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From semilocal density functionals to random phase approximation renormalized perturbation
theory: A methodological assessment of structural phase transitions
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The structural phase transitions of different materials, including metal to metal, metal to semiconductor,
and semiconductor to semiconductor transitions, were explored using methods based on the random phase
approximation. Transition pressures for Si, Ge, SiC, GaAs, SiO2, Pb, C, and BN from their stable low-pressure
phases to certain high-pressure phases were computed with several semilocal density functionals and from
the adiabatic connection fluctuation-dissipation formulation of density functional theory at zero temperature.
In addition to the random phase approximation (RPA), three approximate beyond-RPA methods were also
investigated to determine the impact of exchange-correlation kernel corrections. Results at finite temperature were
obtained with the inclusion of zero-point energy contributions from the phonon spectra. We find that including
temperature effects is most important for systems with nearly degenerate phases such as for boron nitride and
carbon. In combination with thermal corrections, the kernel-corrected correlation methods deliver high accuracy
compared to experimental data and can serve as a useful benchmark method in place of more expensive correlated
calculations.
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I. INTRODUCTION

Structural phase transitions in solids are fascinating phe-
nomena that have a large theoretical and practical importance.
Space-group symmetry and associated internal structural pa-
rameters change from one crystal structure to another with the
external influence of, for example, temperature or pressure.
Temperature or pressure induced structural phase transitions
can change the electronic structures of the corresponding
materials, such as from insulator to metal and vice versa,
or they may change the band structures of the insulating or
metallic state resulting in a change in band gap or conductance.
Structural phase transitions also sometimes lead to different
magnetic states (e.g., antiferromagnetic to paramagnetic) [1].
Hence control of structural phase transitions presents many
potential applications in electronics, optics, and other relevant
fields [2–4]. Since it is challenging to experimentally determine
coexistence temperatures or pressures of two different struc-
tural phases of a solid, a robust theoretical method is needed.

In order to predict accurate transition pressures for structural
phase transitions in solids, accurate equilibrium geometries
and energy differences between the respective phases are
required. Density functional approximations such as from the
local density approximation (LDA) and generalized gradient
approximations (GGAs) yield reasonably accurate structures
[5], but tend to underestimate the energy difference between
low and high pressure phases [6,7]. One of the most fundamen-
tal aspects of density functional theory is self-interaction error
(SIE) [8], also known as the delocalization error. Hartree-Fock
(HF) is a one-electron, self-interaction error free method by
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construction, and like the HF method, exact density functional
theory would also be SIE free. However, for practical approx-
imate density functionals some part of the SIE remains [9].
This leads to a considerable reduction of the accuracy for the
description of a variety of physical processes [10]. Systems
with d or f electrons containing both localized orbitals and
delocalized orbitals are genuinely plagued by the SIE [11].
A natural solution to these challenges, the adiabatic connec-
tion fluctuation-dissipation (ACFD) formulation of density
functional theory (DFT) is constructed from a self-interaction
free exchange energy and a nonlocal correlation energy that
directly accounts for dispersion [12–14]. The random phase
approximation (RPA) is the simplest approximation within
ACFD-DFT and has proven to be a highly accurate method for
treating weak interactions [15–19] and predicting structural
properties [20–24] and energetics [25,26]. Although RPA
captures intermediate- and long-range correlations, it does
not accurately account for short-range correlation [27–30].
RPA was previously used to study the pressure-induced phase
transitions of Si and SiO2, delivering an improvement over
semilocal functionals for Si, but yielding mediocre results for
SiO2 likely due to an imperfect cancellation of errors [7].
To go beyond RPA, a kernel correction from time-dependent
DFT or many-body perturbation theory must be included to
correct the short-ranged behavior of RPA and improve the
systematic performance of ACFD-based methods [31–35]. To
study the improvements ACFD methods may bring compared
to semilocal functionals, we have investigated the pressure-
induced phase transition of several materials.

The diamond structures of silicon and germanium are
indirect band gap semiconductors, and at high pressures their
properties are remarkably similar though not identical. The
semiconducting diamond phases of both materials undergo a
transition to the metallic beta-tin (β-Sn) phase under pressures
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in the range of 10–14 GPa [6]. Beta-tin was predicted to be the
most favored structure of Si and Ge at high pressures among
several other possibilities by first-principles calculations in
agreement with experiment [36]. The relative stability of the
cubic diamond and beta-tin phases of Si and Ge has been
the subject of pervious theoretical studies and has become a
benchmark for several theoretical methods [37,38]. Still, more
accurate theoretical methods would be welcome to resolve
the discrepancies between Monte Carlo and density functional
calculations [7].

Silicon carbide (SiC) is an indirect band gap semiconductor
and crystallizes in the zinc blende (ZnS) structure under
normal conditions. Due to its stability over a wide range
of temperatures and pressures, it has been used in high-
power electronics and in integrated circuits as a reliable base
to support other materials [39]. It is also frequently used
in composite materials and related applications as a hard
ceramic material [40]. Theoretical studies first showed that
among several possible high-pressure structures, rocksalt is
the most energetically stable for SiC [41,42]. The rocksalt
phase is also metallic, in contrast to the low-pressure phase.
Yoshida et al. later reported an experimental structural phase
transition from zinc blende to metallic rocksalt at 100 GPa [43].
Further theoretical studies have confirmed these earlier works,
but theoretical values largely underestimate the experimental
transition pressure [44–46] most likely due to a thermodynamic
barrier that must be overcome in the experiment [47], but not
in the calculations [45].

Gallium arsenide (GaAs) is a wide band gap semiconductor
and crystallizes in the zinc blende (ZnS) structure under
normal conditions. Due to its higher electron mobility and
higher saturated electron velocity it is suitable to operate at
high frequencies [48,49]. Due to its direct band gap, GaAs
shows strong photoemission as well [50,51]. These properties,
coupled with a high dielectric constant, are the reasons GaAs
is widely used in integrated circuits, interstellar electronics,
optics, and solar cells [49,52–55]. Minomura and Drickamer
observed a pressure-induced phase transition in GaAs [56] at
24 GPa by high-pressure electrical resistance experiments. Af-
terwards, many theoretical and experimental studies confirmed
that GaAs undergoes a structural phase transition from the
semiconducting zinc blende structure to a metallic state with
orthorhombic symmetry at 17 GPa under compression [6,57].
Finally McMahon et al. correctly identified the structure of
that metallic phase as the site-ordered Cmcm structure [58].
Besson et al. also extensively studied forward and reverse
transitions experimentally between low-pressure and high-
pressure phases using optical-transmittance measurements,
Raman scattering, and x-ray absorption techniques, suggesting
the thermodynamic transition pressure of ZnS to the Cmcm
phase of GaAs at about 13.5 GPa around 300 K [59].

