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We investigate the Kondo effect in a double quantum dot which is capacitively coupled to a charge qubit.
It is shown that due to this capacitive coupling, the bare interdot repulsive interaction in the double quantum
dot is effectively reduced and eventually changed to an attractive interaction for strong couplings between the
double quantum dot and the qubit. By deriving the low-energy effective Hamiltonian of the system, we find
that the low-energy dynamics of the system corresponding to these two positive or negative effective interaction
regimes can be described, respectively, by an isotropic orbital-Kondo or an anisotropic charge-Kondo Hamiltonian.
Moreover, we study various thermodynamic and electronic transport properties of the system by using the
numerical renormalization group method.
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I. INTRODUCTION

During the last two decades, the Kondo effect in quantum
dots (QDs) has become an attractive research field in con-
densed matter physics [1–10]. The main motivation for these
studies is the possibility to explore various aspects of such
an important effect in an experimentally accessible and fully
tunable manner. Theoretically, the Kondo effect is expected to
arise at low temperatures whenever a localized system with a
degenerate ground state is coupled to an environment with the
same degeneracy, and it is usually related to the formation of
a zero-energy resonance state in the density of states of the
system as a result of higher order tunneling processes between
the localized system and the environment [1]. Depending
on the nature of the degrees of freedom contributing to the
manifestation of this effect, different kinds of Kondo effects
have been identified in the literature. For example, the spin-
Kondo effect is the most addressed Kondo effect, which is
associated with the fluctuations in the degenerate spin-up and
-down states in the local system [11–13]. Another example is
the orbital-Kondo effect, which is formed in a double quantum
dot (DQD) and associated with the degenerate pseudospin
states corresponding to the occupation of the DQD by an
electron in its left or right dot [14–16].

The other somehow elusive Kondo effect is the charge-
Kondo effect, which is associated with the fluctuations in
degenerate states with different charge occupations. In this
sense, the charge-Kondo effect is expected to occur in negative-
U centers where an attractive interaction makes the doubly
occupied or empty states have lower energies than the singly
occupied states. Despite the fact that the theory of charge-
Kondo effect was developed in early 1990s [17], its experimen-
tal realization was not reached until recent years. It was first
reported in bulk PbTe semiconductors doped with Tl valence-
skipping atoms which are in essence acting as negative-U
centers in the host material [18–21]. Another observation
of the charge-Kondo effect was also reported in transport
through single-electron transistors formed at LaAlO3/SrTiO3

interfaces [22–24]. Meanwhile, some efforts have been also
devoted to engineer the attractive interaction required for the

charge-Kondo effect by introducing other degrees of freedom
interacting with electrons. References [25–33] are examples
of such theoretical proposals.

Recently, Hamo et al. [34] reported the observation of
attracting electrons in a setup composed of a carbon nanotube
double quantum dot (DQD) along with a charge qubit, both
of which are constructed on separate microchips, placed one
above the other and perpendicular to each other. They found
that an attractive interaction will be induced between the
electrons in the DQD when the height of the qubit above
the DQD becomes less than a specific value. The attraction
mechanism in their setup, as is discussed by Little [35], is
purely electronic and of excitonic origin: An electron on the
DQD repels the electron in the up state of the qubit, leaving
behind it a cloud of positive charge on the qubit; in turn, this
positive charge will attract the other electron on the DQD,
making the whole to be two attracting electrons on the DQD.

In view of the presence of attractive electrons in the DQD-
qubit system, it is natural to ask whether or not the electronic
transport through the DQD could show the charge-Kondo
effect. It should be emphasized that in their experiment Hamo
et al. observed a conductance enhancement on the degeneracy
points between the two empty and doubly occupied states of
the DQD, a signature which was assigned to the charge-Kondo
effect by them. However, so far, there has not been presented
a rigorous description for the Kondo effect in the DQD-qubit
coupled system in the literature.

