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Surface mode enhancement of the Goos-Hänchen shift in direct reflection off antiferromagnets
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We examine how, in the presence of an external magnetic field, the Goos-Hänchen shift for terahertz radiation
reflected, at oblique incidence, off an antiferromagnet can show significantly enhanced values under the right
circumstances. Such enhanced shifts, which have associated absorptions in the presence of damping, occur
in one of the magnon reststrahl regions and are related to the excitation of surface resonances, which can be
considered as extensions of surface polariton modes into the reflectivity regime. Although the enhancement of
the Goos-Hänchen shift due to surface modes is well known in the attenuated total reflection configuration using
a three-layer prism geometry, such effects have not previously been reported in direct reflection and only occur
here due to the presence of the externally applied field. We confirm the effect using simulations for reflection off
MnF2 at low temperature and show that only a small applied field is necessary to induce a significant enhancement
along with an associated sharp absorption. For a larger field, the effects are less distinct.
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I. INTRODUCTION

In conventional optics, a finite beam reflected from a plane
surface is considered to reflect from the point at which the
incident beam strikes the surface. In many situations, however,
the reflected beam can undergo a lateral shift, known as
the Goos-Hänchen shift, along the surface. Original studies
concentrated on such a shift in total internal reflection [1], but
recent works have shown examples where the phenomenon
may occur on external reflection from air or vacuum if there
are evanescent fields in the second medium [2–5].

There are several ways of interpreting such shifts. We par-
ticularly note the plane wave interference (angular spectrum)
model [6–8] and the energy conservation model [9–11]. In
the first approach, the incident beam is considered to be made
up of a series of plane waves, each with a slightly different
incident angle. If the interference between the plane waves of
the reflected beam is slightly different from that of the incident
beam, this can appear as a lateral shift of the reflected beam.
The second approach interprets the shift as arising from energy
flow along the surface associated with the evanescent fields in
the second medium.

Several studies have shown how surface polaritons can en-
hance the Goos-Hänchen shift [12–17]. True surface polaritons
are characterized by exponential field decay on either side of
the interface. Since the incident beam in a reflection experiment
is, by definition, propagating, one cannot normally excite such
polaritons in direct reflection, so a two-layer geometry is
not sufficient. Thus a multilayer system is usually necessary,
typically an attenuated total reflection setup in which the
incident layer is a prism, the incident angle within the prism
being greater than the critical angle for total internal reflection.

In this paper we show how, on reflection from the right
type of medium, there can be an enhanced shift related to

*Corresponding author: tdumelow@yahoo.com.br

surface polaritons even in simple reflection from a semi-infinite
crystal. The crystal considered here is an antiferromagnet, and
the experiment is to be conducted in the presence of an external
field.

It has already been demonstrated that Goos-Hänchen shifts
on reflection off magnetic media of this type can display
a number of unusual properties [18–22]. The shifts, which
occur in the region of the magnon resonance frequencies,
are typically tunable using an externally applied field. They
may be nonreciprocal and even occur at normal incidence
[18,19]. In the case of the simulations of direct reflection off
MnF2 presented by Macêdo et al. [21], the shifts appear to be
enhanced at certain frequencies, as pointed out by Savchenko
et al. [23], who considered such enhancements in the case
of zero absorption. In the present paper we show that these
enhancements can be regarded as due to surface resonances,
directly related to surface polariton modes. We use a different
geometry from that studied by Macêdo et al., however, as much
smaller fields are required to achieve the same effect.

The structure of the paper is as follows. In Sec. II we present
the basic methodology used in calculating the reflectivity and
Goos-Hänchen shift. In Sec. III we present results in the
absence of absorption and use a simple power flow model to
show the condition for the enhanced shift. In Sec. IV we include
damping effects and calculate surface resonance frequencies.
The enhanced shifts are seen to occur at such frequencies, at
which there are also sharp absorption dips. These phenomena
are used to give a better physical description of the modes.
Finally, in Sec. V, we summarize the results and present
concluding remarks.

II. BASIC DISLOCATION CALCULATION

The calculation of the Goos-Hänchen shift, using the
angular spectrum approach, in oblique incidence reflection
off an antiferromagnet in the Voigt geometry has previously
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FIG. 1. Geometry considered in this paper for reflection of a finite
beam off an antiferromagnet.

been presented by Lima et al. [20]. Here we summarize the
procedure.