Silica (SiO2) is used in a variety of applications such as in the
production of glass or in optical fibers for telecommunications
[60]. Previous theoretical studies have reported structural
parameters, elastic constants, and bulk moduli of different
phases of silica, including quartz and stishovite phases, using
LDA and GGA functionals [61–63]. Consistent with those
previous works, Xiao et al. [7] also reported the pressure-
induced phase transition of silica from the low-pressure quartz
phase to the high-pressure stishovite phase at around 7 GPa,

which is accompanied by a change in coordination of the Si
atoms and subsequently a large increase in the hardness of
the material. Xiao et al. [7] demonstrated that most semilocal
functionals struggle to predict accurate structural parameters
or phase transition parameters, with the exception of the PBE
[64] GGA and a certain class of meta-GGAs [65]. Though RPA
predicts accurate structural properties for the two materials,
it underestimates the energy difference between the phases
resulting in an underestimation of the transition pressure [7].
The authors of Ref. [7] suggest that this apparent failure of
RPA is likely due to an imperfect cancellation of errors, and
we further support this assessment below by demonstrating
the impact of an exchange-correlation kernel on the computed
transition pressure and energy difference between phases.

Pb is a metal and crystallizes in the fcc structure under
normal conditions, but a transition to the hcp structure is
observed at 14 GPa [66,67]. The volume reduction is very small
at the transition and therefore there is a large region of phase
coexistence, consistent with a very small enthalpy difference
between the phases over a large pressure interval. Liu et al.
[68] studied the stability of Pb at high pressures using plane
wave pseudopotential methods, including scalar-relativistic
and spin-orbit effects. The three structural phases fcc, hcp,
and bcc were found to be very close in energy, but nonetheless
the sequence of transitions was correctly described, as well
as the structural properties of the phases. Hermann et al. also
studied Pb with and without relativistic effects and found that
the structural properties of the hcp are much more strongly
affected than those of the fcc phase [69].

Diamond and cubic boron nitride are similar materials;
both of them are extremely hard and have very high melting
points [70]. They are mostly chemically inert and have a
large thermal conductivity [70]. Cubic BN (c-BN) does not
dissolve in iron and steel and thus is an excellent material
for the protective coating of heavy tools [70]. It has a wide
band gap and relatively small dielectric constant, so it has
great applications in the domain of UV optics and high-
temperature microelectronics [70,71]. DFT and experimental
studies indicate that the diamond-like c-BN is more stable
than the graphite-like hexagonal (h-BN) [72–74]. Due to the
heteropolarity effect, the equilibrium energy difference of the
cubic and hexagonal phases of BN is much larger than those
found between the diamond and graphite phases in carbon [6].
Even including the effects of zero-point energy and the finite
temperature using the quasiharmonic approach, Albe et al.
[75] and Kern et al. [76] did not find very accurate transition
pressure compared to the experiment.

The diamond and graphite phases of carbon are very
different from each other, unlike BN. Diamond is an indirect,
wide band gap insulator while graphite is a layered, zero band
gap semimetal. Diamond has a large thermal conductivity and
is mostly chemically inert like cubic BN. Diamond is also a
very hard material owing to its strong sp3 hybridization [6].
Graphite, however, is a soft and stiff material with very high
thermal stability and high thermal and electrical conductivity
due to the inability of phonons to propagate quickly between
layers with weak interaction and the availability of delocalized
free electrons between the layers, respectively [6]. Experiments
have confirmed that graphite is the stable phase under normal
conditions and that it can undergo a phase transition to the
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diamond phase around 1.7 GPa at 0 K and around 12 GPa at
5000 K [77]. Also the energy difference between graphite and
diamond is very small, around 5–20 meV at 0 K [78]. Most of
the semilocal functionals either yield the wrong ordering of the
phases with respect to experiment or overestimate the energy
difference [73,79]. Even RPA cannot provide correct ordering
of the phases and energy difference since it shows those phases
are essentially degenerate at 0 K [78].

Recently, Cui et al. showed that the relative stability of
TiO2 in the rutile and anatase structure is correctly described
by RPA. They further concluded that including the zero-point
energy and finite-temperature effects based on the harmonic
approximation increases the relative stability of the rutile phase
compared to the anatase phase, and leads to a better quantitative
agreement with experimental measurements [80]. Whittleton
et al. also found that thermal corrections are very important
for accurate energy ranking of the polymorphs of organic
molecular crystals [81]. In their work, 4-hydroxythiophene-2-
carbonitrile’s experimental structure is only correctly identified
once a quasiharmonic estimate of the vibrational free-energy
contribution is included. Our results also show that when the
energy difference between phases for bulk solids is close to
zero, the temperature corrections are crucial for determining
the most stable phase.

In the following we briefly describe the applied methods in
Sec. II and the computational details in Sec. III, and we present
the results for each system in Sec. IV. A brief discussion and
conclusions are then given in Sec. V.

II. METHODS

In order to apply density functional theory to real sys-
tems, an approximation for the unknown exchange-correlation
(xc) energy is needed. Within the hierarchy of approximate
functionals [82], approximations such as the local density
approximation [83] (LDA) depend only on the electron density.
Higher-level functionals, such as GGAs or meta-GGAs, incor-
porate gradients of the density and dependence on the kinetic-
energy density, respectively. The accuracy of nonempirical
functionals tends to be connected to their satisfaction of exact
constraints on the xc energy, culminating in the development
of the strongly constrained and appropriately normed (SCAN)
meta-GGA which satisfies all the possible constraints that a
meta-GGA can [84]. Through its dependence on the kinetic
energy density, SCAN is able to capture intermediate-range
van der Waals interactions, but is lacking long-range weak
interactions [85,86]. In this work we will utilize the GGA
of Perdew, Burke, and Ernzerhof (PBE) [64], in addition to
LDA and SCAN, as representative examples of semilocal
density functionals in order to compare their performance to
the results from the adiabatic connection. Since these semilocal
functionals still contain self-interaction errors [8,9], we can
investigate how including long-range dispersion in spite of SIE
in these approximate methods influences the results compared
to methods that are SIE free and contain long-range dispersion
effects, such as RPA.

