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We propose and study a parafermionic generalization of the topological Kondo effect. The latter has been
predicted to arise for a Coulomb-blockaded mesoscopic topological superconductor (Majorana box), where at
least three normal leads are tunnel-coupled to different Majorana zero modes on the box. The Majorana states
represent a quantum impurity spin that is partially screened due to cotunneling processes between leads, with a
stable non-Fermi-liquid ground state. Our theory studies a generalization where (i) Majorana states are replaced by
topologically protected parafermionic zero modes, (ii) charging effects again define a spinlike quantum impurity on
the resulting parafermion box, and (iii) normal leads are substituted by fractional edge states. In this multiterminal
problem, different fractional edge leads couple only via the parafermion box. We show that although the linear
conductance tensor exhibits similar behavior as in the Majorana case, both at weak and strong coupling, our
parafermionic generalization is actually not a Kondo problem but defines a rich new class of quantum impurity
problems. At the strong-coupling fixed point, a current injected through a reference lead will be isotropically
partitioned into outgoing currents in all other leads, together with a universal negative current scattered into the
reference lead. The device can thus be operated as a current extractor, where the current partitioning is noiseless at
the fixed point. We describe a fractional quantum Hall setup proximitized by superconductors and ferromagnets,
which could allow for an experimental realization in the near future.
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I. INTRODUCTION

A major goal of modern condensed matter physics is to
understand and predict the physics of Majorana zero modes
[1–4] and their generalizations such as parafermionic zero
modes [5,6]. Apart from the fundamental interest in ob-
serving, manipulating, and controlling exotic fractionalized
excitations, quantum states encoded by sets of zero modes
with non-Abelian braiding statistics hold significant promise
for quantum information processing applications due to their
topologically protected and highly nonlocal character [5,7].
While experimental evidence for Majorana states is rapidly
mounting in different platforms [8–24], experimental searches
for condensed-matter realizations of parafermions (PFs) with
symmetry Zn>2 are just about to start [25,26]. (Note that Z2

PFs reduce to Majorana zero modes.)
The theoretical understanding of PFs, on the other hand,

is already comparatively well advanced, and many inter-
esting phenomena have been predicted [6,27–44]. While it
has recently been shown that Z4 PFs admit a free-fermion
description [43,44], theoretical constructions for more gen-
eral cases usually exploit the competition between different
gapping mechanisms at edge states of a topologically ordered
two-dimensional phase. Suggested platforms for hosting PF
zero modes include bilayer fractional quantum Hall (FQH)
systems [36], proximitized fractional topological insulators
[27], and proximitized FQH liquids at filling factor ν = 2/3
[33] or ν = 1/(2k + 1) with integer k [27,29]. Such setups
have, in principle, the potential to ultimately realize Fibonacci
anyons capable of topologically protected universal quantum
computations [33,40]. In particular, opposite-spin FQH edges
proximitized by alternating domains of superconductors (SCs)

and ferromagnets (FMs) should trap stable PF zero modes at
domain walls [27]. We note that recent experimental progress
has demonstrated that the seemingly conflicting requirements
of high magnetic fields (for the FQH phase) and superconduc-
tivity in principle can be reconciled [45,46].

In the present work, we analyze a previously unnoticed
aspect of PFs arising in the presence of Coulomb charging
effects. In fact, recent theoretical [47–49] and experimental
[15] work has highlighted the importance of Coulomb charging
effects in a floating mesoscopic superconductor hosting Majo-
rana bound states (“Majorana box”). By gapping out charge
degrees of freedom and by blocking detrimental processes
related to quasiparticle poisoning [50,51], a large box charging
energy EC can further stabilize the Majorana subsector of
the Hilbert space. Importantly, charging effects will also
activate long-range cotunneling processes between different
leads (or other access elements) attached to the box via tunnel
contacts. Consequently, Majorana boxes are key ingredients for
recently proposed topological quantum information processing
schemes [51–55]. When the Majorana box is operated under
Coulomb valley conditions, with M � 3 normal-conducting
(effectively spinless) leads tunnel-coupled to Majorana zero
modes on the box, the Majorana sector becomes equivalent
to an effective quantum impurity spin with SO(M) symmetry
[56]. For the minimal case with M = 3, this impurity spin
corresponds to a standard spin-1/2 operator (ŝx ,ŝy,ŝz), where
distinct operator components are nonlocally represented by
different Majorana bilinears on the box. Noting that also the
leads have SO(M) symmetry, cotunneling processes between
different leads then act like an exchange coupling and thus
partially screen the effective impurity spin. Ultimately, such
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processes drive the system to a robust non-Fermi liquid fixed
point analogous to the overscreened multichannel Kondo fixed
point. For a detailed discussion of this topological Kondo effect
(TKE), see Refs. [56–65]. More generally, when the Majorana
box is contacted by M � 3 spinless Luttinger liquid leads with
interaction parameter g, where g = 1 for the noninteracting
case and g < 1 (g > 1) for repulsive (attractive) electron-
electron interactions [66,67], the linear conductance between
leads j and k is given by [58,61]

GTKE
jk = 2ge2

h
[1 − (T/TK )2�M−2 + · · · ]

(
1

M
− δjk

)
, (1)

with the scaling dimension �M = 2g(M − 1)/M of the lead-
ing irrelevant operator at the TKE strong-coupling fixed point.
This result holds for �M > 1 and temperatures T well below
the Kondo temperature TK . Apart from the non-Fermi-liquid
power-law T dependence, it is remarkable that the conductance
tensor (1) is completely isotropic. Conductance measurements
could thereby provide strong evidence for nonlocality. For
instance, putting g = 1 and M = 3 in Eq. (1), the T = 0
conductance between leads 1 and 2 has the large value GTKE

12 =
2e2/3h. If one now decouples lead 3 from the box, e.g., by
changing a gate voltage to switch off the respective tunnel
coupling, the TKE will be destroyed. As a consequence, only
an exponentially small conductance G12 due to residual cotun-
neling is expected [49], without the huge Kondo enhancement
factor. This behavior is a clear signature of nonlocality since
the Majorana state coupled to lead 3 is centered far away from
the Majorana states coupled to leads 1 and 2.

In Ref. [42], we have introduced a PF box device generaliz-
ing the Majorana box to a setup with parafermionic zero modes.
The PF box of Ref. [42] could be realized in terms of opposite-
spin FQH edge states proximitized by alternating SC and
FM domains, closely following earlier proposals [27,29] but
taking into account the box charging energy EC . We emphasize
that recent experimental works have made significant steps
towards implementing such setups [25,26,45,46], and we are
confident that the model studied below can be realized in the
near future. The setup described in Ref. [42] also included
other access elements, in particular additional fractional edge
states, for readout and/or manipulation of the PF box state. The
present work is dedicated to studying a PF generalization of the
Majorana-based topological Kondo model, where the normal-
conducting (Luttinger liquid) leads behind Eq. (1) are replaced
by FQH edge states, see Fig. 1 for a schematic illustration of
our setup. Such leads correspond to chiral Luttinger liquids
hosting fractional quasiparticles [66–69], and they have been
used experimentally for more than two decades [70–75].

In order to see whether PFs can establish a Kondo effect,
we study whether (and if yes, how) the TKE conductance
tensor in Eq. (1) is modified for a generalized PF setting. In
fact, we find that the PF generalization cannot in general be
written as a Kondo Hamiltonian, invariant under the action of
a continuous group. For M = 3 edges, for example, we find
that the “quantum impurity spin” of the PF box transforms
in a representation of the SU(n) group, where n = 2/ν at
filling factor ν = 1/(2k + 1). However, the low-temperature
effective Hamiltonian does not have this symmetry. This is
related to the fact that one cannot perform rotations in lead

FIG. 1. Schematic setup for a PF generalization of the topological
Kondo effect. Two opposite-spin FQH edges (thick straight black
arrows) are gapped out in different regions by the proximitizing FM
and SC parts, where PF zero mode operators α̂j (blue stars) are
localized at domain walls. (Strictly speaking, we have PF operators
α̂j = α̂j,↑ and α̂j,↓ at opposite-spin edges [42]. Here only the α̂j are
needed.) The N = 2 SC domains are electrically connected to form a
phase-coherent device with a common charging energy EC . Similarly,
FM domains belong to one bulk FM. The M = 3 additional FQH
edges (curved black arrows) serve as quasiparticle leads, where the
quasiparticle operator ψ̂j is tunnel-coupled (red dashed lines) to the
respective PF operator α̂j . Although different leads are parts of a
single long edge, they must be dynamically independent. To that end,
Ohmic contacts (yellow rectangles) are inserted between them.

space since each FQH lead necessitates different Klein factors.
Nevertheless, we find that, for M � 3 chiral edge leads, a
nontrivial strong-coupling regime will be approached, where
the conductance tensor exhibits an almost identical behavior
as for the TKE in Eq. (1).

The PF generalization of the TKE thus constitutes a
new type of multiterminal quantum junction distinct from
previously studied cases [76–88]. However, we remark that
transport in the PF box case exhibits qualitative (and technical)
similarities to the TKE [57,58,61] as well as to the setup
in Refs. [86,88]. Although the physical realization and the
detailed transport characteristics differ, all three problems
share several key features. In particular, (i) the system is driven
to a strong coupling regime, where (ii) an incoming current is
distributed between all the outgoing channels in a nonlocal
universal manner, and where (iii) this current partitioning does
not produce shot noise at the fixed point.

The remainder of this article is structured as follows. In
Sec. II, we introduce our model for a PF generalization of
the TKE. Abelian bosonization allows one to solve the weak-
coupling regime, where we discuss the one-loop renormal-
ization group (RG) equations in Sec. III. Next, in Sec. IV, we
demonstrate that also the stable strong-coupling fixed point can
be accessed by Abelian bosonization. Related results for the
TKE have been obtained [57,58] by using an analogy to quan-
tum Brownian motion in a periodic lattice [89,90]. We here
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instead employ the method of Ref. [91]. Finally, in Sec. V, we
offer some conclusions. Technical details have been delegated
to several appendices, and we often put h̄ = e = kB = 1.