In the present work, we theoretically explore the character-
istics of the Kondo effect in the DQD-qubit coupled system.
In the rest of the paper, in Sec. II, we first introduce the model
Hamiltonian of the DQD-qubit system and discuss the effective
interaction induced in the DQD due to its coupling with the
qubit. Then, in Sec. III, we derive the low-energy effective
Hamiltonian of the system by using the Raleigh-Schrödinger
degenerate perturbation theory [30,36]. We show that for
positive effective interaction in the DQD the system exhibits
isotropic orbital-Kondo effect, while in the negative effective
interaction regime the anisotropic charge-Kondo effect will be
manifested in the system at low enough temperatures. Then
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FIG. 1. The charge qubit is suspended above the DQD at height h

and midway between the two dots of the DQD. Each dot of the DQD
is coupled to its own source and drain electrodes and the distance
between them is 2l. One of the qubit’s dots has smaller distance to
the DQD than the second qubit’s dot, and therefore the capacitive
effect of the second dot of the qubit on the dynamics of the DQD is
overestimated.

in Sec. IV we supplement our study with the results obtained
by using the numerical renormalization group (NRG) method
[37] to confirm the presence of these different Kondo effects in
the system and extract some of the DQD’s transport properties
in the charge-Kondo regime. Finally, in Sec. V, we give the
conclusions.

II. THE MODEL

Our model system, which is shown in Fig. 1, consists of
a parallel DQD and a charge qubit. The qubit is placed on
a separate host than the DQD and is positioned above the
midpoint between DQD at height h, so that the DQD and the
qubit can interact with each other only in a repulsive manner.
The DQD is constituted from two dots, and each of them is
contacted to its own source and drain electrodes. The total
Hamiltonian of the system is given by

Ĥ = ĤS + ĤL + ĤT . (1)

The first term is the Hamiltonian of the DQD-qubit system,
which is given by ĤS = ĤDQD + Ĥqubit + ĤI . The Hamilto-
nian of the DQD is given by

ĤDQD = ε1n̂1 + ε2n̂2 + Un̂1n̂2, (2)

where n̂i = d̂
†
i d̂i , d̂

†
i for i = 1,2 creates an electron in the

respective QD, εi is the applied gate voltage, and U is the
interdot electron-electron interaction energy which is assumed
to be a positive constant. In order to capture the main physics
of the charge-Kondo effect, we consider the electrons to be
spinless (by applying a large magnetic field) and therefore each
QD can be occupied only by a single electron. Moreover, Ĥqubit

denotes the Hamiltonian of the qubit, which is given by

Ĥqubit = −ω0

2
τ̂z + �

2
τ̂x , (3)

where ω0 is the energy difference between the energy levels
on either dots of the qubit, �/2 gives the corresponding
electron hybridization in the qubit, and τ̂x and τ̂z are the
usual Pauli operators operating in the qubit’s Hilbert space

and defined respectively by τ̂x = (|⇑〉〈⇓| + |⇓〉〈⇑|) and τ̂z =
(|⇑〉〈⇑| − |⇓〉〈⇓|), where |⇑〉 and |⇓〉 represent the two charge
states of the qubit. Furthermore, the interaction Hamiltonian
of the DQD-qubit is given by

ĤI = λ

2
n̂d τ̂z, (4)

where n̂d = n̂1 + n̂2 and λ is the capacitive coupling energy
between DQD and qubit, which is assumed to be a positive
constant. The value of λ is proportional to r−1

λ , where rλ =√
l2 + h2 is the distance between the charge qubit and the DQD

(see Fig. 1 for the definitions of l and h).
The DQD is tunnel coupled to four normal metal electrodes

so that each dot is coupled to its own source and drain
electrodes. The electrodes are described by ĤL = ∑

i,j ĤL,i,j ,
where j = S,D denote source and drain electrodes for the
respective dots i = 1,2, and ĤL,i,j = ∑

k εk ĉ
†
k,i,j ĉk,i,j , where

ĉ
†
k,i,j is the corresponding operator for electron creation with

energy εk in the respective electrodes. The hybridization of
each dot of the DQD with their electrodes is assumed to
be energy independent and characterized by a hybridization
constant t , and is described by ĤT = ∑

k,i,j t(ĉ†k,i,,j d̂i + H.c.).
The Hamiltonian of each source and drain electrode corre-
sponding to each dot may be transformed to the Hamiltonian
of a single lead by using the canonical transformations ˆ̃ck,i =
(ĉk,i,S + ĉk,i,D)/

√
2 and ˆ̃bk,i = (ĉk,i,S − ĉk,i,D)/

√
2, and then

the expressions of the leads and the DQD-leads Hamiltonians
are given, respectively, by

ĤL =
∑
k,i

εk
ˆ̃c†k,i

ˆ̃ck,i (5)

and

ĤT =
∑
k,i

t( ˆ̃c†k,i d̂i + H.c.). (6)