In order to incorporate long-range dispersion, methods such
as Vydrov and van Voorhis’s VV10 and revised VV10 (rVV10)
were developed to provide the missing dispersion by adding
a nonlocal correlation component to semilocal exchange-

correlation energy such that Exc = Exc
0 + Ec

nl , where Exc

is the total exchange correlation energy [87,88]. Both the
original VV10 and rVV10 have the flexibility to be tuned
to different semilocal functionals [19], though we will only
explore their combination with SCAN and PBE, and take the
relative results compared to the bare functional as indicative
of the performance for any semilocal functional. We note,
however, that the addition of rVV10 to SCAN does not con-
taminate the accurate intermediate-range vdW description of
the bare SCAN functional [85]. Grimme’s empirical dispersion
correction scheme was also explored in both the D2 [89] and
D3 [90,91] variants, in order to make comparisons with the
nonlocal rVV10 correction. To go beyond the lowest three
levels of approximation within DFT and naturally include
long-range vdW interactions, we utilized “fifth-rung” methods
from the ACFD-DFT formalism.

The total energy within the ACFD-DFT formalism is
obtained from the sum of a self-interaction error free exchange
energy and the correlation energy,

EACFD = EEXX + EACFD
c . (1)

The exact exchange (EXX) energy is equivalent to the Hartree-
Fock energy evaluated with DFT orbitals [13,14], while the
correlation energy Ec can be obtained exactly from knowledge
of the interacting density-density response function [92]. In
practice, the interacting response function is obtained from
approximate time dependent (TD) DFT either within RPA or
through the inclusion of an approximate xc kernel, typically
within the adiabatic approximation [93,94]. In this work we
have explored both RPA and beyond-RPA (bRPA) methods to
understand the importance of short-ranged correlation effects
in predicting structural phase transitions. These methods also
shed light on the balance of nonlocal exchange and correlation,
and the fortuitous error cancellation exhibited by semilocal
functionals. Since PBE reference orbitals are typically used
to evaluate RPA, we have elected to use the spatially renor-
malized, adiabatic PBE exchange-like kernel [35] (rAPBE) to
evaluate the bRPA contribution to the correlation energy.

We should also be clear that the arbitrary use of PBE
orbitals to evaluate the response functions and kernels is itself
an approximation, whenever the kernel used to determine the
response function is not derived from the second functional
derivative of the PBE xc energy [33,35,94]. Previous works
have shown this dependence to be fairly weak among semilocal
functionals for energy differences and structural properties
[16,20,33–35,95], so we assume it extends to the calculations
herein as well.

In order to efficiently treat the bRPA correlation energy we
utilize three approximations from RPA renormalized (RPAr)
perturbation theory [30,34,96]: first-order RPA renormaliza-
tion (RPAr1), a higher-order terms (HOT) correction beyond
RPAr1 [97], and the ACSOSEX approximation [32]. The
essence of RPAr is that the total correlation energy can be
exactly decomposed as

EACFD
c = ERPA

c + �EbRPA
c , (2)

and the different methods mentioned above involve different
approximations for �EbRPA

c . RPAr offers a modest speedup
compared to the traditional bRPA approach [98] with little
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loss in accuracy [30,96,99]. The main difference between each
bRPA method lies in the treatment of third- and higher-order
contributions to the many-body perturbation theory expansion
of the correlation energy, though all three methods yield the
exact second-order contribution if used with the exact kernel
[30]. Since all three methods require the computation of the
RPA response function and the exchange-correlation kernel,
they can be evaluated simultaneously with the RPA correlation
energy once the kernel has been computed [96].

RPAr1 has been previously used in tandem with an ap-
proximate exchange kernel [34], the frequency-dependent
exact exchange kernel [99], and several approximate kernels
from TDDFT [96], delivering high-accuracy without worry of
electronic instabilities in the response function [34,99,100].
Though several approximate kernels are available, the use of
an exchange-like kernel should provide a general picture of
the behavior of kernel corrections while keeping the compu-
tational cost close to RPA. Furthermore, advanced exchange-
correlation kernels (nonlinear in λ) did not yield significant
differences compared to exchange-like kernels for structural
properties of simple solids [24], though the discrepancies for
energy differences is still an open question.

III. COMPUTATIONAL DETAILS

The calculations were performed using a modified ver-
sion of GPAW [101,102], a Python-based software built on
the Atomic Simulation Environment (ASE) package [103]
and utilizing the projector augmented wave (PAW) method
[104]. GPAW was used to compute the PBE [64] results
discussed below, and PBE orbitals were used as input for the
ACFD methods since they are evaluated non-self-consistently.
Gamma-centered Monkhorst-Pack [105] k meshes were used
throughout. For the beyond-RPA calculations the rAPBE ker-
nel [35] was used with wave vector symmetrization [24,106]
throughout. Results from the strongly constrained and appro-
priately normed (SCAN) meta-GGA were obtained with the

VASP [107] software package using PBE PAWs that include
the kinetic energy density component for B, N, Si, O, and C
and normal PBE PAWs that include the fully occupied d-shell
electrons as well as the kinetic energy density component for
Ga, As, Pb, and Ge. We have carefully done convergence
tests for each material with PBE, exact exchange (EXX), and
the RPA correlation energy contribution with regards to the
cutoff energy of the input wave functions and the k mesh. All
parameters were chosen to yield errors on the order of 0.02 eV
per functional unit or less. The converged parameters we used
are reported in the Supplemental Material [108]. EXX tends
to be more difficult to converge, and typically requires larger
cutoffs compared to semilocal functionals.

From the phonon spectrum, the zero-point energy contri-
bution and finite-temperature corrections can be obtained to
study temperature-dependent transition pressures. We have
calculated the phonon spectra from first-principles calculations
based on DFT as implemented in VASP [107]. Density func-
tional perturbation theory [109,110] has been used to compute
the dynamical matrices for all materials. Then we used our own
code to calculate the temperature-dependent phonon entropy
contribution from the above data. We used the same cutoffs,
k meshes, and PAWs [111] for the phonon calculations as
for our zero-temperature energy calculations. Previous studies
have shown that different density functionals produce similar
results for the zero-point energy [112] (ZPE) and thermal
corrections to the transition pressure [7]; hence we have used
only PBE to compute the phonons. In some special cases at high
temperature (>4000 K) and pressure (>150 GPa), anharmonic
effects play a crucial role and using the same functional
for electronic and vibrational calculations is important for
a proper prediction of thermodynamic properties [113–115].
The interplay of approximations for the van der Waals forces
and the ground state functional can also be important when
considering which methods to use at high temperatures [116].
For our room temperature calculations, however, the effect
on the thermodynamic parameters when choosing a different

TABLE I. Equilibrium cell volumes (Å
3
) obtained from the EOS fits for each method. SCAN tends to be the most accurate semilocal

functional, while the ACFD methods tend to overestimate by as much as LDA underestimates.