II. MODEL

We start by discussing the Hamiltonian for our PF gener-
alization of the TKE. To keep the paper self-contained, we
also include a brief summary of those results of Ref. [42]
needed below. Following Ref. [27], we consider an array of
PF zero modes implemented via two ν = 1/(2k + 1) FQH
puddles with opposite spin polarization, see Fig. 1. Related
setups have recently been achieved experimentally [25,26].
The device layout is also adaptable to other PF platforms, in
particular to the FQH case ν = 2/3 [33]. The theory recovers
the Majorana-based TKE [56–58] for ν = 1.

As shown in Fig. 1, several additional FQH edges can
now serve as probing leads in transport studies. Fractional
quasiparticles in these edges are thereby tunnel-coupled to the
PF operator α̂j at the respective domain wall. A general setup
consists of a PF box made of N SC domains and contacted
by 3 � M � 2N edge states. We show the simplest nontrivial
case with N = 2 and M = 3 in Fig. 1. It is important that the PF
box device is kept floating (not grounded) such that the total
charge on the PF box is restricted by the Coulomb charging
energy.

Let us first outline the theoretical description of the FQH
edge state leads. Each of the M lead pieces is described by a
chiral boson field, φ̂j (x), with the Hamiltonian [66–69]

Hedge =
M∑

j=1

v

4π

∫ +L/2

−L/2
dx(∂xφ̂j )2, (2)

where v is the edge velocity, assumed identical in all leads.
Anisotropies in these velocities do not cause physical effects
since they can be absorbed by a renormalization of cotunneling
amplitudes. Since we are not interested in finite-size effects
in the leads, we will also assume L → ∞. The commutation
relations between chiral boson fields,

[φ̂j (x),φ̂k(x ′)] = iπ [δjksgn(x − x ′) + sgn(k − j )], (3)

already incorporate Klein factors [66] since Eq. (3) follows
from a single-edge commutation relation by imagining that all
leads actually belong to one long edge. It is important, however,
that different leads are dynamically independent, which in turn
is ensured by the Ohmic contacts in Fig. 1. The fractional
quasiparticle operator can then be expressed as vertex operator
of the respective chiral boson field, ψ̂j (x) ∼ ei

√
νφ̂j (x), see

Refs. [66–69] and Appendix A.
Next, we summarize the theoretical description of the

PF box. For detailed derivations and discussions, see
Refs. [27,29,42]. The PF box is defined from opposite-spin
FQH edges which are proximitized by alternating FM and SC
domains, see Fig. 1. Since at low-energy scales, these domains
are gapped, operators creating low-energy excitations can only
reside at the domain walls in between adjacent domains.
Similar to the Majorana case, the domain wall hosts stable
zero-energy modes corresponding to the PF operators α̂j . The
latter obey the Zn PF algebra with index n = 2/ν,

α̂j α̂k = ωsgn(k−j )α̂kα̂j , ω = e2πi/n = eiπν. (4)

The low-energy PF box Hilbert space is spanned by the states
|Qtot,Q1mod2, . . . ,QN−1mod2〉, where Qtot is the total charge
of the proximitizing SCs and the FQH edges within the PF box.
Importantly, Qtot has fractional values differing by multiples of
ν. We note that here all SCj pieces are implied to be part of one
floating superconductor, and similarly all FMj are part of one
ferromagnet. The quantum numbers Qj describe the charge
of the FQH edges trapped between FMj and FMj+1, and are
also quantized in units of ν. Since the proximitizing SCs can
absorb Cooper pairs at no kinetic energy cost, the Qj are only
defined modulo 2. These quantum numbers correspond to the
distribution of fractional quasiparticles between different SCj

parts. The box Hamiltonian only receives a Coulomb charging
contribution sensitive to the total charge Qtot,

Hbox = EC(Q̂tot − q0)2. (5)

By changing a backgate voltage, one can tune the parameter
q0 such that the box has quantized ground-state charge given
by the value of Qtot closest to q0. For special choices of q0,
one may also reach charge degenerate points, but such cases
are not considered here.

Finally, we include complex-valued tunneling amplitudes
ηj describing tunneling of quasiparticles between the respec-
tive edge (ψ̂j ) through the FQH bulk to the PF box via
α̂j . Assuming a pointlike tunnel contact at x = 0 along the
respective edge, the tunneling Hamiltonian is given by [27,42]

Htun =
M∑

j=1

ηj ψ̂j (0)α̂†
j + H.c. (6)

Using Eq. (3), the fractional quasiparticle operators ψ̂j (x) ∼
ei

√
νφ̂j (x) obey the algebra

ψ̂j (x)ψ̂k(x ′) = e−iπνsgn(k−j )−iπνδjksgn(x−x ′)ψ̂k(x ′)ψ̂j (x). (7)

Furthermore, one can show that [φ̂j (x),α̂k] = −π
√

ν holds.
From the latter relation, we obtain

ψ̂j (x)α̂k = e−iπν α̂kψ̂j (x). (8)

Altogether these relations imply that all terms in Eq. (6)
commute with each other. This fact will become important
when we discuss the strong-coupling regime in Sec. IV. We
emphasize that Klein factors, which are needed to ensure
proper statistical phase relations between different edges [66],
are fully taken into account by Eqs. (3), (4), (7), and (8).

For a generic backgate parameter q0 in Eq. (5), the ground
state of the PF box has quantized charge Qtot due to the
large charging energy EC . The dominant low-energy processes
then come from the cotunneling of fractional quasiparticles
between different edges mediated by the PF box. Technically,
one obtains the cotunneling Hamiltonian, Hcot, by projecting
the full Hamiltonian, H = Hedge + Hbox + Htun, to the charge
ground-state sector of the PF box, H → Heff = Hedge + Hcot.

A standard Schrieffer-Wolff transformation [67,92] yields

Hcot = −
M∑

j,k=1;j 
=k

λjkψ̂
†
j (0)ψ̂k(0)α̂j α̂

†
k

−
∑

j

|ηj |2(U−1
+ ψ̂

†
j (0)ψ̂j (0) + U−1

− ψ̂j (0)ψ̂†
j (0)), (9)
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where the cotunneling amplitude from lead k to lead j is

λjk = η∗
j ηk(U−1

+ + U−1
− ). (10)

Here, U+ (U−) denotes the energy cost for adding (removing)
one fractional quasiparticle to (from) the box. For instance,
assuming |q0| < ν/2, one finds U± = ECν2(1 ∓ 2q0/ν). As
shown in Appendix A, for ν � 1, the potential scattering terms
corresponding to the second row in Eq. (9) can always be
neglected. In addition, the complex phases of ηj can be gauged
away by shifting the respective boson field, φ̂j (x) → φ̂j (x) +
cst. This gauge transformation renders all λjk in Eq. (10) real
positive and symmetric, λkj = λjk > 0. We note in passing that
the total electric charge on the PF box is explicitly preserved by
Eq. (9), as well as the total Zn charge described in Ref. [6]. In
addition, we remark that the original derivation by Schrieffer
and Wolff contains a term beyond Eq. (9), see Eq. (12) in
Ref. [92]. A similar term describing the simultaneous tunneling
of two quasi-particles onto/off the impurity arises in our case.
However, this term does not preserve the PF box electric charge
and thus vanishes after the projection to the charge ground
state.

Our PF generalization of the topological Kondo model thus
corresponds to the effective low-energy Hamiltonian

Heff =
M∑

j=1

v

4π

∫ ∞

−∞
dx(∂xφ̂j )2 −

M∑
j 
=k

λjkψ̂
†
j (0)ψ̂k(0)α̂j α̂

†
k,

(11)
together with the commutation relations in Eqs. (3), (4), (7),
and (8).

At this point several remarks are in order. (i) For ν = 1,
noting that α̂j α̂

†
k → γjγk , the quantum impurity spin operator

in Eq. (11) has the components iγj γk . These Majorana bilinears
generate the algebra so(M) [56,61], and Eq. (11) reduces to the
TKE Hamiltonian. For M = 3, the three independent bilinears
are equivalently expressed by standard Pauli operators, so(3) =
su(2).

(ii) For ν < 1, the PF box also has a continuous symmetry.
The PF bilinears α̂j α̂

†
k appearing in Eq. (11) do not constitute

a closed Lie algebra. However, together with their powers and
products of those, they close the algebra su(n[(M−1)/2]), where
[x] is the integer part of x, acting onto the PF box Hilbert
space in the fundamental representation [93]. In particular, for
M = 3, the algebra su(n) is generated by the set of operators{

α̂
k1
1 α̂

k2
2 α̂

−k1−k2
3

}
, (12)

where integers kj are defined modulo n = 2/ν as α̂n
j = 1, and

we use the convention α̂−k
j ≡ (α̂†

j )k for k > 0. The fact that the
dimension of the “quantum impurity” representation space is
n follows from the PF representation in Refs. [6,94] together
with the Zn-charge conservation constraint. For ν = 1/3, we
arrive at su(6) with its 35 generators plus the identity, which
are given by Eq. (12). Note that the bilinears α̂j α̂

†
k appearing in

the Hamiltonian (11) themselves constitute only a small subset
of six out of the 35 algebra generators.

(iii) The leads, however, in general do not possess a
continuous symmetry, cf. Appendix B. This situation should be
contrasted to standard Kondo problems (including the TKE),
where both the impurity and the leads constitute representa-

FIG. 2. Schematic view of the effective Hamiltonian Heff in
Eq. (11), which defines a PF generalization of the topological Kondo
model. Here, M = 3 fractional edge state leads are connected via
pairwise cotunneling processes at x = 0. Each cotunneling event
comes with a transition in the PF Hilbert space (indicated by the
vertical colored bar).

tions of a symmetry group, and the interaction between them
is built out of currents generating this symmetry in each part.

(iv) Nonetheless, Eq. (11) shows that basic ingredients of
a typical quantum impurity setting are present. A schematic
sketch of Heff in Eq. (11) is depicted in Fig. 2, where M

(parallel) chiral edges interact by cotunneling processes of
fractional quasiparticles at x = 0 between different lead pairs.
Simultaneously, such exchange processes cause transitions in
the PF box Hilbert space via the PF bilinears ∼α̂j α̂

†
k .