In order to learn more about the impact of the capacitive
interaction between the DQD and qubit on the behavior of
the system, it is useful to calculate the eigenstates and their
energies of the isolated DQD-qubit system. The eigenener-
gies of HS are obtained straightforwardly from HS |ψn1,n2± 〉 =
E

n1,n2± |ψn1,n2± 〉, as

E
n1,n2± = n1ε1 + n2ε2 + n1n2U ± �nd

2
, (7)

where nd = n1 + n2 is the total occupation of the DQD and
�n =

√
�2 + (ω0 − nλ)2. Moreover, the eigenstates are found

to be |ψn1,n2± 〉 = |n1,n2〉DQD|nd,±〉qubit , where |n1,n2〉DQD is
the occupation state of DQD and |nd,±〉qubit is the qubit
eigenstate given by

|nd,±〉qubit = b
nd± [(−ω0 + ndλ ± �nd

)|⇑〉 + �|⇓〉], (8)

where b
nd± is a normalization constant. Looking at the eigenen-

ergies, Eq. (7), we can understand that as a direct consequence
of the coupling with qubit, the electron-electron interaction in
DQD is reduced to an effective interaction equal to

Ueff = E
1,1
− + E

0,0
− − E

1,0
− − E

0,1
−

= U + �1 − 1
2 (�2 + �0). (9)
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More interestingly, we see that when U < 1
2 (�2 + �0) − �1,

the sign of Ueff becomes negative, which means that in such
situations there is a net attractive interaction between the
electrons in the DQD. Even though it may seem surprising at
first glance, we can get some sense of this attractive interaction
by noting that this is indeed an induced attraction between
the electrons. In other words, the presence of the oscillating
polarization field of the qubit on the electrons in the DQD
dresses their electric potential and forces them to favor the
doubly occupied states more than the singly ones, which in
turn can be considered as the two electrons attracting each
other [34,35].

Another feature in Eq. (7) is that, for some particular
parameter configurations, the ground state of the system
becomes degenerate, composed of the two states |ψ0,1

− 〉 and
|ψ1,0

− 〉 (|ψ0,0
− 〉 and |ψ1,1

− 〉) in the Ueff > 0 (Ueff < 0) regime.
Accordingly, we can expect that when the subsystem of the
DQD qubit with the degenerate ground state is appropriately
coupled to the electrodes, higher order electron tunneling
processes between DQD and electrodes dress this degenerate
state and form a many-body Kondo resonance, and hence a
Kondo effect arises in the system.

III. LOW-ENERGY EFFECTIVE HAMILTONIAN

In order to identify the characteristics of the Kondo effect
in our model system, it is sufficient to derive a low-energy ef-
fective Hamiltonian describing the low-temperature dynamics
of the system up to the second order of the electron tunneling
processes in the DQD. Here, we present the main results and
relegate the technical details to the Appendix. By using the
projection operators

P̂
n1,n2± = |ψn1,n2± 〉〈ψn1,n2± |, (10)

we can calculate the effective Hamiltonian of the system by
using [30,36]

Ĥeff =
∑

n1 ,n2=0,1
ν=±

P̂0ĤT P̂ n1,n2
ν ĤT P̂0

E0 − E
n1,n2
ν

, (11)

where P̂0 and E0 are the corresponding projector operator
and energy of the ground state of the unperturbed system,
respectively.

In the positive Ueff regime, the ground state of the system
can become degenerate (which is essential for the Kondo effect
to be arisen in the system) and constituted from the two states
|ψ0,1

− 〉 and |ψ1,0
− 〉 when the conditions λ = ω0, ε1 + U/2 =

ε2 + U/2 = Vg , and |Vg| < Ueff/2, are satisfied. Then, using
Eq. (11), the low-energy effective Hamiltonian can be obtained
by

Ĥeff =
∑

n1 ,n2=0,1
ν=±

(P̂ 1,0
− + P̂

0,1
− )ĤT P̂ n1,n2

ν ĤT (P̂ 1,0
− + P̂

0,1
− )

E
1,0
− − E

n1,n2
ν

≈ J
−→
S d · −→

S c, (12)

where
−→
S d and

−→
S c are the corresponding pseudospin vector

of DQD and electrodes, respectively, which are defined in
Eq. (A7), and J is the Kondo exchange coupling constant

which is given by

J = t2

(Vg + U ) − (λ/2)2

�+Vg+U

− t2

Vg − (λ/2)2

Vg−�

, (13)

which is always positive valued within the above mentioned
parameter regime. Thus, we see that the low-temperature
dynamics of the system in the Ueff > 0 regime is governed
by a SU (2) isotropic orbital-Kondo Hamiltonian in which a
single electron on the DQD plays the role of a pseudospin
making a singlet state with the corresponding pseudospins of
the electrodes. The Kondo temperature, which is the particular
temperature below which the Kondo effect is manifested in the
system, is given in this case by