Materials LDA PBE SCAN EXX RPA RPAr1 HOT ACSOSEX Expt.a

Si (Diamond) 39.503 41.048 39.976 41.348 40.460 40.744 40.663 40.507 40.037
Si (Beta-tin) 59.540 61.583 59.772 63.652 61.489 61.082 60.793 60.447 55.820 [133]
Ge (Diamond) 44.644 47.942 45.287 44.966 46.073 46.368 46.314 46.102 45.271
Ge (Beta-tin) 71.655 77.030 74.214 76.133 75.037 74.908 74.617 74.169
SiC (ZnS) 20.408 21.148 20.607 20.759 21.003 20.993 20.944 20.817 20.693
SiC (Rocksalt) 16.260 16.868 16.342 15.757 16.599 16.565 16.521 16.403 16.554 [44]
GaAs (ZnS) 44.684 48.028 45.592 45.448 46.854 47.097 47.073 46.923 45.138
GaAs (Cmcm) 143.509 154.249 147.248 151.868 154.077 152.393 151.640 150.435
SiO2 (Quartz) 36.822 40.351 37.357 40.881 37.939 38.478 38.528 38.594 37.803
SiO2 (Stishovite) 23.351 24.445 23.284 22.799 23.896 23.922 23.895 23.711 23.325
Pb (fcc) 28.908 31.815 30.648 34.190 29.726 30.556 30.535 30.471 30.010
Pb (hcp) 57.468 63.326 60.976 68.916 59.250 60.929 60.875 60.686 48.530
C (Diamond) 11.024 11.403 11.240 11.132 11.373 11.336 11.312 11.228 11.345
C (Graphite) 34.548 35.599 34.935 34.381 35.436 35.618 35.227 34.966 36.615
BN (Cubic) 11.482 11.915 11.742 11.563 11.780 11.764 11.744 11.660 11.664
BN (Hexagonal) 35.500 36.683 35.963 35.478 36.266 36.387 36.367 36.110 36.701

aExperimental reference values were taken from the reported ICSD values via the Materials Project database [134] unless otherwise specified.
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functional for the phonon calculations is not significant. This is
in line with some previous authors’ results [7,112]. To compare
with existing literature equilibrium cell volumes, the results
in the Table I do not include the shifts due to the phonon
corrections [7].

The Gibbs free energy is G(V,T ) = E(V,T ) −
T S(V,T ) + P (V,T )V = F (V,T ) + P (V,T )V , where
E(V,T ) is the internal energy and F (V,T ) = E(V,T ) −
T S(V,T ) is the Helmholtz energy. At the transition pressure,
the difference in Gibbs free energies for the two phases should
be equal to zero. Moreover, at zero temperature, the Gibbs free
energy reduces to the enthalpy, H (V ) = E(V ) + P (V )V , and
so the transition pressure is the pressure where the enthalpy
difference between phases is equal to zero. E(V ) and P (V ) can
also be denoted as E(V,T = 0) and P (V,T = 0), emphasizing
that they are zero-temperature energy and pressure.

Structural parameters for each phase, such as the equilib-
rium cell volume (V0) and corresponding equilibrium energy
(E0), bulk modulus (B0), and pressure derivative of the bulk
modulus (B ′

0), can be evaluated by fitting the energy-volume
(E-V) data generated through density functional theory to the
standard third-order Birch-Murnaghan (BM) equation of state
[117,118] (EOS) given by

E(V ) = E0 + 9B0V0

16

⎧⎨
⎩

[(
V0

V

)2/3

− 1

]3

B ′
0

+
[(

V0

V

)2/3

− 1

]2[
6 − 4

(
V0

V

)2/3
]⎫⎬
⎭. (3)

The pressure can also then be computed analytically as
P (V ) = −( ∂E(V )

∂V
), after determining the four fitting param-

eters (E0, B0, V0, B ′
0) from Eq. (3),

P (V ) = 3B0

2

[(
V0

V

)7/3

−
(

V0

V

)5/3
]

×
{

1 + 3

4
(B ′

0 − 4)

[(
V0

V

)2/3

− 1

]}
. (4)

The transition pressures and volumes are determined by a
brute force numerical minimization of the enthalpy or Gibbs
free energy difference between phases at zero and finite
temperature, respectively. We compute the enthalpies of the
respective phases at their corresponding equilibrium volumes
with the help of Eq. (3) and Eq. (4). Starting from a guess for the
transition pressure, Pt,0 = 0.5�E0

�V0
, the pressure is iteratively

increased or decreased to force the enthalpy difference between
phases to zero. We use a convergence threshold of at least
10−4 eV per atom to ensure tight convergence of the phase
transition parameters. We have provided our code for this
procedure as a part of the Supplemental Material [108].

To include the zero-point motion and thermodynamic con-
tributions from vibrational degrees of freedom, we use the
Helmholtz free energy. For a lattice, the Helmholtz free energy
is given within the quasiharmonic approximation [119–122]

(QHA) as

F (V,T ) = E(V,T ) − T S(V,T )

= E(V ) +
∑
q,j

h̄ωq,j (V )

2

+ kBT
∑
q,j

ln

[
1 − exp

(
− h̄ωq,j (V )

kBT

)]

= E(V ) + kBT
∑
q,j

ln

[
2 sinh

(
h̄ωq,j (V )

2kBT

)]
, (5)

where E(V,T ) is the lattice crystal energy at a specified volume
and temperature, and ωq,j (V ) is a computed phonon frequency.

At a finite temperature, the Gibbs free energy, G(V,T ) =
F (V,T ) + V P (V,T ), should be obtained from F (V,T ) and

P (V,T ) = −
(

∂F

∂V

)
T

. (6)

For that purpose, we have done the EOS fitting of F (V,T )
from Eq. (5) to an isothermal third-order BM EOS,

F (V,T ) = F0T + 9B0T V0T

16

[(
V0T

V

)2/3

− 1

]3

B ′
0T (7)

+
[(

V0T

V

)2/3

− 1

]2[
6 − 4

(
V0T

V

)2/3
]
, (8)

where F0T is the Helmholtz free energy at the equilibrium
volume, and each of the fitting parameters (F0T , B0T , V0T , B ′

0T )
depends implicitly on temperature (indicated by the subscript)
due to the phonon correction. Analogously, the pressure is
then obtained from Eq. (9) using the isothermal EOS fitting
parameters

P (V,T ) = −
(

∂F

∂V

)
T

= 3B0T

2

[(
V0T

V

)7/3

−
(

V0T

V

)5/3
]

×
{

1 + 3

4
(B ′

0T − 4)

[(
V0T

V

)2/3

− 1

]}
. (9)

After that, the same numerical procedure is then used to obtain
the phase transition pressure as for the zero-temperature case
[123].