III. RG ANALYSIS

We now turn to the weak-coupling regime and discuss
the one-loop RG equations for the PF generalization of the
topological Kondo model in Eq. (11). To that end, consider
a perturbative expansion of the partition sum in powers of
the cotunneling amplitudes λjk = λkj > 0. Within the RG
approach [67], upon reducing the effective bandwidth � from
its bare value, �(� = 0) ≈ EC , one analyzes how these cou-
plings are renormalized and whether new types of couplings
will be generated. Writing �(�) = �(0)e−�, the scale �(�)
refers to the energy scale at which the system is probed with
increasing RG flow parameter �. In case the RG flow of the
λjk(�) approaches the strong-coupling limit, the RG approach
breaks down at � = �∗ where one hits a divergence of the
dominant coupling. The corresponding scale defines the Kondo
temperature,

TK = �(�∗) = ECe−�∗
. (13)

The physics in the strong-coupling regime, i.e., for energies
well below TK , will be addressed in Sec. IV.

The one-loop RG equations are most conveniently obtained
via the operator product expansion (OPE) approach [95],
where one considers arbitrary pairs of cotunneling operators
in Eq. (11) at almost coinciding times t and t ′. The result of
such a contraction must be equivalent to a linear combination
of all possible boundary operators taken at time (t + t ′)/2,
and the expansion coefficients directly determine the one-loop
RG equations [95]. One thus has to analyze contractions of
cotunneling operators, cf. Appendix A. Most contractions
imply a renormalization of a cotunneling amplitude λjk .
However, one also finds additional contributions generating
new couplings. For instance, a contraction of the cotunneling
operators corresponding to λkj and λkm (with k 
= j 
= m)
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generates a coupling to the operator

H ′ = (ψ̂†
k (0))2ψ̂j (0)ψ̂m(0)α̂2

k α̂
†
j α̂

†
m, (14)

which has scaling dimension �′ = 3ν. Since the cotunneling
terms ∼ λjk in Eq. (11) have the smaller scaling dimension
�jk = ν, we conclude that H ′ is much less relevant (in fact
marginal for ν = 1/3, and irrelevant for ν = 2/3) and thus
can be dropped. Contractions of cotunneling operators then
only produce PF bilinears of the type ∼α̂j α̂

†
k already present in

Eq. (11). In particular, for M = 3, all other impurity operators
in the set (12) are not activated.

Remarkably, after a uniform rescaling,

λ̃jk = 2τ 1−ν
c

vν
λjk, (15)

where τc denotes a short-time cutoff, we find that the RG
equations for our PF generalization coincide with those for the
Majorana-based TKE with Luttinger liquid parameter g = 1/ν

[57,58],

dλ̃jk

d�
= (1 − ν)λ̃jk +

M∑
m
=(j 
=k)

λ̃jmλ̃mk. (16)

Consider first the isotropic part of the cotunneling couplings.
Writing λ̃jk = λ̃(1 − δjk), Eq. (16) yields

dλ̃

d�
= (1 − ν)λ̃ + (M − 2)λ̃2, (17)

which is solved by

λ̃(�) = λ̃(0)e(1−ν)�

1 + M−2
1−ν

λ̃(0)[1 − e(1−ν)�]
. (18)

Clearly, the isotropic part λ̃(�) flows towards strong coupling
and diverges once the running energy scale reaches the Kondo
temperature in Eq. (13). We find

TK � EC

(
(M − 2)λ̃(0)

1 − ν

)1/(1−ν)

. (19)

The power-law dependence of TK on the average cotunneling
coupling λ̃(0) should be contrasted to the TK ∼ e−1/[(M−2)λ̃(0)]

law of the TKE for ν = 1 [56]. Equation (19) thus suggests that
much higher TK are possible for ν < 1. We note that although
the notation TK is suggestive of a “Kondo temperature,”
Eq. (19) only indicates the separation between the regimes
of strong and weak coupling. Indeed, as discussed above, for
ν < 1, the leads do not possess a continuous symmetry, and
hence one cannot speak of Kondo screening processes in the
usual sense. Finally, in order to show that anisotropies in the
cotunneling amplitudes are negligible as in the conventional
TKE [56], we have linearized the RG equations (16) in the
λ̃jk anisotropies taken relative to the isotropic component. Our
analysis shows that relative anisotropies are RG irrelevant and
thus can be neglected at low energy scales.

IV. STRONG-COUPLING SOLUTION

We next turn to the strong-coupling regime realized at
energy scales well below TK in Eq. (19). We here pursue a
similar strategy as done for the TKE in Refs. [57,58,61]. To that
end, we take the bosonized version of Eq. (11), with ψ̂j (0) ∼
ei

√
νφ̂j (0), and consider the limit λjk → +∞. As a result, in

the ground state of the system, the phase fields φ̂j (0) will be
locked into a configuration minimizing the cosine potentials
resulting from Hcot. Using the general approach of Ref. [91],
one can then construct the low-energy Hamiltonian describing
this fixed point. We also systematically compute all possible
operator perturbations around the fixed point and thereby show
that it is stable. The leading irrelevant operators then determine
the finite-T corrections to the conductance tensor, where we
will compare our results to the TKE expression in Eq. (1).

A. Strong-coupling fixed point

Using Eqs. (4), (7), and (8), one finds that all cotunneling
operators ψ̂

†
j (0)ψ̂k(0)α̂j α̂

†
k in Eq. (11) are mutually commuting

and thus can be diagonalized simultaneously. At the putative
strong-coupling fixed point, we now demand that each of
those terms is separately minimized. Defining auxiliary
operators β̂jk ,

α̂j α̂
†
k = eiπβ̂jk−iπνsgn(k−j ), (20)

Equation (11) yields

Hcot = − 2

(vτc)ν
∑
j>k

λjk cos(
√

ν[φ̂k(0) − φ̂j (0)] + πβ̂jk).

(21)

Minimizing Hcot for λjk → +∞ is then equivalent to imposing
the constraints√

ν[φ̂k(0) − φ̂j (0)] + πβ̂jk = 2πĈjk, (22)

where Ĉjk are integer-valued operators. We note that the
commutation relations [β̂jk,φ̂m(x)] = 0 and

[β̂jk,β̂mn] = i
ν

π
[sgn(j − m) + sgn(k − n)

− sgn(j − n) − sgn(k − m)] (23)

imply that [Ĉjk,Ĉmn] = 0. In addition, with β̂jk + β̂km = β̂jm,
we see that Ĉjk + Ĉkm = Ĉjm. As a consequence, to enforce
that all Ĉjk are integer, it suffices to demand that all Ĉ1j with
j = 2, . . . ,M are integer-valued operators.

For constructing the low-energy theory, we next employ
the powerful approach of Ref. [91], which is tailor-made to
solving problems with large-amplitude cosine potentials as
encountered here. According to this method, the Ĉjk should be
constrained to being integer numbers, where the low-energy
Hamiltonian HLE follows from the free part, H0 = Hedge in
Eq. (2), minus all terms causing a nontrivial time evolution
of the Ĉjk in Eq. (22). The resulting Hamiltonian is quadratic
and can easily be quantized. Delegating technical details to
Appendix C, the quantized phase fields φ̂j (x,t) are expressed
in terms of standard boson operators âq,j (zero-mode operators
φ̂0,j ) for each ω 
= 0 (ω = 0) eigenfunction, cf. Eq. (A2) in
Appendix A. To that end, we define the matrix

Ujk = 2

M
− δjk, (24)

and the operators

f̂j (x,t) = φ̂0,j + ĝj (x,t),

ĝj (x,t) = i

∫ ∞

0

dq√
q

(âq,j e
iq(x−vt) − H.c.), (25)
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with the commutation relations

[âq,j ,â
†
q ′,m] = δ(q − q ′)δjm, [âq,j ,âq ′,m] = 0, (26)

and [φ̂0,j ,φ̂0,m] = iπsgn(m − j ). For incoming states (x < 0),
the chiral boson field is

φ̂j (x < 0,t) = f̂j (x,t), (27)

while outgoing states (x > 0) are given by

φ̂j (x > 0,t) =
M∑

k=1

Ujkf̂k(x,t)

+ 2π

M

√
ν−1

M∑
k=1,k 
=j

(β̂jk − 2Ĉjk). (28)

The field at x = 0 follows from the above relations, φ̂j (0,t) =
[φ̂j (0+,t) + φ̂j (0−,t)]/2, and the low-energy Hamiltonian
HLE takes the form, cf. Eq. (C7) in Appendix C,

HLE =
M∑

j=1

∫ ∞

0
dq vq

(
â
†
q,j âq,j + 1

2

)
. (29)

For a discussion of transport features, we next note that
the current flowing along an edge corresponds to the operator
[66–69]

Îj (x,t) = −
√

ν

2π
∂t φ̂j (x,t). (30)

Using Eqs. (24)–(28), we find

Îj (x,t) = −
√

ν

2π

∑
k

[θ (x)Ujk + θ (−x)δjk]∂t ĝk(x,t), (31)

with the Heaviside function θ (x). We thus observe that

Îj (0+,t) =
M∑

k=1

UjkÎk(0−,t). (32)

At low frequencies ω = vq → 0, we obtain

I+
j =

∑
k

UjkI
−
k = ν

e2

h

∑
k

UjkVk, (33)

where I
+/−
j = 〈Îj (x > 0/x < 0,t)〉 refers to the scattered/

incoming current, respectively. The incoming current is given
by I−

j = νe2Vj/h, where Vj is the voltage for injected quasi-
particles at the j th edge.

At the strong-coupling fixed point (T = Vj = 0), we thus
obtain the universal multiterminal conductance tensor

Gjk = dI+
j

dVk

= νe2

h
Ujk = νe2

h

(
2

M
− δjk

)
. (34)

For ν = 1, taking into account that the injection and collection
points are spatially separated in our Hall setup, Eq. (34) has
the same physical content as the T = 0 TKE conductance in
Eq. (1). Indeed, Eq. (34) describes the scattered current I+

j .
Studying instead the current at the tunnel contact, Ij = I+

j −
I−
j , we have to replace Ujk → Ujk − δjk = 2( 1

M
− δjk) in

Eq. (34). After this step, Eq. (34) matches the TKE conductance
tensor in Eq. (1) taken at T = 0. Remarkably, the isotropic
structure of the TKE conductance (1) carries over to the ν < 1

PF generalization, despite of the fact that we are not dealing
with a Kondo problem anymore.