We consider reflection from a semi-infinite antiferromagnet
in the geometry shown in Fig. 1. A finite beam is incident from
vacuum at an angle θi in s polarization (E-field perpendicular to
the plane of incidence). The antiferromagnet easy axis is along
y, perpendicular to the plane of incidence, as is the applied field
B0. D represents the lateral displacement of the reflected beam
along x.

At frequency ω, the antiferromagnet permeability tensor in
this geometry is of the form [24]

μ =

⎛
⎜⎝

μ1 0 iμ2

0 1 0

−iμ2 0 μ1

⎞
⎟⎠ , (1)

where

μ1 = 1 + μ0γ
2BAMS(Y+ + Y−), (2a)

μ2 = μ0γ
2BAMS(Y+ − Y−), (2b)

Y± = [
ω2

r − (ω ± γB0 + i�)2]−1
. (2c)

Here BA is the anisotropy field, MS the sublattice magnetiza-
tion, γ the gyromagnetic ratio, � the damping parameter, and
ωr the zero-field magnetic resonance frequency given by

ωr = γ
(
2BABE + B2

A

)1/2
, (3)

where BE is the exchange field. In the absence of an externally
applied field (B0 = 0), the tensor is diagonal (μ2 = 0), but
the antiferromagnet becomes gyromagnetic (μ2 �= 0) if B0 is
nonzero, leading to nonreciprocal effects.

In the geometry of Fig. 1, the s-polarized reflection coef-
ficient, i.e., the complex ratio between the Ey fields of the
reflected and incident beams, is given by [25]

r = k1zμv − k2z − ikx(μ2/μ1)

k1zμv + k2z + ikx(μ2/μ1)
. (4)

Here, μv is the Voigt permeability, given by

μv = μ2
1 − μ2

2

μ1
, (5)

and kx , k1z, and k2z are the wave-vector components in the two
layers. The in-plane component kx is the same in both media
and is given by

kx = k0 sin θi, (6)

where k0 = ω/c, and the z components in layer 1 (vacuum)
and layer 2 (antiferromagnet) are given by [25]

k1z = (
k2

0 − k2
x

)1/2
, (7a)

k2z = (
εμvk

2
0 − k2

x

)1/2
, (7b)

respectively, where ε is the dielectric constant of the antiferro-
magnet. The reflection coefficient of Eq. (4) can be expressed
in terms of an amplitude ρ and a phase φ,

r = ρ exp(iφ), (8)

with the power reflectivity R equal to ρ2.
The above results are strictly speaking true for plane waves.

However, we can consider a finite beam as a Fourier sum of
plane waves. Thus, ignoring time dependence, the incident
beam can be represented as

Ei(x,z) =
∫ k0

−k0

ψ(kx) exp[i(kxx + k1zz)]dkx, (9)

where kx is the in-plane component of the associated wave
vector and ψ(kx) is a distribution function representing the
shape of the beam.

Assuming the reflected phase is dependent on kx , the
interference between the plane wave components for the
reflected beam will be different from that of the incident beam.
McGuirk and Carniglia [8] have shown that, provided that the
distribution of kx values is sufficiently narrow (i.e., the beam
is sufficiently wide), the resulting beam profile is the same as
that of the incident beam but displaced along x by a distance

D = − dφ

dkx

∣∣∣∣
kx=kx0

, (10)

where kx0 is the kx value at the center of the distribution, i.e.,
the kx value obtained from Eq. (6) for the overall beam.

III. BEAM REFLECTION IN THE ABSENCE
OF ABSORPTION

We start by considering reflection and beam shifts in the
absence of absorption, equivalent to putting � = 0 in Eq. (2c),
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FIG. 2. (a) μ1, (b) μ2, and (c) μv plotted against wave number
ω/2πc for MnF2 in an external field B0 of +0.01 T (solid blue lines)
and −0.01 T (dashed red lines), ignoring damping.

in the case of reflection off an antiferromagnet, and consider
the condition for advanced shifts. The antiferromagnet con-
sidered here is MnF2 at 4.2 K. The material parameters used
are [26]: MS = 6.0 × 105 A/m, BA = 0.787 T, BE = 53.0 T,
and γ /2πc = 0.975 cm−1/T, corresponding to ωr/2πc =
8.94 cm−1, with a dielectric constant ε equal to 5.5.

