = −0.03 meV
maximize the mean fidelity of the CNOT gate and such
parameters were used in all results of Figs. 4 and 5. The
dependence on tf is further discussed in Sec. III D.

In Fig. 6 we plot the optimal detuning fields and the corre-
sponding power spectrum for all one-qubit gates presented in
Fig. 5. Through the power spectra, one can notice the frequency
decomposition signature of each gate, which has frequencies
up to 100 GHz.

C. Theoretical model for the Gaussian noise

Background charge fluctuations (charge noise) is a signifi-
cant issue in experimental conditions in nanowire DQDs [15].
In order to model this effect in our simulations, we assume the
charge noise as slow (<γ −1

L(U )) random sudden changes in the
detuning, such that the output of many cycle measurements
can be seen as an average over cycles in different detunings.

The dynamics with charge noise can be simulated by
the following procedure: (i) Evaluate the dynamics given by
Eqs. (6)–(10) for different values of reference detuning ε′

0.
(ii) Determine the density matrix at the final state by

FIG. 6. Optimal detuning fields for the following one-qubit gates:
1 ⊗ H (a), 1 ⊗ T (b), H ⊗ 1 (c), and T ⊗ 1 (d). The initial and final
detunings are set to ε0 = −0.03 meV and tf = 1.2 ns, as in Fig. 5.
The corresponding power spectrum for 1 ⊗ H (e), 1 ⊗ T (f), H ⊗ 1
(g), and T ⊗ 1 (h).

considering an Gaussian average as follows:

ρ(ε0,tf ) =
∫

dε′
0g(ε′

0,ε0)ρ(ε′
0,tf ), (12)

where

g(ε′
0,ε0) = 1

σ0

√
2π

exp

[−(ε0 − ε′
0)2

2σ 2
0

]
, (13)

and ρ(ε′
0,tf ) is the density matrix at the final time tf , calculated

for H (ε′
0). Finally, σ0 gives the range of detuning variations. In

Fig. 5, the charge noise effect is presented for the CNOT* gate as
a function of the charge cycle intensity, with σ0 = 0.01 meV.
The inset of Fig. 5 shows the variation of the mean fidelity of
the CNOT* gate as a function of the detuning spread σ0 for a
fixed value of the charge cycle intensity γ = 1 GHz and for
two values of initial detuning, ε0 = −0.03 and −0.06 meV.
For up to σ0 
 0.01 meV, the mean fidelity decays very fast;
afterwards the decay is slower. Although not shown here, we
found this to be independent of ε0 for values away from the
anticrossings, |ε0| � 0.02 meV, where the qubit is usually
initialized in a nonmixed spin state. Therefore, σ0 
 0.01 meV
sets an upper limit for controlling the noise degradation effects
in high-fidelity qubit operations.

D. Applied magnetic field

In this section, we present simulation results for varying the
applied magnetic field B since this is an external parameter
of the system that can be easily controlled. In our model
calculation, the B-field effects can be inferred from the energy
level diagram shown in Fig. 1(c). The increase of B basically
increases the splitting �EB between the triplets T± and
the doublet T0-S(1,1) due to the Zeeman effect [from our
numerical data: �EB(meV) 
 0.00043B, with B in mT].
Also, increasing B enhances the mixing between T0 and S(1,1)
due to the nonuniform g factor g(x). The former effect has a
direct consequence on the values of detuning εSO at which
the spin-orbit avoided crossings [between T± and S(2,0)] take
place. As the Zeeman splitting �EB depends linearly on B,
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FIG. 7. Optimized mean fidelity as a function of the applied
magnetic field B for the gates T ⊗ 1 (blue), H ⊗ 1 (black), and CNOT

(red). The initial and final detunings are set to ε0 = −0.06 meV and
the final evolution time tf is 0.125 ns (a), 0.25 ns (b), 0.5 ns (c), and
1.2 ns (d). The inset shows the energy levels as a function of detuning,
as in Fig. 1(c), with the Zeeman splitting �EB and schematically the
phase � accumulated during a detuning pulse ε(t).

small values of B make εSO to decrease to a point in which
spin-orbit avoided crossings merge with the interdot tunneling
avoided crossing �ES between S(1,1) and S(2,0) (from our
data, �ES = 0.018 meV). Equating these splittings we find
that this merge occurs for B � 40 mT.