T i
K = α exp

[
− 1

ρ0J

]
, (14)

where α is a proportionality constant and ρ0 = 1/(2D) is the
density of states of the leads, which is assumed to be constant
in the wide-band approximation, and D is the half-bandwidth
of the electrodes. To the lowest order in λ, the correction to the
value of J equals

J ≈ − t2U

Vg(Vg + U )
+ t2(λ/2)2

(Vg + U )2(� + Vg + U )

+ t2(λ/2)2

V 2
g (� − Vg)

+ O(λ4). (15)

Hence, in the positive Ueff regime, the DQD-qubit coupling
results in an enhancement of the Kondo temperature of the
system. Note that for λ = 0, Eq. (13) correctly reproduces the
results of the conventional orbital-Kondo effect in a DQD.

For the negative Ueff regime, by demanding the ground state
to be degenerate and constituted from the two states |ψ0,0

− 〉 and
|ψ1,1

− 〉, it can be found that the the sufficient conditions are λ =
ω0, ε1 + ε2 + U = 0 and |Vz| < −Ueff/2, where Vz = ε1 +
U/2 = −(ε2 + U/2). Now, we can perform a second-order
perturbation to obtain the low-energy effective Hamiltonian of
the system as

Ĥeff =
∑

n1 ,n2=0,1
ν=±

(P̂ 0,0
− + P̂

1,1
− )ĤT P̂ n1,n2

ν ĤT (P̂ 0,0
− + P̂

1,1
− )

E
0,0
− − E

n1,n2
ν

≈ [
J‖I z

d I z
c + J⊥

(
I x
d I x

c + I
y

d I y
c

)]
, (16)

where
−→
I d (

−→
I c) are the corresponding isospin operators

of the DQD (electrodes) which are defined by applying a
special particle-hole transformation, i.e., d

†
2 → d2 and c̃

†
k,2 →

−c̃k,2, on the
−→
S d (

−→
S c) operators and are given in Eq. (A10).

Furthermore, the two parallel and transverse exchange Kondo
coupling constants J‖ and J⊥ are given by

J‖ = 2t2

[−λ + U + 2Vz − �2(λ+2�0)
�2+λ2+λ�0

(U + 2Vz − �0)2 − �2

− λ − U + 2Vz + �2(λ+2�0)
�2+λ2+λ�0

(−U + 2Vz + �0)2 − �2

]
, (17a)

235131-3



S. MOJTABA TABATABAEI PHYSICAL REVIEW B 97, 235131 (2018)

J⊥ = 2�t2

�0

(
1

2Vz − U + λ2

2Vz−U+2�0

− 1

2Vz + U + λ2

2Vz+U−2�0

)
. (17b)

Thus, the low-energy dynamics of the DQD-qubit system
in the Ueff < 0 regime is governed by an anisotropic charge-
Kondo Hamiltonian. In this case, the Kondo temperature is
given by [32]

T a
K = β

⎛
⎝J‖ +

√
J 2

‖ − J 2
⊥

J‖ −
√

J 2
‖ − J 2

⊥

⎞
⎠

− 1

4ρ0

√
J2‖ −J2⊥

, (18)

where β is a proportionality constant.
We note that within the above particular range of parameter

values, the system is always in the Kondo regime and relaxing
these conditions can lead to a quantum phase transition into
other fixed points of the system.

IV. NUMERICAL RENORMALIZATION GROUP RESULTS

Here, we provide numerical results obtained by the nu-
merical renormalization group (NRG) method to confirm the
manifestation of the Kondo effect in the DQD-qubit system.
The NRG results are obtained using the NRG LJUBLJANA

package [38] by solving the total Hamiltonian in Eq. (1) with

 = πρ0t

2 = 0.01D, where ρ0 = 1/(2D) is the density of
states of the leads which is assumed to be constant in the
wide-band approximation and D = 1 is taken as the unit of the
energy scales. Moreover, we take U = 20
 and � = 10
. We
mention that for the chosen values of U and �, the particular
value of λ at which Ueff will vanish is λ ≈ 28
. Thus, the
system is expected to be in the positive (negative) Ueff regime
when λ < 28
(λ > 28
).