In principle the approximation used to compute Exc for the
electronic energy should also be used to compute the phonon
spectra. However, this is not possible for many meta-GGA and
ACFD functionals, because analytic second derivatives of the
potential energy with respect to nuclear positions have not been
implemented in any code, and performing finite differences
would be too expensive for the latter methods. In fact, only
recently were the first derivatives for RPA implemented for
periodic systems [124]. Since we use PBE input orbitals for the
ACFD methods, and SCAN phonons are unavailable, we have
elected to use the phonon spectra predicted by PBE to compute
all of the thermal effects in our work. It was confirmed that this
was a reasonable approach for BN, GaAs, and Si, by computing
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the LDA phonon spectra and adding LDA thermal effects; the
resulting transition pressures were negligibly different from
the reported results herein using the PBE phonon spectra. The
Birch-Murnaghan EOS is not the only choice for fitting E-V
data, and several other equations of state have been used in
the literature to compute thermodynamic properties from DFT
calculations [46,125–132].

IV. RESULTS

It is well known that LDA and PBE tend to underestimate
and overestimate structural parameters of molecules and ma-
terials [5,127,135], while SCAN was recently demonstrated
to improve upon both of these methods for energetics and
structures [136]. Our results for the materials studied herein
reflect these same trends, with SCAN being the most accurate
semilocal functional for predicting the equilibrium structural
parameters; see Table I and Fig. 1. For the ACFD methods,
EXX overestimates the lattice constants as often as it underes-
timates due to neglect of correlation, but on average is only
slightly worse than PBE itself. The addition of correlation
from RPA or bRPA methods typically improves the agreement
with experiment, though the structural parameters tend to be
overestimates. Comparing all methods, SCAN is the most
accurate for predicting structural properties, while PBE is
the worst. On average, LDA underestimates the equilibrium
volume by roughly the same amount that RPA and bRPA
methods overestimate it. Consequently, the performance for
the transition pressure shows similar trends among semilocal
and ACFD methods, though there are some differences for
comparing performance across all methods. We note that our
SCAN results for several materials are in good agreement with
those of Ref. [137], though a ∼4 GPa discrepancy for Pb was
discovered due to slightly different procedures used to obtain
the EOS fit for the hcp phase.

To compare the various electronic structure methods we
can divide the materials into the three broad groups based on
their phase transitions. First is the phase transition between

FIG. 1. Percentage error of the equilibrium volume (V0) of dif-
ferent materials for high-pressure (HP phase) and low-pressure (LP
phase) phases relative to the reference for different methods. Either
experiment or RPA was used as a reference. Negative and positive
values represent underestimation and overestimation of V0 compared
to the corresponding reference value, respectively.

TABLE II. Transition pressures (GPa) without temperature
corrections.

Materials LDA PBE SCAN EXX RPA RPAr1 HOT ACSOSEX

Si 7.3 9.7 14.5 51.4 13.8 11.4 10.7 11.1
Ge 6.5 8.1 11.3 51.1 11.2 10.4 10.1 10.9
SiC 61.0 65.8 74.1 114.6 74.3 71.4 70.3 71.0
GaAs 10.5 12.8 17.1 60.2 18.9 17.2 17.0 17.5
SiO2 −0.7 5.8 4.6 12.8 3.7 6.6 6.9 6.8
Pb 11.1 13.6 16.4 31.3 19.0 16.7 16.5 16.1
C −0.6 6.1 4.6 7.8 0.6 6.7 6.7 6.8
BN −3.3 3.2 2.8 10.8 −1.5 0.9 1.1 1.2

two highly symmetric phases such as in Si, Ge, and SiC.
The second group concerns phase transitions between two
dissimilar phases composed of at least one lower-symmetry
phase such as in GaAs (low-symmetry phase: cmcm) and SiO2

(low-symmetry phase: quartz). Lastly, there are the special
cases, such as the metal to metal phase transition of Pb, and the
phase transition between two nearly degenerate phases such as
in C and BN.

A. Phase transitions between highly symmetric phases

Considering the first group of materials and semilocal func-
tionals at zero temperature, Table II and Fig. 2 illustrate that
SCAN overestimates the transition pressures of Si and Ge in
comparison to experiment, while PBE and LDA underestimate
them (experimental values are given in Table IV). Our results
are in good agreement with previous studies using the latter
two functionals [6,65]. Our SCAN results yield an energy
difference between phases of 0.417 eV per functional unit
for Si which is equivalent to what Sun et al. reported in
their previous study of this system [136]; see Table III. For
the ACFD methods, EXX evaluated with PBE orbitals yields
a very large overestimate of the transition pressures that is
directly linked to its large overestimate of the energy difference
between phases in both materials. Adding correlation from
RPA significantly reduces the errors of EXX and results in

FIG. 2. Percentage error of the predicted transition pressure (Pt )
at zero temperature for different materials with respect to the refer-
ence values. RPAr1 was used as a reference. Negative and positive
values represent underestimation and overestimation of the transition
pressure compared to the corresponding reference value, respectively.
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TABLE III. Equilibrium energy differences without temperature corrections, reported in eV/functional unit.

Materials LDA PBE SCAN EXX RPA RPAr1 HOT ACSOSEX

Si 0.212 0.289 0.417 1.260 0.384 0.334 0.317 0.328
SiC 1.348 1.471 1.631 2.662 1.655 1.606 1.583 1.599
Ge 0.168 0.220 0.265 1.046 0.276 0.267 0.262 0.280
GaAs 0.525 0.668 0.825 2.362 0.990 0.952 0.946 0.978
SiO2 −0.061 0.489 0.356 1.092 0.2488 0.508 0.535 0.542
Pb 0.010 0.012 0.015 0.041 0.035 0.027 0.026 0.027
C −0.013 0.120 0.088 0.145 0.012 0.129 0.130 0.130
BN −0.130 0.126 0.105 0.405 −0.057 0.038 0.044 0.048

only slight overestimates of the transition pressures, which
are further reduced by the addition of bRPA correlation from
rAPBE with any of the RPAr approximations. The bRPA
results are consequently slight underestimates in comparison to
experiment and the resulting errors are are quite close to one
another, and comparable to RPA but with the opposite sign.
Figure 3 shows the comparison between RPA and the HOT
approximation for Ge, demonstrating the similarity of these
methods for these high-symmetry systems.