In Fig. 7 we present the results for the optimized mean
fidelity for three quantum gates: CNOT, H ⊗ 1, and T ⊗ 1. The
optimization again is done without charge cycle relaxation for
the sake of reasonable computational times, although here we
focus on faster gate operations (tf � 1 ns) where this effect can
be partially discarded. Each panel of Fig. 7 is calculated for a
chosen final time tf and the initial and final detuning values
are ε0 = −0.06 meV. Panel (d) is for a longer tf = 1.2 ns,
which is the same used in Figs. 4–6 (although for these figures
ε0 = −0.03 meV). Three interesting features are seen: (i) an
oscillatory behavior for all gates as a function of B, with
B period ∝ 1/tf , (ii) an increase in the mean fidelity for
increasing tf , and (iii) the simpler gates T ⊗ 1 and H ⊗ 1
resulted in higher optimized mean fidelities than the two-qubit
gate CNOT, for tf � 1 ns. Additionally, we have not observed

any significant effect related to the merging of spin-orbit and
interdot tunneling splittings (for B � 40 mT) as discussed
above.

Features (ii) and (iii) are expected since large tf allows
the multitarget algorithm to accommodate changes in the field
profile for better optimization. Feature (i) can be understood by
identifying the main energy difference between the states that
contributes to phase accumulation during the gate operation.
This is the aforementioned Zeeman splitting �EB which is
approximately detuning independent [cf. inset in Fig. 7(d)];
therefore no matter the detuning values used in the pulse,
this energy difference remains unchanged. During the gate
operation, the state becomes a mixing of the five eigenstates
(inset), and the phase accumulated � associated with �EB ,
during a fixed pulse operation tf , can have a constructive
interference for �EBtf = 2πh̄. From this results a B period of
oscillation ∝ 1/tf and, for tf = 0.5 ns we obtain a B period of
19.2 mT, which is in very good agreement with Fig. 7. Feature
(i) is particularly important for implementing very fast gate
operations (>1 GHz) because it shows that �EB and tf cannot
be chosen independently if maximum fidelity is pursued.

IV. CONCLUSIONS

We have investigated the control of qubit dynamics in
nanowire DQDs. The eigenstates of the system were solved
for two-electron occupation in a quasi-one-dimensional model,
including spin mixing via spin-orbit interaction. The eigen-
states were used to construct a model for the charge transport
cycle in the DQD. The transport model incorporates the spin
mixing and the spatial distribution of charge in the dots. In
this way, only two free parameters (γL(U )) are needed, and
they control the intensity of the transport cycle. Aiming at
obtaining fast spin dynamics, the simulations were performed
for detunings close to the energy level avoided crossings, where
charge cycle effects are more important. For simple profiles
of the detuning pulse (stepped and sinusoidal), fast (∼ns)
triplet-singlet transitions are possible with high efficiency as
long as the singlet state S(2,0) is occupied for short times
(γ −1

L(U )).
We have also simulated the set of universal quantum gates

on a very fast timescale∼1 ns with a high fidelity, by employing
the multitarget formulation of QOCT. Degradation of about
15% of the fidelity of the gate operations was observed when
including fast (>1 GHz) charge cycle effects, and an additional
∼20% degradation when charge noise effects were taken into
account. Nevertheless, the optimal control fields for the set of
universal quantum gates have pulse profiles which can be tested
in future experimental investigations. Optimized fidelity was
also obtained for the gates varying the magnetic field B. For
gates faster than 1 GHz, we observed an oscillatory dependence
of the fidelity with B, which points out to us that the choice of
B has to be related to gate operation time tf for better efficiency
of the operation. We have shown, for the particular DQD
system investigated, that the QOCT is a protocol very useful to
implement quantum gates, with great potential to be applied in
any platform, especially those where noise has a small impact
on the fidelity. If the system dynamics can be manipulated
faster than all decoherent channels, such a protocol will be
able to implement quantum gates with great success.
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APPENDIX A: MASTER EQUATION: INCOHERENT
TIME EVOLUTION

The incoherent contributions to the master equation Eq. (7)
are written in terms of Lindblad superoperators L[A]ρ =
AρA† − 1

2 (A†Aρ + ρA†A). They describe the effects of the
charge loading and unloading on the system in the Born-
Markov approximation, where the operator A represents tran-
sitions between the one-electron state |(1,0)〉 and the two-
electron states |ψα〉, α = 1,2, . . . ,5, and vice versa. Each
transition is considered independent of each other; i.e., the
loading process operator is given by AL

α = √
γL lα |ψα〉〈(1,0)|

and the unloading process operator is given by AU
α =√

γU uα |(1,0)〉〈ψα|, which are defined at the instantaneous
detuning using the basis {|ψα〉}. γL(U ) is a free parameter used
to set the intensity of the charge cycle and lα (uα) are the
rates shown in Fig. 2(d) [Fig. 2(e)] for the loading (unloading)
process.