First, we investigate the thermodynamic properties of
the system. In Fig. 2, we show the temperature depen-
dence of the impurity contribution on the entropy Simp(T ),
on the orbital pseudospin magnetic susceptibility χS

imp(T ) =
[〈(Sz)2〉 − 〈(Sz)2〉0]/T , where Sz = Sz

d + Sz
c and 〈· · · 〉0 de-

notes the thermal expectation value in the absence of the DQD
and qubit, and on the total charge susceptibility χC

imp(T ) =
[〈Q2〉 − 〈Q2〉0]/T of the system in the p-h symmetric point
and for several λ values corresponding to the both Ueff > 0
and Ueff < 0 regimes. As seen in Figs. 2(a) and 2(b), at high
temperatures the system is in its free orbital fixed point where
all 23 states of the DQD-qubit system are equally probable
and hence the entropy becomes Simp = kB ln 8. By decreasing
the temperature, the system crosses over to a local moment
fixed point with Simp = kB ln 2, which means the presence of
only two degrees of freedom in the system. The nature of this
local moment could be revealed by looking at the respective
magnetic and charge susceptibilities of the system, which are
shown in Figs. 2(c)–2(f). It is seen that the local moment in
the Ueff > 0 regime is accompanied by formation of an orbital
pseudospin magnetic moment in the system [see Fig. 2(c)].
On the other hand, in the Ueff < 0 regime, we see that the
established local moment is of charge type [see Fig. 2(f)].

FIG. 2. Impurity contribution to the total entropy (top panels),
magnetic susceptibility (middle panels) and charge susceptibility
(bottom panels) of the system. The values of λ in the left and
right panels correspond to the positive and negative Ueff regimes,
respectively. Other parameters are ε1 = ε2 = −U/2, U = 20
, ω0 =
λ, and � = 10
.

Further decrease of the temperature results in fully screening
this local moment, after which the system crosses over to its
Kondo strong coupling fixed point with Simp = 0.

The particular temperature at which the local moment of
the system quenches in Figs. 2(a) and 2(b) is usually called
the Kondo temperature of the system. In Fig. 3(a), we show
TK values of the system calculated by the relation Simp(TK ) =
0.5kB ln 2 from NRG results. The dashed line shows the points
on which the values of Ueff vanish. It is seen that the behavior
of TK values in the positive Ueff region differs from that in
negative Ueff region. This is more obvious in Fig. 3(b), where
we have plotted the details of Fig. 3(a) for a particular value
of �. As we anticipated in Sec. III, in the positive Ueff region,
increasing λ results in an increase of the TK values, while, in the
negative Ueff regime, the value of TK is drastically decreased
by increasing λ. In Fig. 3(b), we have also compared the NRG
results with the results obtained using Eqs. (14) and (18), where
we can see very good agreement between the two results.
To complete our discussion about the Kondo temperature, in
Fig. 3(c), we show the dependence of TK on the values of Vz,
where Vz = (ε1 − ε2)/2, and by assuming that the system is in
the charge-Kondo regime. It is apparent that departures from
Vz = 0 give rise to an enhancement of TK , which is again in
agreement with the results obtained using Eq. (18).

Next, we consider spectral and transport properties of the
DQD. In Fig. 4, we show the spectral function of the DQD
for different values of λ. Obviously, when the system is in the
orbital-Kondo regime, λ < 24
, there is a central Kondo peak
along with two sideband peaks which are placed at the energies
corresponding to the single-particle excitation energies of the
DQD. By increasing λ, the system slightly crosses over to the
charge-Kondo regime, which is reflected in the central peak of
the spectral function by first transforming it to a Lorentzian
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FIG. 3. (a) Kondo temperature of the system calculated from
NRG results with respect to the λ and �. The dashed line shows the
boundary between positive and negative Ueff regimes. (b) Comparison
of Kondo temperature of the system for � = 10
, calculated by NRG
(circles), Eq. (14) (dash-dotted line), and Eq. (18) (dashed line). (c)
Kondo temperature of the system as a function of Vz, calculated by
NRG (circles) and Eq. (18) (dashed line), for � = 10
, λ = 40
.
The proportionality constants in Eqs. (14) and (18) are calculated by
numerical fitting to be α = 0.034 and β = 0.016. Other parameters
are ε1 = ε2 = −U/2, U = 20
, ω0 = λ.

form around λ ≈ 28
 and then to a sharp charge-Kondo
peak for λ > 32
. Changing λ has also affected not only the
energies but also the numbers of the sideband peaks. This
behavior can be explained by considering the single-particle
excitation energies of the isolated DQD-qubit, which could be
calculated by using Eq. (7). In the orbital-Kondo regime, the
ground state is the singly occupied states. Thus, there are four

FIG. 4. The spectral function (DOS) of the DQD for λ values
ranging from λ = 0 (orbital-Kondo regime) to λ = 52
 (charge-
Kondo regime). The dashed line shows the DOS for the particular
λ value corresponding to the vanishing Ueff . Other parameters are
ε1 = ε2 = −U/2, U = 20
, ω0 = λ, � = 10
.