A particularly noteworthy consequence of Eq. (34) is
revealed by inspecting the diagonal component of the conduc-
tance tensor, which has the universal, fractionally quantized,
and negative value

Gjj = −M − 2

M

νe2

h
< 0. (35)

Since this conductance is negative, our device can be operated
as current extractor. For instance, putting all Vk = 0 except
for V1 
= 0, current is injected only via the first lead, I−

1 =
νe2

h
V1 ≡ Iin. The outgoing current in this lead then has the

opposite sign, I+
1 = −M−2

M
Iin < 0, where the fraction −I+

1 /Iin

is determined only by the number M of leads. For this example,
the outgoing currents in all other M − 1 leads (j > 1) are
identical and given by I+

j = 2
M

Iin, see Eq. (34). Current
conservation, Iout = (M − 1)I+

j + I+
1 = Iin, thus requires that

current must be extracted from lead j = 1. Similar current
extraction phenomena in quantum Hall devices have been
discussed in Ref. [96].

Another striking consequence of Eq. (34) is the absence
of current-current correlations between different terminals at
the fixed point, which can be established from the above
theory along the lines of Refs. [58,61]. The absence of shot
noise is noteworthy since incoming currents are partitioned
into currents flowing through all leads attached to the PF
box, see Eq. (34), and such partitioning processes usually
generate noise [67]. Noiseless partitioning of currents in
multiterminal quantum junctions has also been established for
the TKE [58,61] and for the related case of quantum Hall
junctions coupled through a central quantum dot [86,88]. In
our system, leading irrelevant operators, see Sec. IV B, can
be responsible for weak contributions to shot noise. However,
such contributions quickly vanish as one approaches the fixed
point for T ,Vj → 0.

B. Stability of the strong-coupling point

The stability of the strong-coupling fixed point and the
low-energy physics in its vicinity are determined by the leading
irrelevant operators (LIOs), where we anticipate that our
analysis finds no marginal or relevant operators perturbing the
fixed point. Such perturbations will appear because the λjk

couplings are large but finite and are constructed from admis-
sible operators at the fixed point. The latter have to obey three
requirements, namely (i) they do not change the charge Qtot of
the PF box, (ii) they change the total charge of each edge only
in multiples of ν, and (iii) they alter Ĉjk in Eq. (22) only by an
integer number. Condition (i) prohibits operators with an odd
number of PF operators α̂m,α̂

†
m. Condition (ii) implies that op-

erators e±i
√

νφ̂j (x,t) (or multiples thereof) are involved. Finally,
condition (iii) further constrains the set of allowed operators.
By using (iii) in conjunction with the commutation relations

[Ĉjk(t),e±i
√

νφ̂m(x,t)]

= ±ν

2
(sgn(x)(δkm − δjm)

+ sgn(k − m) − sgn(j − m))e±i
√

νφ̂m(x,t) (36)
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TABLE I. Elementary allowed operators Ô and their scaling
dimensions �Ô at the strong-coupling fixed point. Combinations of
them lead to nontrivial new scaling dimensions.

Ô �Ô

e±i
√

νφ̂1(x>0,t) ν/2
e±i

√
νφ̂M (x<0,t) ν/2

e±i
√

ν(φ̂j (x>0,t)−φ̂j−1(x′<0,t)) ν
(
1 − 2

M

)
,

when x = −x ′ = 0+

e±i
√

ν−1φ̂j (x 
=0,t) ν−1/2

and [Ĉjk(t),ei
√

νφ̂m(0,t)α̂
†
m] = 0, one can determine all admitted

operators at the strong-coupling fixed point. The list of
elementary allowed operators is given in Table I. All nontrivial
allowed operators can be constructed by taking composites of
the operators in Table I. Note that the list implies that electrons
can tunnel in and out of the system anywhere at x 
= 0, but
quasiparticles can only tunnel outside of the whole structure
or between neighboring edges. Since quasiparticles have to
tunnel through the FQH bulk, these are also the only physical
possibilities in Fig. 1.

The scaling dimensions of operators and their combinations
are easily obtained by expressing operators in terms of ĝj (x,t),
see Eq. (25), and ignoring zero modes. Indeed, the operator
ei

∑
j pj ĝj (x,t) is seen to have scaling dimension � = ∑

j p2
j /2

by means of the relation

〈ei
∑

j pj ĝj (x,t)e−i
∑

j pj ĝj (x,t ′)〉 ∼ (t − t ′ − i0+)−
∑

j p2
j . (37)

Next, we calculate the scaling dimension of the LIO. Within the
original Hamiltonian (11), transfer of charge between different
edges is only possible through exponentials of Ĉjk . A nontrivial
perturbation to the strong-coupling fixed point can then only
result from edge fields φ̂m(x,t) taken near x = 0 on a single
edge m. The most general perturbation has the form

Ôc ∼ ei
√

ν−1(d+φ̂m(0+,t)+d−φ̂m(0−,t)), d± ∈ Z. (38)

Since this operator should conserve total charge, we re-
quire d− = −d+. Then Ôc shifts Ĉjk → Ĉjk + d+(δkm − δjm),
while its scaling dimension is given by �c = d2

+
2
ν
(1 − 1

M
). The

LIO follows for d+ = ±1 (where Ôc coincides with e∓i�̂m in
Appendix C), with the scaling dimension

�LIO = 2

ν

(
1 − 1

M

)
. (39)

For all M � 3 and ν � 1, we observe that �LIO > 1. The
fixed point is thus stable as asserted before. Furthermore,
since �LIO = �M in Eq. (1), with Luttinger liquid parameter
g = ν−1, the finite-T corrections at T � TK for the linear
conductance tensor can be inferred from Eq. (1) as well,

Gjk = dI+
j

dVk

= ν
e2

h
[1 − (T/TK )2�LIO−2]

(
2

M
− δjk

)
. (40)

Transport features are therefore basically identical to the
Majorana-based TKE, and also the PF-based strong-coupling
point represents a local quantum-critical point of non-Fermi-
liquid type.

We close this section with two remarks. First, consider
operators of the form e±i

√
ν(φ̂j (x>0,t)−φ̂j−1(x ′<0,t)). Such operators

do not appear as perturbations within the Hamiltonian in
Eq. (11), which contains no direct tunneling processes between
different edges. In general, such couplings can appear and
destabilize the fixed point, even though these operators do not
induce transitions between different values of Ĉjk , i.e., between
different ground-state minima of the potential in Eq. (21).
Indeed, they couple the incoming and outgoing channels in
the scattering problem. Should the corresponding coupling
strength be nonvanishing, it will destabilize the fixed point
below some energy scale. In practice, these couplings (and the
associated destabilization energy scale) can be suppressed by
arranging the respective edge parts far away from each other.

Second, it is also instructive to consider operators Ô ∼
ei

√
νφ̂m(0)α̂

†
m, which commute with Ĉjk and have scaling di-

mension � = ν/(2M), with � < ν/2 for M � 2. Therefore,
if several couplings λjk in Eq. (11) enter the strong-coupling
regime and approach a fixed point with M ′ < M leads, the
couplings to the remaining leads will quickly catch up under
the RG flow since they are relevant. In fact, they are even more
relevant than the original couplings in Eq. (11).

V. CONCLUSIONS

In this work, we have proposed a parafermionic version
of the topological Kondo model previously suggested for
a Majorana box [56–58]. Our generalization employs chi-
ral fractional quantum Hall edge states as leads, which are
tunnel-coupled to parafermionic zero modes present on a
Coulomb-blockaded island, cf. Ref. [42]. By means of Abelian
bosonization, a theoretical description of quantum transport
in such a multiterminal quantum junction has been given in
both the weak- and the strong-coupling limit. In particular, we
have derived and discussed the one-loop RG equations. Our
RG analysis shows that the system flows towards an isotropic
stable strong-coupling fixed point. However, in contrast to the
Majorana-based case, our problem does not fall into the class
of Kondo problems, see Appendix B for details.

The strong-coupling limit has then been analyzed by means
of the approach of Ref. [91], which yields controlled results
within the Abelian bosonization approach. It is remarkable
that the resulting conductance tensor is basically identical to
the one of the Majorana-based topological Kondo model, see
Eq. (1), even though no continuous symmetries (and hence no
Kondo screening processes) are manifestly involved in the PF
variant. Let us emphasize two particularly noteworthy features
of our T = 0 result in Eq. (34). First, the isotropic partitioning
of injected quasiparticle currents into all outgoing leads is
noiseless, in analogy to previous studies for different but
related physical systems [56–58,61,86,88]. Second, consider
the case that a current Iin is injected only via lead 1. This lead
then also serves as current extractor, since the outgoing current
I+

1 has opposite sign as compared to the injected current, with
the universal ratio I+

1 /Iin = −(M − 2)/M . By determining the
leading irrelevant operators around the strong-coupling point,
we have also obtained the temperature-dependent corrections
to the conductance tensor and established that the strong-
coupling point represents a local quantum-critical point of non-
Fermi-liquid type. Given the recent experimental advances in
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the field [25,26], we hope that these predictions can soon be
put to an experimental test.
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APPENDIX A: ON VERTEX OPERATORS

We here provide technical details related to Secs. II and
III. We start by noting that in terms of the chiral boson fields
in Eqs. (2) and (3), the fractional quasiparticle operator for
the j th lead is given by ψ̂j (x,t) = V√

ν,j (x,t), with the vertex
operator

Vp,j (x,t) =
(

L

2π

)−p2/2

: eipφ̂j (x,t) : , (A1)

where : : denotes normal ordering and L the system size. Using
τc as short-time cutoff and a set of conventional boson operators
{ân,j } with momentum kn = 2πn/L (n ∈ N), φ̂j has the mode
decomposition [66]

φ̂j (x,t) = φ̂0,j + Q̂
edge
j

2π (x − vt)

L
√

ν
+ i

∞∑
n=1

√
2π

Lkn

× (ân,j e
ikn(x−vt) − â

†
n,j e

−ikn(x−vt))e−τcvkn/2, (A2)

where[
Q̂

edge
j ,φ̂0,m

] = i
√

νδjm, [φ̂0,j ,φ̂0,m] = iπsgn(m − j ).