The projections of the incoherent terms of the master
equation onto the reference eigenstate basis set {|ψi〉}, with
the Lindblad terms in the instantaneous set {|ψα〉}, read

Dm′n′ [ρ(t)] =
5∑

α=1

6∑
α′,β ′=1

{
Gm′n′,α′β ′

[
L

[
AL

α

]
ρ

]
α′β ′

+Gm′n′,α′β ′
[
L

[
AU

α

]
ρ

]
α′β ′

}
, (A1)

where Gm′n′,α′β ′ = 〈ψm′ |ψα′ 〉〈ψβ ′ |ψn′ 〉 and [L[AL(U )
α ]ρ ]

α′β ′ =
〈ψα′ |L[AL(U )

α ]ρ |ψβ ′ 〉. Here, primed indices refer to the
extended basis sets including the two-electron eigenstates
{|ψα〉} plus the one-electron state |(1,0)〉, i.e., {|ψα′ 〉} =
{{|ψα〉},|(1,0)〉}. The state |(1,0)〉 is considered independent
of the detuning, orthogonal to the other states, and shows no
coherent dynamics when Eq. (7) is extended to include it, i.e.,
Hm′n′ = 0 if either m′ or n′ = |(1,0)〉.

Equation (A1) can be recast in the form of Eqs. (9) and (10)
with all �α′β ′,γ ′δ′ being zero, except those listed below:

�α′β ′,α′β ′ = − 1
2 γU [uα′ + uβ ′ ], for α′ and β ′ �= 6, (A2)

�α′6,α′6 = − 1
2 [γL w + γU uα′], for α′ �= 6, (A3)

w =
5∑

α=1

lα, (A4)

�α′α′,66 = γL lα′ , for α′ �= 6, (A5)

�6β ′,6β ′ = − 1
2 [γL w + γU uβ ′], for β ′ �= 6, (A6)

�66,γ ′γ ′ = γU uγ ′ , for γ ′ �= 6, (A7)

�66,66 = −γL w. (A8)

In these equations, the index 6 refers to the |(1,0)〉 state.

APPENDIX B: DETUNING-DEPENDENT RATES:
NUMERICAL PROCEDURE

Consider the system being initialized in a given detuning,
which can be the one used as reference to project Eq. (7),
i.e., ε0. The initial state is chosen and written in terms of
a density matrix with components projected in the reference
basis {|ψn′ 〉}. When the detuning changes in time, the dynamics
follows Eqs. (7) and (8), and the incoherent processes of
loading/unloading of the DQD are calculated at the instan-
taneous basis set {|ψα〉}, as discussed in Appendix A. For each
change in the detuning, a transformation between basis sets
{|ψα〉} ↔ {|ψn〉} is needed, as shown in Eq. (10). Numerically,
in order to speed up the calculations, a number of basis
sets for given values of detunings are previously calculated,
and so are the matrices Eq. (10). As the detuning varies in
time, we interpolate the instantaneous detuning to the closest
one previously calculated. We have calculated a set of 150
basis sets, spanning detuning fields F = 214–244 V/cm, in
steps of �F = 0.2 V/cm. This range of F comprises the
avoided crossings [cf. Fig. 1(a)], where the dependence on the
detuning is mostly important. It is also the range of detunings
in which we perform the spin dynamics under the LZ effects in
this work.

APPENDIX C: MULTITARGET QOCT

Multitarget QOCT is related to the precise evolution of
an initial set of states to a set of target states through the
control field. The well-known variational [41] and the Kro-
tov [42] methods have been employed to perform such a
task. In this study, we employ the monotonically convergent
algorithm known as the two-point boundary-value quantum
control paradigm (TBQCP) [40]. We refer to this approach
as the multitarget QOCT and we apply this procedure to our
system in order to find the optimized electric field Fopt (t) that
performs quantum gates. The method starts with the definition
of the boundary conditions, which are the set of initial states
described by {ρj (0)}, where j = 1, . . . ,N and the desired set
of observables {Oj (tf )}, at the final time tf . Observables are
evolved backwards (from the final time tf to the initial time
t = 0) through the following equation:

∂O
(n)
j (t)

∂t
= 1

ih̄
[H0−μF (n)(t),O(n)

j (t)], Oj (tf ) → O
(n)
j (0),

(C1)

where H0 is the time-independent Hamiltonian of the system,
μ is the dipole matrix, whose matrix elements are μi,j =
−e〈ψi(x1,x2)|(x1 + x2)|ψj (x1,x2)〉, and F (n)(t) is the field in
the nth iteration of the method. The set of initial states described
by the density matrices {ρj (0)} are evolved forward with the
equation

∂ρ
(n+1)
j (t)

∂t
= 1

ih̄
[H0 − μF (n+1)(t),ρ(n+1)

j (t)],

ρj (0) → ρ
(n+1)
j (tf ), (C2)
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where F (n+1)(t) is the (n+1)st iteration field, which is calcu-
lated through the following expression:

F (n+1)(t) = F (n)(t) + ηS(t)
N∑

j=1

f
(n+1)
j (t). (C3)

In Eq. (C3), η is a positive constant, S(t) is a positive function,
and the field correction is given by

f
(n+1)
j (t) = − 1

ih̄
Tr

{[
O

(n)
j (t),μ

]
ρ

(n+1)
j (t)

}
. (C4)

Equations (C1)–(C4) are solved in a self-consistent
way, starting with the trial field F (0)(t) and monotonically
increasing the value of the desired physical observable
〈Oj (tf )〉 = Tr{ρj (tf )Oj (tf )}. As an example, let us
consider the CNOT as the quantum gate that must
be implemented. In such a case, the initial set of
states are {ρ1(0) = |00〉〈00|,ρ2(0) = |01〉〈01|,ρ3(0) =
|10〉〈10|,ρ4(0) = |11〉〈11|, and ρ5(0) = |ψ5〉〈ψ5|}, where
|ψ5〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2. The last state
described by ρ5 is included to prevent relative phase
errors. The set of target observables is respectively
given by {O1(tf ) = |00〉〈00|,O2(tf ) = |01〉〈01|,O3(tf ) =
|11〉〈11|,O4(tf ) = |10〉〈10|, and O5(tf ) = |ψ5〉〈ψ5|}. In
all numerical calculations, we have used the following
parameters: η = 0.0005, S(t) = sin2 (π t/tf ), F (0)(t) =
0.035 V/cm, and run 4000 iterations of the multitarget
QOCT.

APPENDIX D: DETAILS OF THE SINUSOIDAL
PULSE EXCITATION

The sinusoidal excitation has a detuning pulse given by
ε(t) = εc + εac sin(2πf t). Some results were presented in
Figs. 3(e) and 3(f); now we discuss the results in Fig. 8
varying εac,εc, and f . Panel (a) shows the final occupations
as a function of the amplitude of the applied pulse εac, in
which an oscillatory behavior is observed with a maximum
S(1,1) transfer at εac = 0.03 meV, as used for Fig. 3(e). Panel
(b) shows the effects of varying both the amplitude εac and
the center of oscillation εc. Again, oscillatory behavior due
to interference effects of the LZ transition can be seen. In
particular, very small S(1,1) transfer is achieved if |εc| > εac,
that is, if the avoided crossing is not reached during the ac
pulse. This gives a V-shaped pattern in Fig. 8(b). Both panels
(a) and (b) were obtained for zero charge cycle, γU (L) = 0,
in order to enhance the observed effects. When the charge
cycle is included, the occupation transfers decrease. This can
be seen in panels (c) and (d), where the frequency of the ac
pulse was varied with respect to the resonant frequency of the
transition T+(1,1) → S(1,1) at ε0 = −0.04 meV. At resonance
f = f0 = 4.45 GHz, a strong S(1,1) transfer is observed. For
a little higher frequency f/f0 = 1.22, similar resonant transfer
occurs for T+(1,1) → T0(1,1), consistent with the alignment
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FIG. 8. Results for sinusoidal pulses similar to Fig. 3(f), ε(t) =
εc + εac sin(2πf t), where f is a frequency close to the resonant
frequency f0, i.e., hf0 = ES(1,1) − ET+ at ε0 = −0.04 meV (f0 =
4.45 GHz). (a) State occupations, after 5 oscillations, as function of
the detuning pulse amplitude εac and with εc = 0.01 meV. (b) S(1,1)
occupation after five oscillations of the sinusoidal pulse as function
of εac and εc. The vertical dashed line corresponds to the scan given
in (a). (c) Final occupations after five oscillations of the sinusoidal
pulse as function of the pulse frequency f in respect to f0 (in log
scale), with (ε0,εc,εac) = (−0.04,0.01,0.03) meV. (a), (b), and (c)
are calculated with zero charge cycle γU (L) = 0. (d) The same as in
(c) but with γU (L) = 2 GHz. The color scheme in (a) applies also to
(c) and (d). Colored arrows indicate some harmonic excitations of the
T+(1,1) → S(1,1) transition.

of the energy levels [Fig. 1(c)]. For f/f0 < 1, a large number
of resonance peaks is seen, which is mostly due to the harmonic
excitation of the interlevel transitions. As measured [15] and
simulated [23,43], odd (even) harmonics at εc 
 0 enhance
(deplete) the interlevel transfer, as pointed by the red (blue)
arrows in Fig. 8(c) for the S(1,1) transfer. The inclusion of
the charge transport cycle, panel (d), retains the effects but
in a less pronounced way, especially for lower frequencies,
for which longer times of simulations are needed in order to
maintain fixed the 5 oscillations in the pulse, therefore favoring
the action of charge cycle relaxation.
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