FIG. 5. (a) Total linear conductance of the DQD with respect to
the ε1 and ε2 values. Charge configurations of the DQD are shown by
(n1,n2) in the figure. (b) Temperature dependence of the total linear
conductance of DQD along the diagonal line in (a). Other parameters
are U = 20
, � = 10
, ω0 = λ, and λ = 40
.

possible sideband peaks in this regime, with energies equal
to ±|E1,0

− − E
0,0
− | and ±|E1,0

− − E
0,0
+ |, which are associated

with the single-particle excitation in DQD without and with
excitation of the qubit, respectively. However, as we can see
in Fig. 4, in the orbital-Kondo regime, there are no sideband
peaks with qubit excitation in the spectral function, which
is mainly due to the weakness of the DQD-qubit coupling.
For larger λ values, and specifically in the charge-Kondo
regime, the sideband peaks with qubit excitation are much
more visible. We note that in the charge-Kondo regime, the
ground state is composed of the empty and doubly occupied
states, and therefore the sideband peaks energies are obtained
from ±|E0,0

− − E
1,0
− | and ±|E0,0

− − E
1,0
+ |.

In Fig. 5(a), we show the total conductance of the DQD
(G) in the ε1-ε2 plane. The parameters are chosen such that the
system is in the Ueff < 0 regime. We see that the profile of the
total conductance is rotated with respect to the usual charge
stability diagrams expected for an interacting parallel DQD
[39]. In particular, the presence of a long degeneracy between
the two charge configurations (0,0) and (1,1) is a clue of an
attractive interaction in the DQD. We can also infer the strength
of this attractive interaction as the length of this degeneracy line
segment between the two (0,0) and (1,1) regions. We show the
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temperature dependence of G along this segment in Fig. 5(b),
in which we can see that the conductance on this segment
reaches the unitary value G = 2G0 = 2e2/h for low enough
temperatures, while for higher temperatures it is suppressed
except at the end points of the degeneracy segment. Hence,
from these observations, we can deduce that the nature of
this unitary conductance is of charge-Kondo type. It should
be emphasized that a similar conductance enhancement was
reported in Ref. [34].

V. CONCLUSIONS

In conclusion, we considered a double quantum dot which
is capacitively coupled to a charge qubit. It is shown that
this capacitive coupling renormalizes the interdot repulsive
interaction in the double quantum dot and in some situations
makes it an attractive interaction between the electrons in the
double quantum dot. We found that appropriate coupling of
the double quantum dot with the electrodes could give rise
to two different types of the Kondo effect depending on the
sign of the interdot interaction in the double quantum dot.
Namely, in the positive interaction regime, the system shows an
isotropic orbital-Kondo effect while, in the negative interaction
regime, an anisotropic charge-Kondo effect is expected to be
shown in the system. By deriving the low-energy effective
Hamiltonian of the system, we obtained the corresponding
Kondo exchange coupling constants as well as the character-
istic Kondo temperature of the system corresponding to these
two different regimes. Moreover, we employed the numerical
renormalization group method to confirm our analytical results
and to extract some thermodynamic and electronic transport
properties of the system.
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APPENDIX: DERIVATION OF EFFECTIVE HAMILTONIAN

The low-energy effective Hamiltonian of the system can be
calculated using the method of degenerate perturbation theory.
We will calculate the second-order corrections to the un-
perturbed subsystem Ĥ0 = ĤS + ĤL due to the perturbation
coming from electron transitions between DQD and electrodes,
which is described by ĤT . First, for future reference, we define
eight projection operators to the subspace of the eigenstates
|ψn1,n2± 〉 by

P̂
0,0
± = (1 − n̂1)(1 − n̂2)|0,±〉〈0,±|, (A1a)

P̂
1,0
± = n̂1(1 − n̂2)|1,±〉〈1,±|, (A1b)

P̂
0,1
± = (1 − n̂1)n̂2|1,±〉〈1,±|, (A1c)

P̂
1,1
± = n̂1n̂2|2,±〉〈2,±|. (A1d)

Now, the correction to the Ĥ0 to the lowest order in ĤT can
be calculated by [30,36]

Ĥeff =
∑

n1 ,n2=0,1
ν=±

P̂0ĤT P̂ n1,n2
ν ĤT P̂0

E0 − E
n1,n2
ν

, (A2)

where P̂0 denotes the projection to the specific ground-state
of the unperturbed Hamiltonian Ĥ0 with energy E0. Because
we are interested in deriving the Kondo Hamiltonian, we
restrict our calculations to the degenerate ground states in the
following discussions.