We consider an applied field B0 of ±0.01 T, leading to μ1

and μ2 values shown in Figs. 2(a) and 2(b), respectively, where
they are plotted against frequency expressed in wave-number
units ω/2πc. The nonzero field leads to two resonances, with
the sign of B0 reversing the sign of μ2. In order to interpret
the reflectivity behavior, it is often more useful to consider the
Voigt permeability μv , given by Eq. (5), than the components
μ1 and μ2 individually. This is shown in Fig. 2(c) and is
independent of the sign of B0. It is seen once again that there
are two resonances but now the resonance frequencies, marked
as ωv1 and ωv2, are at the zeros in μ1 rather than at the poles.

At normal incidence, the regions of negative μv correspond
to imaginary k2z [see Eq. (7b)] and hence total reflection
(R = 1). For convenience, we refer to such total reflection
regions as reststrahl regions, as opposed to bulk regions in
which k2z is real and R < 1. Our main interest here is in the
upper reststrahl region, whose lower limit is ωv2, with an upper
limit that increases with incident angle [see Eq. (7b)]. The value
of μ1 in this reststrahl is always small and positive.

The resulting reflectivity for an incident angle of 45◦ is
shown in Fig. 3(a), and the two reststrahl regions are clearly

FIG. 3. Calculated (a) reflectivity, (b) phase, and (c) Goos-
Hänchen shift for reflection off MnF2 at an incident angle of 45◦

in an external field B0 of +0.01 T (solid blue lines) and −0.01 T
(dashed red lines), ignoring damping. The shaded regions represent
the bulk regions, in which k2z is real. The phase is represented in part
(b) as extending outside the range −π � φ � π in order to show its
variation as continuous curves.

seen. The reflectivity is also seen to be reciprocal, i.e., R(B0) =
R(−B0). Reciprocal reflectivity in the absence of absorption
is a well-known result [27] and has been demonstrated using
thermodynamic arguments [28]. The reflected phase φ, on the
other hand, is distinctly nonreciprocal [29], as seen in Fig. 3(b).
This nonreciprocity can be considered as the source of a
nonreciprocal Goos-Hänchen shift as represented by Eq. (10)
[20], and such nonreciprocity is seen in the shifts calculated
using this equation in Fig. 3(c).

Within the upper reststrahl region the phase passes through
zero when the applied field is negative but not when it is
positive. This can be seen from Eq. (4) when one notes that,
in the reststrahl region, the first term in both the numerator
and denominator is real, while the second and third terms
are imaginary. Thus the φ = 0 condition, which turns out
to have particular relevance in terms of enhancement of the
Goos-Hänchen shift, corresponds to

k2z + ikx

μ2

μ1
= 0 (11)
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so that, for kx positive, μ1 and μ2 must have opposite signs,
corresponding, in the upper reststrahl region, to negative B0

(see Fig. 2). Indeed, the phenomenon of the reflected phase
passing through zero does not occur in reststrahl regions in
conventional reflection setups in the absence of an external
magnetic field.

Substitution of the k2z value from Eq. (7b) into Eq. (11)
leads to the simple relation

k2
x = k2

0εμ1 (12)

for φ = 0. A similar equation was also obtained by Savchenko
et al. [23] for the antiferromagnet easy axis along x.

The frequency at which the phase passes through zero is of
particular significance because, as seen in Fig. 3(c), there is
a substantial enhancement in the Goos-Hänchen shift at this
frequency. A crude energy flow model of the type proposed by
Renard [9] shows how a shift maximum should be expected
when this condition is met. Basically, one considers beam
reflection at the interface in terms of three regions along x,
as shown in Fig. 1. Behavior in the central region can be
considered in terms of total plane wave reflection. Within the
antiferromagnet, in this region, there is energy flow along x

within an evanescent wave. Due to energy conservation, there
must be a region at one edge of the beam in which power is
entering from vacuum to the antiferromagnet and another at
the other edge of the beam where it leaves, leading to a shift
D of the beam (see Fig. 1). Assuming power flow restricted to
the xz plane, we then get

〈Si〉D cos θi =
∫ ∞

0
〈Sev〉dz, (13)

where 〈Si〉 and 〈Sev〉 are the magnitudes of the time-averaged
Poynting vectors of the incident wave in vacuum and of the
evanescent wave within the antiferromagnet, respectively.