Comparing semilocal and ACFD methods, LDA and PBE
are clearly inferior to the ACFD methods while SCAN’s
performance is quite close to RPA. The bRPA methods are
the most accurate, even though there is some error in the
equilibrium structural parameters. As discussed above, there
is a remarkably large error for all methods in comparison to
experiment for the transition pressure of SiC. Thus we find
it more appropriate to compare electronic structure methods
among themselves instead of to experiment since the computed
values all correspond to the same thermodynamic process

FIG. 3. E-V curve for diamond and beta-tin phases of Ge with
RPA and bRPA per functional unit. The kernel corrections for Ge
decrease slightly the equilibrium energy difference of the phases and
hence slightly underestimate the transition pressure compared to RPA.
The kernel-corrected curves have been rigidly shifted up in energy by
0.1 eV compared to RPA for visual clarity. The solid lines represent
the common tangent between phases, the slope of which is equal to
the negative of the predicted transition pressure.

and do not consider the impact of transition barriers on the
transformation. We have seen for Si and Ge that the bRPA
methods with the rAPBE kernel yield the most accurate results
compared to the corresponding experiments, so we will use the
RPAr1 value as a “reference” for SiC. We note that the choice
of RPAr method makes little difference since they all lie within
approximately 1 GPa of each other. In this way, the analysis for
Si and Ge is completely transferrable to SiC and hence why we
have grouped them together; SCAN yields a small overestimate
of the transition pressure in SiC though it is close to RPA,
LDA and PBE are clear underestimates, EXX is a drastic
overestimate, and RPA greatly reduces the errors of EXX but
still slightly overestimates compared to the bRPA methods.

With the addition of finite-temperature corrections from the
computed phonon spectra of PBE, the transition pressures for
Si, Ge, and SiC all shift to smaller values indicating a stability
of the high-temperature phase in each case, Table IV. The shifts
are fairly small here, and do not significantly change the relative
trends among the functionals. SCAN and RPA are now closest
to experiment for Si and Ge, and the bRPA methods yield
slightly larger underestimates. For SiC, SCAN and RPA still
remain close to one another and to the bRPA methods.

We have also tested the effect of adding different long-range
dispersion corrections for silicon as a representative example
of this group of materials. Numerical results are presented in
the Supplemental Material [108]. We have found that the most
recent iteration of Grimme’s empirical dispersion correction
scheme, DFTD3 [90,91], when parametrized for SCAN [86]
yields similar shifts in the equilibrium volumes, energy differ-
ence between phases, and subsequently the transition pressures
compared to previous calculations using PBE and DFTD2 [89].
The same is true for more advanced dispersion corrections

TABLE IV. Transition pressures (GPa) including temperature
corrections at room temperature, 300 K.

Materials LDA PBE SCAN RPA RPAr1 HOT Expt. [6]

Si 6.3 8.5 13.8 12.8 10.4 9.7 12.0
Ge 5.6 7.1 10.4 10.2 9.5 9.2 10.6
SiC 56.4 61.4 69.1 69.6 66.8 65.6 100.0
GaAs 9.4 11.6 16.1 18.0 16.3 16.0 15.0
SiO2

a −0.1 6.4 5.2 4.3 7.1 7.4 7.5 [141]
Pb 17.8 21.7 22.2 23.9 22.7 22.5 14.0
C 3.1 9.8 8.3 4.2 10.4 10.4 3.7
BN 0.1 6.5 6.1 1.8 4.3 4.4 5.0

aWe used the finite-temperature correction of +0.577 GPa computed
in Ref. [65] for SiO2.
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when added to SCAN, such as from rVV10 [85,88], reinforcing
the conclusion of Ref. [65] that adding empirical dispersion for
covalent materials is not always pertinent, especially in highly
symmetric solids.

B. Transitions involving a low-symmetry phase

For the second group of materials an accurate treatment of
correlation at all ranges can be necessary to produce accurate
results, though the details of the electronic structure are also
important. Similarly to the first group of materials without
temperature corrections, SCAN is accurate but overestimates
the experimental transition pressure of GaAs while PBE and
LDA noticeably underestimate it. The ACFD methods also
show analogous trends to the first group with EXX greatly
overestimating the transition pressure due to its repulsive
nature. With the addition of RPA correlation, the transition
pressure drops back down to a reasonable value but still
overestimates in comparison to experiment. Adding bRPA
correlation from rAPBE at any level of RPAr again reduces
the transition pressure of RPA and comes quite close to
experiment. For GaAs, SCAN is actually closer to the bRPA
methods than RPA, though all of those methods are within
2 GPa of one another.

For SiO2, the situation is noticeably different than for the
first group of materials or even GaAs. LDA completely fails
in this system, yielding an incorrect phase ordering compared
to experiment even though the equilibrium volumes are ac-
ceptably accurate. PBE serendipitously predicts a reasonably
large transition pressure for this system within 2 GPa of ex-
periment, though it systematically overestimates the structural
parameters. Our results for these functionals closely match
those from previous studies [6,65]. In this material SCAN
does not systematically improve upon PBE for the equilibrium
energy difference or transition pressure, though the equilibrium
volumes are much more accurate compared to experiment. One
possible source of difficulty for this family of nonempirical
semilocal functionals is strongly polar (almost ionic) bonds in
silica from the large difference in electronegativity between
Si and O, causing self-interaction errors to more prominently
manifest themselves.

Fortunately, the ACFD methods are self-interaction free in
the exchange energy, but it is clear from Tables II and III that
correlation still makes a huge impact on the results for SiO2

since EXX overestimates the equilibrium energy difference
and transition pressure by nearly a factor of two. As before,
RPA correlation tames the wild errors of EXX, but in this
case results in an underestimate of the equilibrium energy
difference and transition pressure by nearly the same factor
that EXX overestimates. Our energy difference and transition
pressure for RPA are smaller than those reported by Xiao et al.
[7], though the general trends compared to experiment are
consistent. Reference [7] attributes this failure of RPA to its
poor performance for some molecular-like solids where there is
less cancellation of errors between dissimilar phases. Looking
at the difference between RPA and bRPA results, the root of
the RPA error clearly stems from the inaccurate treatment of
short-ranged correlation which can be improved through the
inclusion of an exchange-correlation kernel correction.

FIG. 4. E-V curve for quartz and stishovite phases of SiO2 with
RPA and bRPA per functional unit. The kernel corrections for SiO2

increase the equilibrium energy difference of the phases and hence
correct the large underestimation of the transition pressure by RPA.
The kernel-corrected curves have been rigidly shifted up in energy by
0.05 eV compared to RPA for visual clarity.