1. Positive Ueff regime

In this regime, the ground state becomes degenerate when E
1,0
− = E

0,1
− , E1,0

− < E
0,0
− , and E

1,0
− < E

1,1
− . Due to the large number

of available parameters in the system, various parameter configurations can fulfill these conditions. By fixing λ = ω0, which makes
the qubit particle-hole symmetric, we find that the necessary conditions for degeneracy in the ground state become ε1 = ε2 = Vg

and |ε1 + U
2 | < 1

2 (U + �1 − �0), where we have allowed for a gate voltage Vg to consider the general case. By denoting the
ground-state projector as P̂0 = P̂

1,0
− + P̂

0,1
− , we can evaluate the effective Hamiltonian in this case by

Ĥeff =
∑

n1 ,n2=0,1
ν=±

〈1,−|(P̂ 1,0
− + P̂

0,1
− )ĤT P̂ n1,n2

ν ĤT (P̂ 1,0
− + P̂

0,1
− )|1,−〉

E
1,0
− − E

n1,n2
ν

. (A3)

Note that we have traced out the qubit’s degrees of freedom in order to obtain a pure electronic effective Hamiltonian. Explicit
calculation of different terms in the above relation leads to

∑
ν=±

〈1,−|(P̂ 1,0
− + P̂

0,1
− )ĤT P̂ 0,0

ν ĤT (P̂ 1,0
− + P̂

0,1
− )|1,−〉

E
1,0
− − E

0,0
ν

= 4t2(−� + Vg)

4Vg(� − Vg) + λ2

×
∑
i=1,2

[−δq,p(n̂i − n̂1n̂2) + ˆ̃c†q,i
ˆ̃cp,i n̂i + ˆ̃c†q,i

ˆ̃cp,ī d̂
†
ī
d̂i − ˆ̃c†q,i

ˆ̃cp,i n̂1n̂2], (A4a)
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∑
ν=±

〈1,−|(P̂ 1,0
− + P̂

0,1
− )ĤT P̂ 1,1

ν ĤT (P̂ 1,0
− + P̂

0,1
− )|1,−〉

E
1,0
− − E

1,1
ν

= 4t2(� + Vg + U )

4(Vg + U )(� + Vg + U ) − λ2

×
∑
i=1,2

[− ˆ̃c†q,i
ˆ̃cp,i n̂ī + ˆ̃c†q,i

ˆ̃cp,ī d̂
†
ī
d̂i + ˆ̃c†q,i

ˆ̃cp,i n̂1n̂2]. (A4b)

Summing the above two contributions to the effective Hamiltonian and using the identities n̂1n̂2 = 1 − n̂d and n̂d = 1 which
are valid only in the ground-state subspace of the positive Ueff regime, we can reach to the following expression for Ĥeff :

Ĥeff = J
−→
S d · −→

S c + K
∑
i,j=1,2

q,p

ˆ̃c†q,i
ˆ̃cp,i/2, (A5)

where J and K are given by

J = t2

(Vg + U ) − (λ/2)2

�+Vg+U

− t2

Vg − (λ/2)2

Vg−�

, (A6a)

K = t2

(Vg + U ) − (λ/2)2

�+Vg+U

+ t2

Vg − (λ/2)2

Vg−�

. (A6b)

Moreover,
−→
S d = 1

2

∑
i,j=1,2 d̂

†
i
−→σ ij d̂j is the corresponding pseudospin vector of the DQD, which is represented by

Sx
d = 1

2 (d̂†
2 d̂1 + d̂

†
2 d̂1), (A7a)

S
y

d = i
2 (d̂†

2 d̂1 − d̂
†
2 d̂1), (A7b)

Sz
d = 1

2 (n̂1 − n̂2), (A7c)

and, analogously,
−→
S c = 1

2

∑
i,j=1,2

∑
p,q

ˆ̃c†q,i
−→σ ij

ˆ̃cp,j is the pseudospin vector for the electrodes.