Thus it is clear that maximizing the right hand side of
Eq. (13) will maximize the displacement D. We therefore
look at 〈Sev〉 at the interface when φ = 0 to see how this
maximization takes place. We consider an incident plane wave
with electric field

Ei = E0 exp[i(kxx + k1zz − ωt)]ây (14)

and magnetic field

Hi = H0 exp[i(kxx + k1zz − ωt)](− cos θi âx + sin θi âz),

(15)

where E0 and H0 are considered real, with 〈Si〉 = (1/2)E0H0.
Since, in the present case, phase is defined by comparing

incident and reflected Ey fields at the interface, and reflection is
total, the incident and reflected Ey components are equal when
φ = 0, interfering constructively to give an overall Ey field
equal to 2Eiy at the surface. In a similar way, the incident and
reflected Hx components cancel each other at the surface, and
the incident and reflected Hz field components interfere con-
structively leading to an overall Hz field of 2Hiz. The absolute
values of the complex amplitudes |Ey | and |Hz| therefore reach
maximum values at the interface, equal to 2E0 and 2H0 sin θi ,
respectively, with |Hx | = 0. This is seen in Figs. 4(a)–4(c)
which show the limits ±|Ey |, ±|Hx |, and ±|Hz| of the various
field components as a function of z for B0 = +0.01 T and

FIG. 4. Limits of the (a) Ey field, (b) Hx field, and (c) Hz field
with position z, normalized to incident wave values, for an s-polarized
plane wave reflected off the surface of an antiferromagnet, with
θi = 45◦, in an external field B0 of +0.01 T (left hand figures) and
−0.01 T (right hand figures). (d) Time averaged Poynting vector
along z compared to 〈Si〉. Calculations were performed at a frequency
corresponding to a wave number of 9.0087 cm−1, at which φ = 0 for
B0 = −0.01 T. The insets in parts (c) and (d) of the B0 = −0.01 T
graphs show the results on a reduced vertical scale to indicate the full
range of the values when x > 0.

B0 = −0.01 T at the relevant frequency, displaying a standing
wave pattern within the incident (vacuum) layer, corresponding
to z < 0. In the B0 = −0.01 T case, for which φ = 0, there are
thus antinodes in Ey and Hz and a node in Hx at the interface.
For B0 = +0.01 T, however, the phase φ is nearly π , and there
are nodes in Ey and Hz and an antinode in Hx close to the
interface.

Continuity across the interface means that the enhanced
Ey and Hz values in vacuum in the B0 = −0.01 T case lead to
enhanced Ey and Hz fields in the antiferromagnet. The absolute
amplitudes of the fields in the antiferromagnet (z > 0) then
become

|Ey | = 2E0 exp(ik2zz) (16a)

|Hx | = 0 (16b)

|Hz| = 2H0 sin θi

μ1
exp(ik2zz), (16c)
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where μ1 is a small positive quantity (0.017 at the frequency
considered) and k2z is imaginary, leading to evanescent decay
along z. Both Ey and Hz are in phase with each other, so there is
an enhanced average power flow 〈Sx〉, equal to (1/2)|Ey ||Hz|,
along x in the antiferromagnet for B0 = −0.01 T compared
with a negligible power flow for B0 = +0.01 T, as confirmed
by Fig. 4(d). In addition, since Hx is always zero at the
interface, there is no power flow across the interface.

The power flow Sx in the figure, in the case of z > 0,
is the same as Sev in Eq. (13), so it is straightforward to
apply the above φ = 0 results with this equation to obtain the
Goos-Hänchen shift D. The result is

D = − 2 tan θi

k0μ2
√

εμ1
. (17)

It is worth noting that this result is in exact agreement
with that obtained using the plane wave interference model,
as represented by Eq. (10), when φ = 0. Agreement between
the two models only occurs in exceptional circumstances
due to interference in the incident medium associated with
instantaneous power flow across the interface, which is not
accounted for in the Renard model [10]. In the present case,
however, Sz is always zero at the interface, and there are no
such interference effects.