(A3)

The operator Vp,j in Eq. (A1) has scaling dimension �p =
p2/2. The OPE contractions required for deriving the RG
equations in Sec. III follow from the relation (with x ′ → x

and t ′ → t)

Vp,j (x,t)Vq,j (x ′,t ′)

=
(

L

2π

)−(p+q)2/2

×[i(vt − x − vt ′ + x ′ − ivτc)]pq : ei(pφ̂j (x,t)+qφ̂j (x ′,t ′)) :

= [i(vt − x − vt ′ + x ′ − ivτc)]pq

× Vp+q,j (x,t)[1 + O(x − x ′) + O(t − t ′)]. (A4)

Note that pq = �p+q − �p − �q .
Using Eq. (A4) for p = −q = √

ν, and a regularization
with positive infinitesimal ε, we can also verify that the
potential scattering terms in Eq. (9) can be neglected. To that
end, we write

ψ̂j (0)ψ̂†
j (0) = 1

4ε2

∫ ε

−ε

dx

∫ ε

−ε

dx ′ ψ̂j (x)ψ̂†
j (x ′)

= c0 + c1∂xφ̂j (0) + O(c2), cm ∼ εm−ν . (A5)

Now c0 contributes only an unimportant (albeit divergent)
constant while, for ν < 1, all cm�1 → 0 for ε → 0. For ν = 1,

c1 remains finite for ε → 0, but the corresponding term in
Eq. (A5) can be absorbed by the transformation φ̂j (x) →
φ̂j (x) + c̃j sgn(x) with c̃j ∼ c1. Since similar statements hold
for ψ̂

†
j (0)ψ̂j (0), we conclude that for all ν � 1, potential

scattering is indeed negligible.

APPENDIX B: THE (ABSENT) SYMMETRY
OF THE LEADS

1. Lead symmetries

Kondo problems are characterized by coupling a set of
leads, forming a representation of a continuous symmetry, with
a quantum impurity sharing the same continuous symmetry.
We here show that for our PF generalization of the TKE
with ν < 1, the leads do not possess a nontrivial continuous
symmetry. As a consequence, the corresponding model does
not define a Kondo problem.

First of all, we note that for any ν � 1 and any number
M of leads, we have a [U (1)]M symmetry related to charge
conservation in each separate lead generated by the charge
density operator

√
ν

2π
∂xφ̂j (x). This is not the symmetry we are

interested in, as it is Abelian. All irreducible representations
of an Abelian symmetry are necessarily one-dimensional,
and, therefore, generators of such a symmetry cannot cause
transitions of quasiparticles between the leads and the accom-
panying changes in the impurity state. Hence we are looking for
non-Abelian symmetries of the leads, which should conserve
total electric charge and the scaling dimensions of transformed
operators. A fractional quasiparticle operator can thus only be
transformed into a linear combination of such operators,

ψ̂j (x) → ˆ̃ψj (x) =
∑

k

Ajk(x)ψ̂k(x). (B1)

The symmetry should preserve the quasiparticle permutation
relations (7), which implies the conditions

(1 − eiπν(sgn(j−k)+sgn(n−m))eiπνsgn(x−x ′)(δmn−δjk))Ajm(x)Akn(x ′)

= 0

(B2)

for arbitrary (j,k,m,n) indices and arbitrary x 
= x ′. For a con-
tinuous symmetry, we focus on infinitesimal transformations,
Ajk(x) = δjk + ajk(x) with |ajk(x)| � 1, where Eq. (B2)
yields (to linear order in ajk and putting k = n and j 
= m)

(1 − eiπν(sgn(j−k)+sgn(k−m))eiπνsgn(x−x ′)(δmk−δjk ))ajm(x) = 0.

(B3)

Here, x ′ remains as free parameter. Since the equation has
to be satisfied both at x ′ > x and x ′ < x, one concludes that
either ν = 1 or ajm(x) = 0. For ν 
= 1, this implies diagonal
Ajm(x) with Abelian symmetry, not mixing different edges.
The above reasoning thus constitutes a proof that no continuous
non-Abelian lead symmetry exists for ν 
= 1.

2. Remarks on conformal field theory

It is instructive to study this issue also from the conformal
field theory (CFT) [97] point of view. The leads are described
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by a CFT for massless chiral bosons. According to Noether’s
theorem, a continuous symmetry implies the existence of a
conserved current J (x) generating the symmetry. In a chiral
CFT, such currents must have scaling dimension � = 1,
since the total charge associated with the conserved current,∫

dxJ (x), should not renormalize under scaling. Therefore, if
a continuous lead symmetry is present, it must be generated
by fields of scaling dimension � = 1. We now separate
Hedge into a charged and a neutral sector. The charged sector
is defined by the free boson field φ̂c(x) = 1√

M

∑M
j=1 φ̂j (x),

with [φ̂c(x),φ̂c(x ′)] = iπsgn(x − x ′). The total charge density,
expressed through

ρ̂c(x) =
√

ν

2π
∂x

M∑
j=1

φ̂j (x) =
√

νM

2π
∂xφ̂c(x), (B4)

generates the U(1)c symmetry responsible for total
charge conservation. Writing Hedge = Hc + Hn with

Hc = v
4π

∫ +L/2
−L/2 dx(∂xφ̂c(x))

2
and

Hn = v

4π

M∑
j=1

∫ +L/2

−L/2
dx

(
∂xφ̂j (x) − 1√

M
∂xφ̂c(x)

)2

, (B5)

the degrees of freedom of the neutral sector do not carry electric
charge, [φ̂j (x) − 1√

M
φ̂c(x),ρ̂c(y)] = 0. Each operator in the

theory can then be decomposed into a product of charged and
neutral parts,

Ô(x) = eiqφ̂c(x)/
√

νM ⊗ Ôn(x), (B6)

with scaling dimension �Ô = �c + �n, where �c =
q2/(2νM). The spectrum of neutral scaling dimensions �n

thus follows by computing �Ô − �c for all primary operators.
Operators with �n = 1 and q = 0 are candidates for genera-
tors of hidden symmetries in the neutral sector. Apart from
∂xφ̂j (x) − 1√

M
∂xφ̂c(x), primary fields are given by

Ô{nj }(x) = ei
∑M

j=1 nj φ̂j (x)
√

ν, (B7)

with charge q = ν
∑

j nj and scaling dimension � =
ν

∑
j n2

j /2, where all nj ∈ Z. The spectrum of neutral scaling
dimensions follows as

�n = ν

2

⎛
⎝∑

j

n2
j − 1

M

⎡
⎣∑

j

nj

⎤
⎦

2⎞
⎠

= ν

2

∑
j

(
nj −

∑M
k=1 nk

M

)2

� 0. (B8)

For simplicity, we focus from now on the case of M = 3
leads. The smallest scaling dimensions in the neutral sector,
calculated from Eq. (B8), are listed for ν = 1, 1/3, and 1/5
in Table II. First, note that for ν = 1/5, there are no operators
with �n = 1, and, therefore, no continuous symmetries exist in
the neutral sector apart from the [U(1)]2 symmetry generated
by ∂xφ̂j (x) − 1√

M
∂xφ̂c(x).

The case of ν = 1 is equivalent to the TKE, where one
expects an so(3) = su(2) symmetry [56]. Indeed, all operators
with scaling dimension � = 1 are expressed as Jjk(x) =

TABLE II. The list of smallest neutral scaling dimensions of
primary operators for M = 3 leads at ν = 1, 1/3, 1/5.

ν �n

1 0, 1
3 ,1, 4

3 , 7
3 ,3, . . .

1/3 0, 1
9 , 1

3 , 4
9 , 7

9 ,1, 4
3 , 13

9 , 16
9 , 19

9 , 7
3 , 25

9 ,3, . . .

1/5 0, 1
15 , 1

5 , 4
15 , 7

15 , 3
5 , 4

5 , 13
15 , 16

15 , 19
15 , 7

5 , 5
3 , 9

5 , 28
15 , 31

15 , 12
5 , . . .

ψ̂
†
j (x)ψ̂k(x) in terms of the electron operators ψ̂j (x). The

total charge density in Eq. (B4) corresponds to ρ̂c(x) ∼∑
j ψ̂

†
j (x)ψ̂j (x), while the remaining eight currents generate a

symmetry of the neutral sector. These eight currents obey the
su(3)1 Kac-Moody (KM) algebra, and the theory of three ν = 1
leads can be described as su(3)1 Wess-Zumino-Witten (WZW)
CFT. A subalgebra of this algebra constitutes the su(2)4 KM
algebra, and the leads can also be described by the su(2)4

WZW model, which ultimately provides a description for the
strong-coupling fixed point of the TKE [56].

The most interesting case for us is ν = 1/3. Apart from
ρ̂c(x), there are again eight operators with � = 1, which obey
the same commutation relations as the su(3)-generating Gell-
Mann matrices,

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ ↔ J 1(x) = J+

3 (x) + J−
3 (x),

λ2 =
⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ ↔ J 2(x) = −iJ+

3 (x) + iJ−
3 (x),

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ ↔ J 4(x) = J−

2 (x) + J+
2 (x),

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ ↔ J 5(x) = −iJ−

2 (x) + iJ+
2 (x),

λ6 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ↔ J 6(x) = J+

1 (x) + J−
1 (x),

λ7 =
⎛
⎝0 0 0

0 0 −i

0 i 0

⎞
⎠ ↔ J 7(x) = −iJ+

1 (x) + iJ−
1 (x),

λ3 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ↔ J 3(x) = ∂(φ̂1 + φ̂2 − 2φ̂3)(x)√

3
,

λ8 = 1√
3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ ↔ J 8(x) = ∂x(φ̂2 − φ̂1)(x), (B9)

where

J±
j (x) = l−1e±i(3φ̂j −φ̂1−φ̂2−φ̂3)/

√
3, (B10)

with cutoff length l. Note the apparent strangeness in defini-
tions of J 3, J 8, and J 5, as compared to J 2 and J 7. Moreover,
these currents obey the su(3)1 KM algebra. Hn in Eq. (B5)
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can be expressed in terms of these currents, and then coincides
with the Hamiltonian of the su(3)1 WZW model [97]. One
would therefore expect that the leads have su(3) symmetry and
are described by the WZW model. However, this is not the
case. One way to see this is to note that the scaling dimensions
�n = 1

9 , 4
9 , 7

9 in Table II are absent in the spectrum of the su(3)1

WZW model. Moreover, the currents J k(x) do not act as a
symmetry on the operators in the theory.