The addition of the rAPBE corrections to RPA with any
approximation of RPAr subsequently increases the equilib-
rium energy difference and transition pressure by raising the
energy per SiO2 of stishovite by approximately 260 meV
more than it raises the energy of quartz; see Fig. 4. The
resulting theoretical energy difference and transition pressure
are increased compared to RPA and are consequently some of
the most accurate reported to date for this material, surpassing
even the HSE06 screened-hybrid results reported in Ref. [65].
Comparing semilocal and ACFD methods is also unlike with
the previous materials since the behavior of the semilocal
functionals is erratic at best and RPA struggles due to its
inherent limitations, while the bRPA methods continue to
deliver high-quality phase transition parameters since they are
one-electron SIE free [138] and treat correlation at all ranges
of electron-electron interactions. Similar results are expected
for other many-body bRPA methods such as SOSEX [31] or
AXK [34] since they also tend to be one-electron, but not
many-electron SIE free [138,139].

The addition of thermal corrections for GaAs and SiO2 is
also similar to that for the first group in that the thermal correc-
tions typically introduce only a rigid shift in the performance
of all the methods. For GaAs the finite-temperature corrections
reduce the transition pressures while for SiO2 they increase the
pressure and energy difference mostly due to entropic effects
[65,140]. These shifts do not change the relative relationships
between functionals or experiment, and are not necessarily
crucial for these materials where the energy gap between
phases is appreciable.

An essentially rigid shift is also introduced to the results
with the addition of an empirical dispersion correction; see the
Supplemental Material [108] for numerical results for SiO2. As
reported in Ref. [65], addition of dispersion for SiO2 reduces
the equilibrium volumes and equilibrium energy differences,
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though we do find that the magnitude of the shift depends
on the damping and functional for which the correction was
parametrized. For instance, in Ref. [65] the addition of D2 to
TPSS produced a large negative shift in the transition pressure
which actually results in a final transition pressure which is
slightly negative. For the newer D3 scheme for both PBE and
SCAN, the shifts are still 1–3 GPa to smaller pressures, and
the zero-damping scheme tends to produce smaller shifts than
the Becke-Johnson (BJ) type damping [91]. Adding rVV10 to
SCAN also results in shifts similar to D3 with BJ damping.

C. Special cases

The third group of materials is those for which there are
some special circumstances that cause unexpected results or
for which near degeneracies make it difficult to properly assess
semilocal functionals. For Pb, a heavy group IV element,
relativistic effects can play an important role in determining
the electronic structure. Though the PAW data sets that we
have used include scalar relativistic effects for the core and
valence electrons [102,104], this may not be enough when
full relativistic effects in the valence are also crucial. For
the fcc phase of Pb the relativistic treatment of the core
electrons is sufficient, since for both semilocal and ACFD
methods the performance trends for the structural parameters
follow those for the other materials. For the hcp phase,
however, the full relativistic effects in the valence are sizable
[69] and consequently all of the methods we applied yield
large overestimates of the equilibrium volume. The transition
pressure predicted for Pb shows a remarkable cancellation
of errors considering the gross overestimation of the hcp
equilibrium volume.Without temperature corrections, LDA,
PBE, and SCAN all underestimate the experimental transition
pressure, with PBE yielding a larger transition pressure than the
other two. EXX evaluated with PBE orbitals fails spectacularly
yet again, yielding roughly triple the experimental value. The
addition of correlation from RPA reduces the roughly 20 GPa
error of EXX down to about 4 GPa, but is still an overestimate
compared to experiment, Table II. The bRPA corrections
reduce the transition pressure predicted by RPA by 1–2 GPa,
further decreasing the error but still resulting in overestimates
of the experimental value. Comparing semilocal and ACFD
methods, the former systematically underestimate by a slightly
larger margin than the latter overestimate, though the spread
in results of both sets of methods is roughly the same.

Though nonrelativistic methods are entirely appropriate for
carbon and boron nitride materials, the near degeneracies at
0 K encountered for the cubic and hexagonal phases of these
materials complicate predictions of the pressure-induced phase
transitions. All of the methods produce reasonably accurate
structures for both phases of C and BN, but the predictions
for the relative stabilities and transition pressures prove to be
challenging for some of the methods. In particular, Table III
shows that LDA fails to predict the proper phase ordering for
both C and BN, as it did for SiO2, and so the zero-temperature
transition pressures are also inaccurate. PBE and SCAN both
overestimate the transition pressure for C and underestimate it
for BN, though SCAN is more accurate for C and PBE is more
accurate for BN. EXX yields a surprisingly reasonable result
for the transition pressure of C, being only about 1.5 GPa larger

FIG. 5. E-V curve for cubic and hexagonal phases of BN with
RPA and RPA with kernel correction per functional unit. Accounting
for beyond-RPA correlation through an exchange-correlation kernel
for BN changes the sign of the relative energy difference between the
phases and hence corrects the errors of RPA. The kernel-corrected
curves have been rigidly shifted up in energy by 0.2 eV compared to
RPA for visual clarity.

than that predicted by PBE, though it yields a significantly
larger transition pressure for BN than the semilocal functionals
we tested.

The performance of the correlated methods for C and BN
is noticeably different than for the previous materials as well.
Earlier RPA calculations indicated nearly degenerate phases
for carbon in the diamond and graphite phases [78], and
our results also confirm this behavior of the simplest ACFD
correlation method. The addition of beyond-RPA correlation,
however, increases the energy difference between phases by
raising the energy of graphite relative to diamond and yielding
transition pressures at zero temperature that are overesti-
mates in comparison to the finite-temperature experiments. We
double-checked that this large shift is not unique to the rAPBE
kernel by computing the rALDA [100] results, which were
indeed very close to the rAPBE results in Tables II and III. Thus
without access to other efficient exchange-correlation kernels
at this time, it is difficult to understand why these two kernels
generate such a large shift in the RPA result for carbon. For
BN, however, RPA fails to predict the proper phase ordering
akin to LDA; see Fig. 5. The addition of bRPA correlation from
rAPBE corrects this deficiency and produces a small positive
energy difference and transition pressure between the cubic and
hexagonal phases. Since BN involves heteronuclear bonds, an
accurate treatment of short-ranged correlation is likely needed
to obtain good results, which we are able to achieve with the
rAPBE kernel at any level of RPA renormalization, whereas
for carbon the natural cancellation of errors of RPA results
in an accurate result. For these two materials it is difficult to
select one among the semilocals or ACFD methods that is most
accurate since the errors are of similar magnitudes though with
differing signs.
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The addition of thermal corrections for Pb, C, and BN tends
to unilaterally destabilize the high-pressure phase resulting in a
positive shift to the zero-temperature transition pressures. For
Pb, which is typically considered a very soft metal, the thermal
corrections from PBE unilaterally result in overestimates of the
finite-temperature transition pressure for all methods, though
the spread in the results is noticeably decreased. Thus it is clear
that the zero-temperature results benefit from cancellation of
opposing effects generated by the stabilization due to relativity
and destabilization due to phonons in the hcp phase. For C and
BN at finite temperature, RPA is quite close to experiment for
the former but not the latter, while the bRPA methods are more
accurate for BN than for C.