2. Negative Ueff regime

In this regime, a calculation similar to that of the positive Ueff regime but for the the ground state composed of the two states
|ψ0,0

− 〉 and |ψ1,1
− 〉 leads to the conditions λ = ω0, ε1 + ε2 + U = 0 and |Vz| < 1

2 (−U − �1 + �0), where Vz = ε1 + U/2 =
−(ε2 + U/2). Then, the ground-state projector is P̂0 = P̂

0,0
− + P̂

1,1
− , and the effective Hamiltonian can be calculated by

Ĥeff =
∑

n1 ,n2=0,1
ν=±

(〈0,−|P̂ 0,0
− + 〈2,−|P̂ 1,1

− )ĤT P̂ n1,n2
ν ĤT (P̂ 0,0

− |0,−〉 + P̂
1,1
− |2,−〉)

E
0,0
− − E

n1,n2
ν

. (A8)

By calculating the summations in the above relation, after some algebra, we get

∑
ν=±

〈0,−|P̂ 0,0
− ĤT P̂ 1,0

ν ĤT P̂
0,0
− |0,−〉

E
0,0
− − E

1,0
ν

+ 〈2,−|P̂ 1,1
− ĤT P̂ 1,0

ν ĤT P̂
1,1
− |2,−〉

E
0,0
− − E

1,0
ν

= 2t2

�2 − (−U + 2Vz + �0)2

(
λ − U + 2Vz + �2(λ + 2�0)(

�2 + λ2 + λ�0
)
)

× [ ˆ̃c†q,1
ˆ̃cp,1 − ˆ̃c†q,1

ˆ̃cp,1n̂d + δq,pn̂1n̂2 + ( ˆ̃c†q,1
ˆ̃cp,1 − ˆ̃c†q,2

ˆ̃cp,2)n̂1n̂2], (A9a)

∑
ν=±

〈0,−|P̂ 0,0
− ĤT P̂ 0,1

ν ĤT P̂
0,0
− |0,−〉

E
0,0
− − E

0,1
ν

+ 〈2,−|P̂ 1,1
− ĤT P̂ 0,1

ν ĤT P̂
1,1
− |2,−〉

E
0,0
− − E

0,1
ν

= 2t2

�2 − (U + 2Vz − �0)2

(
λ − U − 2Vz + �2(λ + 2�0)(

�2 + λ2 + λ�0
)
)

× [ ˆ̃c†q,2
ˆ̃cp,2 − ˆ̃c†q,2

ˆ̃cp,2n̂d + δq,pn̂1n̂2 + ( ˆ̃c†q,2
ˆ̃cp,2 − ˆ̃c†q,1

ˆ̃cp,1)n̂1n̂2], (A9b)
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∑
ν=±

〈0,−|P̂ 0,0
− ĤT P̂ 0,1

ν ĤT P̂
1,1
− |2,−〉

E
0,0
− − E

0,1
ν

+ 〈2,−|P̂ 1,1
− ĤT P̂ 0,1

ν ĤT P̂
0,0
− |0,−〉

E
0,0
− − E

0,1
ν

= 2�t2/�0

2Vz − U + λ2

2Vz−U+2�0

∑
i=1,2

[ ˆ̃c†q,i
ˆ̃c†
p,ī

d̂ī d̂i + H.c.], (A9c)

∑
ν=±

〈0,−|P̂ 0,0
− ĤT P̂ 1,0

ν ĤT P̂
1,1
− |2,−〉

E
0,0
− − E

1,0
ν

+ 〈2,−|P̂ 1,1
− ĤT P̂ 1,0

ν ĤT P̂
0,0
− |0,−〉

E
0,0
− − E

1,0
ν

= −2�t2/�0

2Vz + U + λ2

2Vz+U−2�0

∑
i=1,2

[ ˆ̃c†q,i
ˆ̃c†
p,ī

d̂ī d̂i + H.c.]. (A9d)

Now, by defining the isospin operators
−→
I d of the DQD as

I x
d = 1

2 (d̂†
2 d̂

†
1 + d̂1d̂2), (A10a)

I
y

d = i
2 (d̂†

2 d̂
†
1 − d̂1d̂2), (A10b)

I z
d = 1

2 (n̂d − 1), (A10c)

with a similar definition for the
−→
I c as the iso-spin operators of the electrodes and using the identities 2n̂1n̂2 = n̂d and n̂1 = n̂2

which are valid in the ground state of the negative Ueff regime, we can obtain the effective Hamiltonian in Eq. (16).
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