Indeed, consider the OPE of a current with a quasi-
particle operator ψ̂j (x) ∼ eiφ̂j (x)/

√
3. For example, J+

1 (x) ×
eiφ̂2(y)/

√
3 ∼ (x − y)−1/3ei(2φ̂1−φ̂3)(y)/

√
3, thus mapping an op-

erator with �n = 1
9 onto one with �n = 7

9 . Operators with
‘correct’ scaling dimensions in the su(3)1 WZW model
are mapped correctly. For instance, operators of scaling
dimension �n = 1

3 , which are given by ψ̂
†
j (x)ψ̂k(x) with

j 
= k, are mapped in agreement with the fundamental
(ψ̂†

1(x)ψ̂2(x),ψ̂†
2(x)ψ̂3(x),ψ̂†

3(x)ψ̂1(x)) and the antifundamen-
tal (the other three) representations of su(3). However, the
currents and the operators do not commute at distant points,
e.g.,

J+
3 (x)ψ̂†

3ψ̂1(y) = ψ̂
†
3ψ̂1(y)J+

3 (x)eiπ(sgn(x−y)−1/3). (B11)

This last statement means that operators ψ̂
†
j (x)ψ̂k(x) are not

local with respect to currents J k(x). On the other hand, all
the operators in the theory of the leads are local with respect
to electron operators ei

√
3φ̂j (x) (by construction of the FQH

edges). The two models, the theory of the leads and su(3)1

WZW model, are therefore “almost” the same: they have
the same central charge and even the same Hamiltonian, yet
they have a different spectrum. The origin of this difference
appears to come from different locality notions. This is not
a unique situation: the same relation is present between the
theory of free Majorana fermions in 1+1 dimensions and the
M(4,3) minimal CFT model describing the critical point of
the two-dimensional (2D) Ising model [97]. Both models have
central charge 1/2, yet the spin operator σ of scaling dimension
� = 1/16 is nonlocal with respect to the Majorana fermion
and thus absent from the former theory. The relation between
the models is evident through Onsager’s solution of the 2D
Ising model. Further studies of such “locality-distinguished”
CFTs may uncover similar relations and possibly allow for
full solutions of models whose critical point is described by
the su(3)1 WZW model. We expect that for M > 3, similar
“almost realized” symmetries will be encountered for ν = 1/3
and 1/5.

APPENDIX C: ON THE STRONG-COUPLING SOLUTION

We here provide technical details about our strong-coupling
solution in Sec. IV. In particular, we derive the expressions for
the field operators quoted in Eqs. (27) and (28). Using the
approach of Ref. [91], the low-energy Hamiltonian is given by

HLE = H0 − 1

2

M∑
j,k=2

Njk�̂j �̂k. (C1)

Here we use the integer-valued operators D̂j ≡ Ĉ1j (with
j = 2, . . . ,M), and the conjugate operators

�̂j = 1

2πi

M∑
k=2

Mjk[D̂k,H0], (C2)

with symmetric matrices N and M given by

Njk = − 1

4π2
[D̂k,[D̂j ,H0]], M = N−1. (C3)

Noting that [D̂j ,�̂k] = 2πiδjk , the operator e±i�̂j effectively
shifts D̂j → D̂j ± 1.

In order to implement the approach of Ref. [91], we
discretize the spatial coordinate x = zε in units of a small
spacing ε (with z ∈ Z), where

H0 =
M∑

j=1

v

4πε

∑
z

(φ̂j (zε + ε) − φ̂j (zε))2. (C4)

Using the commutation relations (3), the matrices in Eq. (C3)
take the form

Njk = vν

4πε
(1 + δjk), Mjk = 4πε

vν

(
δjk − 1

M

)
, (C5)

while Eq. (C2) yields

�̂j = 1√
ν

(
φ̂j (−ε) − φ̂j (ε) −

M∑
k=1

φ̂k(−ε) − φ̂k(ε)

M

)
. (C6)

The low-energy Hamiltonian (C1) is thus given by

HLE = H0 − v

8πε

M∑
k=1

(φ̂k(ε) − φ̂k(−ε))2

+ v

8πεM

[
M∑

k=1

(φ̂k(ε) − φ̂k(−ε))

]2

. (C7)

Since HLE is quadratic in the boson fields, it can easily be
diagonalized. To that end, consider the equations of motion.
First, for |z| � 2,

∂t φ̂j (zε) = −v
φ̂k(zε + ε) − φ̂k(zε − ε)

2ε
. (C8)

For z = ±1, one gets

∂t φ̂j (±ε) = ∓v
φ̂j (±2ε) − φ̂j (0)

2ε
+ v

2

(
φ̂j (ε) − φ̂j (−ε)

2ε

− 1

M

M∑
k=1

φ̂k(ε) − φ̂k(−ε)

2ε

)
, (C9)

while for z = 0, we have

∂t φ̂j (0) = − v

M

M∑
k=1

φ̂k(ε) − φ̂k(−ε)

2ε
. (C10)

In addition, the constraints (22) have to be satisfied at all times,
where β̂jk and Ĉjk do not depend on time since each of them
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commutes with HLE. Taking the limit ε → 0, Eq. (C8) implies
the dispersion relation ω = vq. At given frequency ω, we then
obtain the time-dependent solutions

φ̂j (zε,t) =

⎧⎪⎨
⎪⎩

u−
j (ω)eiq(zε+ε)−iωt , z � −1,

u+
j (ω)eiq(zε−ε)−iωt , z � 1,

u0
j (ω)e−iωt , z = 0.

(C11)

For ε → 0, Eq. (C10) together with Eq. (22) yields

u0
j (ω) = u0

k(ω) + δω,0π
√

ν−1(β̂jk − 2Ĉjk), (C12)

and by combining Eqs. (C9) and (C10), we obtain

2u0
j (ω) = u+

j (ω) + u−
j (ω),

M∑
j=1

(u+
j (ω) − u−

j (ω)) = 0.

(C13)
Using also Eq. (C13), we finally arrive at

u+
j (ω) = −u−

j (ω) + 2

M

M∑
k=1

u−
k (ω)

+ δω,0
2

M
π

√
ν−1

M∑
k=1,k 
=j

(β̂jk − 2Ĉjk), (C14)

where u0
j (ω) = [u+

j (ω) + u−
j (ω)]/2. These relations directly

yield Eqs. (27) and (28).

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[3] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[4] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.

Krogstrup, C. M. Marcus, and Y. Oreg, Nat. Rev. Mater. 3, 52
(2018).

[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 (2008).

[6] J. Alicea and P. Fendley, Annu. Rev. Condens. Matter Phys. 7,
119 (2016).

[7] S. Das Sarma, M. Freedman, and C. Nayak, npj Quantum Inf. 1,
15001 (2015).

[8] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. Bakkers,
and L. P. Kouwenhoven, Science 336, 1003 (2012).

[9] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Nano Lett. 12, 6414 (2012).

[10] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Nat. Phys. 8, 887 (2012).

[11] L. P. Rokhinson, X. Liu, and J. K. Furdyna, Nat. Phys. 8, 795
(2012).

[12] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[13] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and
K. J. Franke, Phys. Rev. Lett. 115, 197204 (2015).

[14] H. H. Sun, K. W. Zhang, L. H. Hu, C. Li, G. Y. Wang, H. Y. Ma,
Z. A. Xu, C. L. Gao, D. D. Guan, Y. Y. Li, C. Liu, D. Qian, Y.
Zhou, L. Fu, S. C. Li, F. C. Zhang, and J. F. Jia, Phys. Rev. Lett.
116, 257003 (2016).

[15] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, and C. M. Marcus,
Nature (London) 531, 206 (2016).

[16] M. T. Deng, S. Vaitiekenas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[17] Ö. Gül, H. Zhang, F. K. de Vries, J. van Veen, K. Zuo, V.
Mourik, S. Conesa-Boj, M. P. Nowak, D. J. van Woerkom, M.
Quintero-Pérez, M. C. Cassidy, A. Geresdi, S. Koelling, D. Car,

S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven,
Nano Lett. 17, 2690 (2017).

[18] H. Zhang, Ö. Gül, S. Conesa-Boj, M. Nowak, M. Wimmer, K.
Zuo, V. Mourik, F. K. de Vries, J. van Veen, M. W. A. de Moor,
J. D. S. Bommer, D. J. van Woerkom, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, M. Quintero-Perez, M. C. Cassidy, S.
Koelling, S. Goswami, K. Watanabe, T. Taniguchi, and L. P.
Kouwenhoven, Nat. Commun. 8, 16025 (2017).

[19] S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F. Kuemmeth,
T. S. Jespersen, J. Nygård, P. Krogstrup, J. Danon, K. Flensberg,
and C. M. Marcus, Phys. Rev. Lett. 118, 137701 (2017).

[20] F. Nichele, A. C. C. Drachmann, A. M. Whiticar, E. C. T.
O’Farrell, H. J. Suominen, A. Fornieri, T. Wang, G. C. Gardner,
C. Thomas, A. T. Hatke, P. Krogstrup, M. J. Manfra, K.
Flensberg, and C. M. Marcus, Phys. Rev. Lett. 119, 136803
(2017).

[21] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani,
C. J. Palmstrøm, C. M. Marcus, and F. Nichele, Phys. Rev. Lett.
119, 176805 (2017).

[22] S. Gazibegovich, D. Car, H. Zhang, S. C. Balk, J. A. Logan,
M. W. A. de Moor, M. C. Cassidy, R. Schmits, D. Xu, G. Wang,
P. Krogstrup, R. L. M. Op het Veld, J. Shen, D. Bouman, B.
Shojaei, D. Pennachio, J. S. Lee, P. J. van Veldhoven, S. Koelling,
M. A. Verheijen, L. P. Kouwenhoven, C. J. Palmstrøm, and
E. P. A. M. Bakkers, Nature (London) 548, 434 (2017).

[23] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z. Wang,
I. K. Drozdov, B. Andrei Bernevig, and A. Yazdani, Nat. Phys.
13, 286 (2017).

[24] R. S. Deacon, J. Wiedenmann, E. Bocquillon, F. Domínguez,
T. M. Klapwijk, P. Leubner, C. Brüne, E. M. Hankiewicz, S.
Tarucha, K. Ishibashi, H. Buhmann, and L. W. Molenkamp,
Phys. Rev. X 7, 021011 (2017).