The addition of empirical dispersion was also explored for
Pb and BN and is reported in the Supplemental Material [108].
For Pb, adding the dispersion corrections also reduces the
transition pressures. For PBE+D3 the reduction is close to
1.5 GPa, but for PBE+D2 it is closer to 4.5 GPa. Adding
the D3 correction to SCAN hardly changes the SCAN result;
however addition of rVV10 results in a 2 GPa reduction of
the transition pressure bringing it close to that predicted by
PBE+D2. Though addition of the dispersion corrections to
Pb yields a reduction in the transition pressure similarly to
Zr, the addition of thermal corrections increases the transition
pressure of Pb whereas it reduces the transition pressure of Zr
[65]. Also the magnitude of the shift due to thermal corrections
in Pb is much higher than that of Zr because of the presence
of soft phonon modes.

For BN the effects of empirical dispersion are similar to
the other materials, resulting in reduction of the equilibrium
volumes and the transition pressures. The shifts induced by
the D3 correction tend to be smaller than those of D2 and
rVV10 for PBE and SCAN, respectively. In fact, the addition
of D2 decreases the energy difference between phases so
much that for PBE it changes the phase ordering, being now
similar to RPA and resulting in a negative transition pressure.
SCAN+rVV10 ultimately gives a value very close to that of
bRPA methods for BN, though SCAN+D3 is also within 1 GPa
as well.

Figure 6 summarizes the finite-temperature results at 300 K
and illustrates the relative performance of the selected methods
with respect to experiment. SCAN tends to be the most accurate
semilocal functional and yields results in good agreement with
RPA. Overall, the thermally corrected bRPA methods yield
consistent accuracy for all of materials. The small differences
between RPAr methods also indicate that the details of the
bRPA method are not crucial, just that one must account for
beyond-RPA correlation in a nonperturbative way as to avoid
divergences for small-gap systems.

V. DISCUSSION AND CONCLUSIONS

We evaluated the performance of LDA, PBE, SCAN, RPA,
and beyond-RPA methods from RPA renormalization using the
rAPBE exchange-like kernel in a comparative study for the de-
termination of structural properties and transition parameters
of different phases. Both the zero-temperature electronic struc-
ture calculations of the ground state and the finite-temperature
predictions with thermal corrections from the phonons were
compared with experimental results. For materials with two

FIG. 6. Relative errors (GPa) compared to experiment of the
transition pressures at room temperature predicted by each method
for each system. As explained in the text, the RPAr1 value is used as
the reference value for SiC instead of the experimental result.

high-symmetry phases and an appreciable energy difference
between phases, semilocal density functionals are usefully
accurate and the improvements from the ACFD methods are
not substantial. For materials with dissimilar phases, semilocal
functionals can struggle to produce systematic results from one
functional to the next, especially in cases such as SiO2 where
self-interaction error can play an important role. The ACFD
methods tend to improve upon the semilocal functionals for
GaAs, though the inherent limitations of RPA can still result
in poor results for molecular-like systems such as silica. For
materials which require special consideration to understand
their behavior, the ACFD methods tend to produce the most
consistent results, though SCAN can also be a practical
choice in these materials for compromising between speed and
accuracy.

In general, methods such as RPAr1 evaluated with the
rAPBE kernel should yield the most consistent results across
all types of materials. Based on a self-interaction free ex-
change energy, bRPA methods accurately treat long-range
interactions because they are based upon RPA correlation,
as well as being accurate for short-ranged interactions due
to the explicit inclusion of an exchange-correlation kernel.
Since all length scales of the electron-electron interaction
are accounted for systematically one can expect the results
produced by bRPA methods to be intentionally accurate and
not rely on cancellation of errors as is the case for semilocal
functionals. Furthermore, higher orders of RPAr do not make a
large contribution to the phase transition parameters since the
difference between the HOT method and RPAr1 tends to be
negligible. Since SCAN also accounts for different ranges of
electronic interactions, it delivers the highest quality semilocal
results. Through its meta-GGA form SCAN captures the usual
short-ranged exchange and correlation effects of earlier semilo-
cal functionals. Furthermore, it includes medium-range van
der Waals interactions that are missing in, e.g., LDA or PBE.
SCAN still benefits somewhat from residual self-interaction
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errors and a lack of long-range dispersion which tend to
offset each other, since the former is repulsive and the latter
attractive. Therefore we can recommend SCAN as a general
method to represent semilocal functionals when exploring new
materials or phase transitions, and that the bRPA methods can
be used as quality control for both energy differences and
transition pressures whenever accurate experimental results are
unavailable.

Thermal corrections and empirical dispersion were also
explored as additional corrections to all methods and the
semilocal functionals, respectively. The former can either
stabilize or destabilize the high-pressure phase, but in general
the shifts introduced by phononic corrections are smaller than
the differences in performance for the various methods. For
soft materials or those with near degeneracies, including the
thermal corrections can be crucial to obtain consistent results
with experiment. The addition of dispersion, on the other hand,
can often lead to worse results than from the pure semilocal
functionals since it tends to shrink equilibrium volumes and
reduce the equilibrium energy difference between different
phases of a material. In this way, the additional attraction
provided by empirical dispersion is not offset by any repulsive
contributions (such as from self-interaction corrections) and so
must be used with caution when studying bulk materials [65].

One point not discussed explicitly thus far is that the
difference in behavior of exchange and correlation in semilocal
functionals and ACFD methods is striking. For the former, the

exchange potential and energy often comprise the majority of
the binding described by density functional approximations,
and the addition of the correlation potential and energy often
induce only a (relatively) small shift from the exchange-only
results. For the ACFD, however, non-self-consistent EXX
typically underbinds by a considerable degree resulting in
wildly inaccurate results. Thus the addition of correlation leads
to very large shifts in the exchange-only results, in direct
contrast to semilocal correlation. This difference in behavior
is directly linked to the nonlocal nature of the EXX, and
even though the exchange-only starting point is often nowhere
close to experiment, the nonlocal correlation from the ACFD
corrects this deficiency and yields the missing binding needed
to produce accurate results. Thus we find the ACFD approach
to be vital in the validation of semilocal results and recommend
its use in materials where experimental results cannot be
straightforwardly compared to other approximate electronic
structure calculations.
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