In Fig. 5 we show reflection, phase, and Goos-Hänchen
shift as a function of both frequency and in-plane wave vector
kx for both B0 = +0.01 T and B0 = −0.01 T, with reflection
taking place for |kx | < k0 (θi < 90◦). Figure 5(a) shows how
the width of the reststrahl regions increases with incident angle
(or kx) and confirms that reflectivity is reciprocal for all angles
of incidence. Figure 5(b) shows the reflected phase φ, and it
is seen that, in the case of B0 = −0.01 T, the phase always
passes rapidly through zero in the upper reststrahl region, thus
appearing as a narrow white line in the figure. This does not
occur in the B0 = +0.01 T figure. Figure 5(c) shows the Goos-
Hänchen shift, which peaks along the φ = 0 line of Fig. 5(b)
for B0 = −0.01 T. This is confirmed by the crosses on the
plot which represent the solution of φ = 0 as a function of
kx . Such solutions do not exist for B0 = +0.01 T. Thus it is
confirmed that, in a model that ignores absorption, enhanced
Goos-Hänchen shifts should occur when the reflected phase
passes through zero in a reststrahl region, and it is reasonable to
expect this behavior to persist when absorption is incorporated.

IV. RELATION OF THE ENHANCED GOOS-HÄNCHEN
SHIFT TO SURFACE MODES

In this section we examine how the enhanced Goos-
Hänchen shifts discussed in the previous section can be inter-
preted in terms of a type of electromagnetic surface resonance,
based on surface polariton modes. Surface polaritons are
characterized by exponential field decay either side of an
interface. In the case of an antiferromagnet/vacuum interface
in the geometry considered here, such modes have a dispersion
relation [30]

k1z + k2z

μv

+ i
kxμ2

μvμ1
= 0, (18)

equivalent to putting the denominator of Eq. (4) equal to zero.

FIG. 5. Calculated (a) reflectivity, (b) phase, and (c) Goos-
Hänchen shift for reflection off MnF2 as a function of both wave
number and kx in an external field B0 of +0.01 T (left hand figures)
and −0.01 T (right hand figures), ignoring damping. The crosses in
part (c) represent the frequencies for which φ = 0. The dotted regions
represent the bulk regions, in which k2z is real.

In the absence of damping effects, the third term is imagi-
nary, so both k1z and k2z should also be imaginary for Eq. (18)
to be satisfied. For simple reflection, the largest possible value
of kx is k0, corresponding to θi = 90◦. For |kx | < k0, k2z is
real in the bulk regions and imaginary in the reststrahl regions,
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FIG. 6. Calculated (a) reflectivity and (b) Goos-Hänchen shift for
reflection off MnF2 as a function of both wave number and kx in an
external field B0 of +0.01 T (left hand figures) and −0.01 T (right
hand figures), taking damping into account. The solid lines represent
surface resonance dispersion curves Re(ω/2πc) vs kx . The crosses in
part (b) represent the frequencies for which φ = 0 in the absence of
damping. The dotted regions represent the bulk regions, in which k2z

is real without damping.

whereas k1z is always real. Therefore surface polaritons are
only considered as being excited for |kx | > k0. In the various
diagrams of Fig. 6 the solid curves in the region to the right
of the line marked θi = 90◦ represent such modes. There are
surface polariton modes associated with the lower reststrahl
region for both positive and negative applied magnetic fields,
although the two curves are different, indicating nonreciprocal
behavior. With regard to the upper reststrahl region, however,
there is only a surface polariton mode when the applied field
is negative.

Even though strict surface polariton modes are not possible
for |kx | < k0, it is still possible to obtain solutions, often
referred to as surface resonances, to Eq. (18) if we let either ω

or kx take complex values, thus allowing exponential decay in
both media, and in this case damping effects can be included
[31]. Thus, if we take ω to be complex, an experimental fre-
quency scan can be considered as scanning Re(ω), with some
degree of coupling to modes in the complex frequency plane.

FIG. 7. Calculated (a) reflectivity and (b) Goos-Hänchen shift for
reflection off MnF2 at an incident angle of 45◦ in an external field B0

of +0.01 T (solid blue lines) and −0.01 T (dashed red lines), taking
damping into account. The shaded regions represent the bulk regions,
in which k2z is real, ignoring damping.