[25] Y. Ronen, Y. Cohen, D. Banditt, M. Heiblum, and V. Umansky,
Nat. Phys. 14, 411 (2018).

[26] T. Wu, Z. Wan, A. Kazakov, Y. Wang, G. Simion, J. Liang,
K. W. West, K. Baldwin, L. N. Pfeiffer, Y. Lyanda-Geller, and
L. P. Rokhinson, Phys. Rev. B 97, 245304 (2018).

[27] N. H. Lindner, E. Berg, G. Refael, and A. Stern, Phys. Rev. X 2,
041002 (2012).

[28] M. Cheng, Phys. Rev. B 86, 195126 (2012).

235139-11

https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1038/nphys2429
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1103/PhysRevLett.116.257003
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1021/acs.nanolett.7b00540
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1038/ncomms16025
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.136803
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nature23468
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1038/nphys3947
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1103/PhysRevX.7.021011
https://doi.org/10.1038/s41567-017-0035-2
https://doi.org/10.1038/s41567-017-0035-2
https://doi.org/10.1038/s41567-017-0035-2
https://doi.org/10.1038/s41567-017-0035-2
https://doi.org/10.1103/PhysRevB.97.245304
https://doi.org/10.1103/PhysRevB.97.245304
https://doi.org/10.1103/PhysRevB.97.245304
https://doi.org/10.1103/PhysRevB.97.245304
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1103/PhysRevB.86.195126


SNIZHKO, BUCCHERI, EGGER, AND GEFEN PHYSICAL REVIEW B 97, 235139 (2018)

[29] D. J. Clarke, J. Alicea, and K. Shtengel, Nat. Commun. 4, 1348
(2013).

[30] M. Burrello, B. van Heck, and E. Cobanera, Phys. Rev. B 87,
195422 (2013).

[31] A. Vaezi, Phys. Rev. B 87, 035132 (2013).
[32] F. Zhang and C. L. Kane, Phys. Rev. Lett. 113, 036401 (2014).
[33] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, P. Fendley,

C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel, and M. P. A.
Fisher, Phys. Rev. X 4, 011036 (2014).

[34] D. J. Clarke, J. Alicea, and K. Shtengel, Nat. Phys. 10, 877
(2014).

[35] M. Barkeshli, Y. Oreg, and X. L. Qi, arXiv:1401.3750.
[36] M. Barkeshli and X. L. Qi, Phys. Rev. X 4, 041035 (2014).
[37] J. Klinovaja and D. Loss, Phys. Rev. Lett. 112, 246403 (2014).
[38] J. Klinovaja, A. Yacoby, and D. Loss, Phys. Rev. B 90, 155447

(2014).
[39] M. Cheng and R. M. Lutchyn, Phys. Rev. B 92, 134516 (2015).
[40] J. Alicea and A. Stern, Phys. Scr. T164, 14006 (2015).
[41] Y. Kim, D. J. Clarke, and R. M. Lutchyn, Phys. Rev. B 96, 041123

(2017).
[42] K. Snizhko, R. Egger, and Y. Gefen, Phys. Rev. B 97, 081405(R)

(2018).
[43] K. Meichanetzidis, C. J. Turner, A. Farjami, Z. Papić, and J. K.

Pachos, Phys. Rev. B 97, 125104 (2018).
[44] A. Chew, D. F. Mross, and J. Alicea, arXiv:1802.04809.
[45] G. Lee, K. Huang, D. K. Efetov, D. S. Wei, S. Hart, T. Taniguchi,

K. Watanabe, A. Yacoby, and P. Kim, Nat. Phys. 13, 693
(2017).

[46] J. S. Lee, B. Shojaei, M. Pendharkar, A. P. McFadden, Y. Kim,
H. J. Suominen, M. Kjaergaard, F. Nichele, C. M. Marcus, and
C. J. Palmstrøm, arXiv:1705.05049.

[47] L. Fu, Phys. Rev. Lett. 104, 056402 (2010).
[48] A. Zazunov, A. L. Yeyati, and R. Egger, Phys. Rev. B 84, 165440

(2011).
[49] R. Hützen, A. Zazunov, B. Braunecker, A. L. Yeyati, and R.

Egger, Phys. Rev. Lett. 109, 166403 (2012).
[50] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon,

M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Phys. Rev. X 6, 031016 (2016).

[51] S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg, and
R. Egger, Phys. Rev. B 94, 174514 (2016).

[52] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht,
and R. Egger, Phys. Rev. Lett. 116, 050501 (2016).

[53] S. Plugge, A. Rasmussen, R. Egger, and K. Flensberg, New J.
Phys. 19, 012001 (2017).

[54] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y. Oreg,
C. M. Marcus, and M. H. Freedman, Phys. Rev. B 95, 235305
(2017).

[55] D. Litinski, M. S. Kesselring, J. Eisert, and F. von Oppen,
Phys. Rev. X 7, 031048 (2017).

[56] B. Béri and N. R. Cooper, Phys. Rev. Lett. 109, 156803
(2012).

[57] A. Altland and R. Egger, Phys. Rev. Lett. 110, 196401 (2013).
[58] B. Béri, Phys. Rev. Lett. 110, 216803 (2013).
[59] N. Crampé and A. Trombettoni, Nucl. Phys. B 871, 526 (2013).
[60] A. M. Tsvelik, Phys. Rev. Lett. 110, 147202 (2013).
[61] A. Zazunov, A. Altland, and R. Egger, New J. Phys. 16, 015010

(2014).

[62] A. Altland, B. Béri, R. Egger, and A. M. Tsvelik, Phys. Rev.
Lett. 113, 076401 (2014).

[63] M. R. Galpin, A. K. Mitchell, J. Temaismithi, D. E. Logan, B.
Béri, and N. R. Cooper, Phys. Rev. B 89, 045143 (2014).

[64] F. Buccheri, H. Babujian, V. E. Korepin, P. Sodano, and A.
Trombettoni, Nucl. Phys. B 896, 52 (2015).

[65] A. Zazunov, F. Buccheri, P. Sodano, and R. Egger, Phys. Rev.
Lett. 118, 057001 (2017).

[66] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, Bosonization
and Strongly Correlated Systems (Cambridge University Press,
Cambridge, UK, 1998).

[67] A. Altland and B. Simons, Condensed Matter Field Theory,
2nd ed. (Cambridge University Press, Cambridge, UK, 2010).

[68] X. G. Wen, Phys. Rev. B 44, 5708 (1991).
[69] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
[70] V. J. Goldman and B. Su, Science 267, 1010 (1995).
[71] V. J. Goldman, Surf. Sci. 361-362, 1 (1996).
[72] R. de Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G.

Bunin, and D. Mahalu, Nature (London) 389, 162 (1997).
[73] L. Saminadayar, D. C. Glattli, Y. Jin, and B. Etienne, Phys. Rev.

Lett. 79, 2526 (1997).
[74] V. J. Goldman, Physica E 1, 15 (1997).
[75] I. J. Maasilta and V. J. Goldman, Phys. Rev. B 55, 4081 (1997).
[76] C. Nayak, M. P. A. Fisher, A. W. W. Ludwig, and H. H. Lin,

Phys. Rev. B 59, 15694 (1999).
[77] S. Chen, B. Trauzettel, and R. Egger, Phys. Rev. Lett. 89, 226404

(2002).
[78] C. Chamon, M. Oshikawa, and I. Affleck, Phys. Rev. Lett. 91,

206403 (2003).
[79] X. Barnabé-Thériault, A. Sedeki, V. Meden, and K.

Schönhammer, Phys. Rev. Lett. 94, 136405 (2005).
[80] M. Oshikawa, C. Chamon, and I. Affleck, J. Stat. Mech. (2006)

P02008.
[81] S. Das, S. Rao, and D. Sen, Phys. Rev. B 74, 045322 (2006).
[82] C.-Y. Hou and C. Chamon, Phys. Rev. B 77, 155422 (2008).
[83] A. Agarwal, S. Das, S. Rao, and D. Sen, Phys. Rev. Lett. 103,

026401 (2009).
[84] D. Giuliano and P. Sodano, Nucl. Phys. B 811, 395 (2009).
[85] B. Bellazzini, P. Calabrese, and M. Mintchev, Phys. Rev. B 79,

085122 (2009).
[86] A. Altland, Y. Gefen, and B. Rosenow, Phys. Rev. Lett. 108,

136401 (2012).
[87] A. Rahmani, C.-Y. Hou, A. Feiguin, M. Oshikawa, C. Chamon,

and I. Affleck, Phys. Rev. B 85, 045120 (2012).
[88] A. Altland, Y. Gefen, and B. Rosenow, Phys. Rev. B 92, 085124

(2015).
[89] H. Yi and C. L. Kane, Phys. Rev. B 57, R5579(R) (1998).
[90] H. Yi, Phys. Rev. B 65, 195101 (2002).
[91] S. Ganeshan and M. Levin, Phys. Rev. B 93, 075118

(2016).
[92] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491

(1966).
[93] For comparison with the TKE (i.e., n = 2), let us note that the

algebra su(d), with d = 2[(M−1)/2], contains the expected subal-
gebra so(M) for M � 7. In the TKE, Majorana bilinears generate
this subalgebra, and leads are only coupled to this subalgebra
[56]. For M < 7, on the contrary, the Hilbert space dimension
is d < M , meaning that the system forms a representation of
so(M) which is smaller than the fundamental one. The quoted