Extensions of the surface polariton dispersion curves into the
region kx < k0 calculated in this way are shown in Fig. 6 using
a damping parameter [32] of �/2πc = 0.0007 cm−1 (in prac-
tice, the whole curves, including the surface polariton region
kx > k0, were calculated using this method). Figure 6(a) also
shows the variation of the reflectivity with kx and frequency
when this damping parameter is included in the calculations,
and it is seen that, in this case, the reflectivity shows minima at
the surface resonance frequencies. The reflectivity thus shows
a nonreciprocity related to the surface resonances.

In principle, the effect of surface resonances on the re-
flectivity can be seen both in the bulk regions below the
lower reststrahl region and within the upper reststrahl region.
Nonreciprocal reflection associated with surface resonances
in, or at the edge of, the bulk regions has been studied
both theoretically and experimentally [31–34]. Nonreciprocal
reflection associated with surface resonances within the rest-
strahl regions, however, has been effectively ignored, although
Jensen et al. [34] do show a dispersion curve for this type
of mode. In the geometry considered here, such effects are
not usually observed at higher fields (although nonreciprocal
effects in the bulk regions become considerably more pro-
nounced). In the present case, however, Fig. 6(a) shows a
distinct dip in reflectivity that accurately follows the surface
resonance dispersion curve for B0 = −0.01 T, although there
is negligible nonreciprocity in the bulk regions. The resulting
reflectivity spectra, for both B0 = +0.01 T and B0 = −0.01 T,
are shown in Fig. 7(a) for θi = 45◦, confirming this result.

It should be mentioned here that the sign of the imaginary
component of k1z corresponding to the solution of Eq. (18) is
not necessarily positive, as one would expect for exponential
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FIG. 8. (a) Reflection of a Gaussian beam, of width g = 0.5 cm
and an incident angle of 45◦, off MnF2 in the presence of external
fields B0 of +0.01 T and −0.01 T at a frequency corresponding to
a wave number of 9.0087 cm−1. The horizontal dashed line in the
B0 = −0.01 T figure shows the value of D calculated using Eq. (10).
(b) Details of power flow near the interface using an expanded
horizontal scale. In part (a) the color scale represents power flow
intensity on a linear scale, whereas in part (b) both the color scale
and the length of the arrows represent power flow intensity on a
logarithmic scale.

decay away from the interface. For �/2πc = 0.0007 cm−1,
Im(k1z) is positive for kx < 12 cm−1 but is negative for kx >

12 cm−1. This imaginary component is always very small,
however, and it becomes positive over the whole kx range up
to kx = k0 if the damping parameter � is increased. Despite
the apparent discrepancy when the damping is small, it is clear

that a resonant absorption takes place along the entire curve,
so it seems reasonable to associate the curve with some sort of
surface excitation. One feature of the dips is, in fact, that they
become more distinct with small damping, leading to a more
pronounced nonreciprocity, in contrast to surface resonance
dips in the bulk regions, which show negligible nonreciprocity
for small damping [32]. In the present case, in which both the
applied field and the damping are small, the dip in the upper
reststrahl region is sharp, and leads to highly nonreciprocal
reflectivity, but there is no visible nonreciprocity associated
with the surface resonances in the bulk regions.

Figures 6(b) and 7(b) show the Goos-Hänchen shifts when
damping is included. Such shifts do not significantly change
from the undamped case, although the shift in the bulk regions
no longer shows the symmetry observed in the undamped case
[Fig. 3(c)], for which D(B0) = −D(−B0) [20]. It is noticeable
that the enhanced shifts follow the surface resonance curves
in both the bulk and reststrahl regions, although, in practice,
the bulk regions are of less interest because the reflectivity is
essentially zero along the curves.

In the upper reststrahl region, Fig. 6(b) also includes the φ =
0 solutions taken from Fig. 5(c), and there is almost exact cor-
respondence between these results and the surface resonance
curve. In fact, the φ = 0 relation given by Eq. (11) is equivalent
to the surface polariton relation given by Eq. (18) when the first
term in the latter equation is zero, and the two equations are
equal when kx = k0, corresponding to grazing incidence. Thus,
when the imaginary terms of the equation dominate, as occurs
here, there is little difference in the solutions.

In order to verify the enhanced Goos-Hänchen shifts for a
physical incident beam, we consider the case of a Gaussian
beam in Fig. 8. Here the incident beam is modeled as a plane
wave sum, as in Eq. (9) with [7]

ψ(kx) = − g

2 cos θi

√
π

exp

[
−g2(kx − k0 sin θi)2

4 cos2 θi

]
, (19)

FIG. 9. Calculated reflectivity and Goos-Hänchen shift for reflection off MnF2 in an external field B0 of +0.2 T (solid blue lines) and
−0.2 T (dashed red lines), at incident angles of (a) 30◦, (b) 45◦, and (c) 60◦. The shaded regions represent the bulk regions, in which k2z is real,
ignoring damping. The wave-vector values marked SR are those calculated for surface resonances and those marked φ = 0 are those calculated
using Eq. (11) for zero damping.
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where 2g represents the beam width in the focal plane at z = 0,
which we take as the sample surface.

Figure 8(a) confirms that, at the surface resonance fre-
quency, there is a negligible shift of the reflected beam for B0 =
+0.01 T, but a strong positive displacement, corresponding
to about four free-space wavelengths, for B0 = −0.01 T, in
agreement with the values shown in Fig. 7(b). It is also seen
that the intensity of the reflected beam when B0 = −0.01 T
is significantly reduced, in agreement with the reflectivity
results of Fig. 7(a). Figure 8(b) shows details of the power
flow near the interface, and it is seen that for B0 = +0.01 T
there is negligible flow into the antiferromagnet, leading to
almost total reflection and negligible displacement. In the case
of B0 = −0.01 T, however, there is a significant penetration
into the antiferromagnet, with substantial power flow along
the surface, in a similar manner to that shown in Fig. 4(d) for
plane waves in the absence of damping. The power flow within
the antiferromagnet leads to the enhanced Goos-Hänchen shift
but also results in an absorption, as seen by the diminishing
intensity of the power flow along the surface. Overall, there-
fore, it appears that the surface resonances are characterized
by significant power flow along the interface, bound to the
surface, leading to a large displacement (and associated time
delay) of the reflected beam, with associated absorption in the
presence of damping.

V. SUMMARY AND CONCLUSIONS

We have shown how large nonreciprocal Goos-Hänchen
shifts should occur on reflection off antiferromagnets in the
presence of a relatively small applied magnetic field. The more
significant results occur in the upper reststrahl region and show
a strong link to surface resonances, which appear as extensions
of the surface polariton modes that occur in this region. When
damping is present, the associated power flow along the surface
can lead to significant absorption, appearing as sharp dips in
the reflectivity spectra.

When the applied field is larger, the effect is rather less
definitive, as shown by the B0 = ±0.2 T results in Fig. 9. The
reflectivity and Goos-Hänchen shift are shown for three angles
of incidence, along with the frequency values for the surface

resonances and the φ = 0 condition as represented by Eqs. (18)
and (11), respectively. Since the two reststrahl are now well
separated, we only show results around the upper reststrahl
region.

All the features of interest are now closer to the bottom of
the reststrahl region, with the surface resonance frequency, as
calculated using Eq. (18), entering the bulk region for smaller
incident angles (less than about 45◦ for the chosen field). This
is not the case for the φ = 0 result, and the two solutions are
now visibly different. The corresponding reflectivity dip and
the displacement peak are both somewhat broader than the
separation of these two solutions, however, and the features are
much less distinct, with a considerably smaller Goos-Hänchen
shift than in the case of the lesser field.

Thus we can say that, at higher fields, the shifts are smaller,
with less well defined features. The analysis at low fields
therefore seems more productive and is likely to yield more
valuable experimental results. Both the reflectivity and the
beam displacement, resulting in curves of the type shown in
Fig. 7, could be usefully measured to illustrate the principles.
In terms of terahertz sources available for such measurements,
we particularly highlight transmitters based on Schottky diode
frequency multiplication of microwave oscillator signals [35].
The radiation from such transmitters can be finely tuned over
the frequency range of interest and can be readily focused for
experimental investigation of the phenomena of interest.

The beam displacement measurements may be somewhat
prejudiced by the reduced intensity, due to absorption, of the
reflected beam at the resonance frequency. There is, in general,
a playoff between the resonant displacement and the reflected
intensity, and this can be adjusted by varying the applied
field and angle of incidence. We have, in this paper, chosen
values (B0 = −0.01 T, θi = 45◦) for which there is a large
displacement with a reflected beam intensity that should be
measurable without too much difficulty, but these values can
be adjusted as necessary.
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