235139-12

https://doi.org/10.1038/ncomms2340
https://doi.org/10.1038/ncomms2340
https://doi.org/10.1038/ncomms2340
https://doi.org/10.1038/ncomms2340
https://doi.org/10.1103/PhysRevB.87.195422
https://doi.org/10.1103/PhysRevB.87.195422
https://doi.org/10.1103/PhysRevB.87.195422
https://doi.org/10.1103/PhysRevB.87.195422
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevX.4.011036
https://doi.org/10.1103/PhysRevX.4.011036
https://doi.org/10.1103/PhysRevX.4.011036
https://doi.org/10.1103/PhysRevX.4.011036
https://doi.org/10.1038/nphys3114
https://doi.org/10.1038/nphys3114
https://doi.org/10.1038/nphys3114
https://doi.org/10.1038/nphys3114
http://arxiv.org/abs/arXiv:1401.3750
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevX.4.041035
https://doi.org/10.1103/PhysRevLett.112.246403
https://doi.org/10.1103/PhysRevLett.112.246403
https://doi.org/10.1103/PhysRevLett.112.246403
https://doi.org/10.1103/PhysRevLett.112.246403
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.92.134516
https://doi.org/10.1103/PhysRevB.92.134516
https://doi.org/10.1103/PhysRevB.92.134516
https://doi.org/10.1103/PhysRevB.92.134516
https://doi.org/10.1088/0031-8949/2015/T164/014006
https://doi.org/10.1088/0031-8949/2015/T164/014006
https://doi.org/10.1088/0031-8949/2015/T164/014006
https://doi.org/10.1088/0031-8949/2015/T164/014006
https://doi.org/10.1103/PhysRevB.96.041123
https://doi.org/10.1103/PhysRevB.96.041123
https://doi.org/10.1103/PhysRevB.96.041123
https://doi.org/10.1103/PhysRevB.96.041123
https://doi.org/10.1103/PhysRevB.97.081405
https://doi.org/10.1103/PhysRevB.97.081405
https://doi.org/10.1103/PhysRevB.97.081405
https://doi.org/10.1103/PhysRevB.97.081405
https://doi.org/10.1103/PhysRevB.97.125104
https://doi.org/10.1103/PhysRevB.97.125104
https://doi.org/10.1103/PhysRevB.97.125104
https://doi.org/10.1103/PhysRevB.97.125104
http://arxiv.org/abs/arXiv:1802.04809
https://doi.org/10.1038/nphys4084
https://doi.org/10.1038/nphys4084
https://doi.org/10.1038/nphys4084
https://doi.org/10.1038/nphys4084
http://arxiv.org/abs/arXiv:1705.05049
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevLett.104.056402
https://doi.org/10.1103/PhysRevB.84.165440
https://doi.org/10.1103/PhysRevB.84.165440
https://doi.org/10.1103/PhysRevB.84.165440
https://doi.org/10.1103/PhysRevB.84.165440
https://doi.org/10.1103/PhysRevLett.109.166403
https://doi.org/10.1103/PhysRevLett.109.166403
https://doi.org/10.1103/PhysRevLett.109.166403
https://doi.org/10.1103/PhysRevLett.109.166403
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.109.156803
https://doi.org/10.1103/PhysRevLett.110.196401
https://doi.org/10.1103/PhysRevLett.110.196401
https://doi.org/10.1103/PhysRevLett.110.196401
https://doi.org/10.1103/PhysRevLett.110.196401
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1103/PhysRevLett.110.216803
https://doi.org/10.1016/j.nuclphysb.2013.03.001
https://doi.org/10.1016/j.nuclphysb.2013.03.001
https://doi.org/10.1016/j.nuclphysb.2013.03.001
https://doi.org/10.1016/j.nuclphysb.2013.03.001
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1103/PhysRevLett.110.147202
https://doi.org/10.1088/1367-2630/16/1/015010
https://doi.org/10.1088/1367-2630/16/1/015010
https://doi.org/10.1088/1367-2630/16/1/015010
https://doi.org/10.1088/1367-2630/16/1/015010
https://doi.org/10.1103/PhysRevLett.113.076401
https://doi.org/10.1103/PhysRevLett.113.076401
https://doi.org/10.1103/PhysRevLett.113.076401
https://doi.org/10.1103/PhysRevLett.113.076401
https://doi.org/10.1103/PhysRevB.89.045143
https://doi.org/10.1103/PhysRevB.89.045143
https://doi.org/10.1103/PhysRevB.89.045143
https://doi.org/10.1103/PhysRevB.89.045143
https://doi.org/10.1016/j.nuclphysb.2015.04.016
https://doi.org/10.1016/j.nuclphysb.2015.04.016
https://doi.org/10.1016/j.nuclphysb.2015.04.016
https://doi.org/10.1016/j.nuclphysb.2015.04.016
https://doi.org/10.1103/PhysRevLett.118.057001
https://doi.org/10.1103/PhysRevLett.118.057001
https://doi.org/10.1103/PhysRevLett.118.057001
https://doi.org/10.1103/PhysRevLett.118.057001
https://doi.org/10.1103/PhysRevB.44.5708
https://doi.org/10.1103/PhysRevB.44.5708
https://doi.org/10.1103/PhysRevB.44.5708
https://doi.org/10.1103/PhysRevB.44.5708
https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1103/PhysRevLett.68.1220
https://doi.org/10.1126/science.267.5200.1010
https://doi.org/10.1126/science.267.5200.1010
https://doi.org/10.1126/science.267.5200.1010
https://doi.org/10.1126/science.267.5200.1010
https://doi.org/10.1016/0039-6028(96)00317-2
https://doi.org/10.1016/0039-6028(96)00317-2
https://doi.org/10.1016/0039-6028(96)00317-2
https://doi.org/10.1016/0039-6028(96)00317-2
https://doi.org/10.1038/38241
https://doi.org/10.1038/38241
https://doi.org/10.1038/38241
https://doi.org/10.1038/38241
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1103/PhysRevLett.79.2526
https://doi.org/10.1016/S1386-9477(98)00004-6
https://doi.org/10.1016/S1386-9477(98)00004-6
https://doi.org/10.1016/S1386-9477(98)00004-6
https://doi.org/10.1016/S1386-9477(98)00004-6
https://doi.org/10.1103/PhysRevB.55.4081
https://doi.org/10.1103/PhysRevB.55.4081
https://doi.org/10.1103/PhysRevB.55.4081
https://doi.org/10.1103/PhysRevB.55.4081
https://doi.org/10.1103/PhysRevB.59.15694
https://doi.org/10.1103/PhysRevB.59.15694
https://doi.org/10.1103/PhysRevB.59.15694
https://doi.org/10.1103/PhysRevB.59.15694
https://doi.org/10.1103/PhysRevLett.89.226404
https://doi.org/10.1103/PhysRevLett.89.226404
https://doi.org/10.1103/PhysRevLett.89.226404
https://doi.org/10.1103/PhysRevLett.89.226404
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1103/PhysRevLett.94.136405
https://doi.org/10.1103/PhysRevLett.94.136405
https://doi.org/10.1103/PhysRevLett.94.136405
https://doi.org/10.1103/PhysRevLett.94.136405
https://doi.org/10.1088/1742-5468/2006/02/P02008
https://doi.org/10.1088/1742-5468/2006/02/P02008
https://doi.org/10.1088/1742-5468/2006/02/P02008
https://doi.org/10.1103/PhysRevB.74.045322
https://doi.org/10.1103/PhysRevB.74.045322
https://doi.org/10.1103/PhysRevB.74.045322
https://doi.org/10.1103/PhysRevB.74.045322
https://doi.org/10.1103/PhysRevB.77.155422
https://doi.org/10.1103/PhysRevB.77.155422
https://doi.org/10.1103/PhysRevB.77.155422
https://doi.org/10.1103/PhysRevB.77.155422
https://doi.org/10.1103/PhysRevLett.103.026401
https://doi.org/10.1103/PhysRevLett.103.026401
https://doi.org/10.1103/PhysRevLett.103.026401
https://doi.org/10.1103/PhysRevLett.103.026401
https://doi.org/10.1016/j.nuclphysb.2008.11.011
https://doi.org/10.1016/j.nuclphysb.2008.11.011
https://doi.org/10.1016/j.nuclphysb.2008.11.011
https://doi.org/10.1016/j.nuclphysb.2008.11.011
https://doi.org/10.1103/PhysRevB.79.085122
https://doi.org/10.1103/PhysRevB.79.085122
https://doi.org/10.1103/PhysRevB.79.085122
https://doi.org/10.1103/PhysRevB.79.085122
https://doi.org/10.1103/PhysRevLett.108.136401
https://doi.org/10.1103/PhysRevLett.108.136401
https://doi.org/10.1103/PhysRevLett.108.136401
https://doi.org/10.1103/PhysRevLett.108.136401
https://doi.org/10.1103/PhysRevB.85.045120
https://doi.org/10.1103/PhysRevB.85.045120
https://doi.org/10.1103/PhysRevB.85.045120
https://doi.org/10.1103/PhysRevB.85.045120
https://doi.org/10.1103/PhysRevB.92.085124
https://doi.org/10.1103/PhysRevB.92.085124
https://doi.org/10.1103/PhysRevB.92.085124
https://doi.org/10.1103/PhysRevB.92.085124
https://doi.org/10.1103/PhysRevB.57.R5579
https://doi.org/10.1103/PhysRevB.57.R5579
https://doi.org/10.1103/PhysRevB.57.R5579
https://doi.org/10.1103/PhysRevB.57.R5579
https://doi.org/10.1103/PhysRevB.65.195101
https://doi.org/10.1103/PhysRevB.65.195101
https://doi.org/10.1103/PhysRevB.65.195101
https://doi.org/10.1103/PhysRevB.65.195101
https://doi.org/10.1103/PhysRevB.93.075118
https://doi.org/10.1103/PhysRevB.93.075118
https://doi.org/10.1103/PhysRevB.93.075118
https://doi.org/10.1103/PhysRevB.93.075118
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491


PARAFERMIONIC GENERALIZATION OF THE … PHYSICAL REVIEW B 97, 235139 (2018)

value for d follows by noting that one needs at least [(M + 1)/2]
PF pairs on the box to couple to M external edges (leads),
where constraining the total Zn charge of the box is equivalent
to removing one PF pair, cf. Ref. [42].

[94] Z. Y. Dong, S. L. Yu, and J. X. Li, Phys. Rev. B 96, 245114
(2017).

[95] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, UK, 1996).

[96] I. V. Protopopov, Y. Gefen, and A. D. Mirlin, Ann. Phys. 385,
287 (2017).

[97] P. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field
Theory (Springer, New York, 1997).

235139-13

https://doi.org/10.1103/PhysRevB.96.245114
https://doi.org/10.1103/PhysRevB.96.245114
https://doi.org/10.1103/PhysRevB.96.245114
https://doi.org/10.1103/PhysRevB.96.245114
https://doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1016/j.aop.2017.07.015



