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The functional renormalization group (FRG) has been used widely to investigate phase diagrams, in particular
the one of the two-dimensional Hubbard model. So far, the study of one-dimensional models has not attracted
as much attention. We use the FRG to investigate the phases of a one-dimensional spinless tight-binding chain
with nearest and next-nearest neighbor interactions at half filling. The phase diagram of this model has already
been established with other methods, and phase transitions from a metallic phase to ordered phases take place
at intermediate to strong interactions. The model is thus well suited to analyze the potential and the limitations
of the FRG in this regime of interactions. We employ flow equations that are exact up to second order in the
interaction, which implies that we take into account the frequency dependence of the two-particle vertex as
well as the feedback of the dynamic self-energy. For intermediate nearest neighbor interactions, our scheme
captures the phase transition from a metallic phase to a charge density wave with alternating occupation. The
critical interaction, at which this transition occurs, is underestimated due to our approximations. Similarly, for
intermediate next-nearest neighbor interactions, we observe a transition to a charge density wave with occupation
pattern . . . 00110011 . . .. We show that taking into account a feedback of the two-particle vertex in the flow
equation is essential for the detection of those phases.
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I. INTRODUCTION

The functional renormalization group (FRG) is a versatile
tool to treat many-body systems with diverse energy scales and
competing ordering tendencies [1–3]. In this particular flavor
of the RG concept, a flow parameter � is introduced in such a
fashion that at an initial �i the system can be solved exactly. By
successively eliminating this cutoff one then recovers the full
interacting problem, summing up all Feynman diagrams for,
e.g., the one-particle irreducible interacting vertex functions.
In practice, the infinite hierarchy of flow equations emerging
from the formalism has to be truncated. The resulting coupled
differential equations can then be solved, usually numerically,
to obtain approximations for, e.g., the self-energy.

The FRG can be used for many different applications [1,2],
but in this paper we focus on the study of phase transitions. In
fact, the FRG for quantum many-body systems was introduced
specifically for this purpose several years ago. It was used to
examine the phase diagram of the two-dimensional Hubbard
model at weak coupling [4]. Numerous authors have extended
and refined the treatment since then, for example in Refs. [5–
17]. Depending on the geometry, the interaction strength, and
doping, different leading-order instabilities were identified. In
one dimension, the FRG has not been employed as extensively
to study phases; in Ref. [18], the half-filled extended Hubbard
model at small interactions has been examined.

As mentioned above, only a few of the infinite number of
the FRG flow equations can actually be taken into account
in a numerical computation. Neglecting the flow of the vertex
functions of order m + 1 and higher leads to a scheme where all

Feynman diagrams of order m in the interaction are included.
To give an example, neglecting the flow of the two-particle
vertex gives a result for the self-energy that is at least as good
as first order perturbation theory. The standard truncation thus
renders FRG a weak coupling scheme. However, the FRG
often performs well even at intermediate interactions since
an infinite number of diagrams is resummed during the flow
[1,2]. Furthermore, due to the scale-dependent treatment the
FRG manages to cure infrared divergences that afflict the
perturbative approach. Besides, no bias is introduced when
treating competing instabilities in contrast to, e.g., mean-field
approaches. Next to those mth order truncation schemes, other
approximations are possible. In most of the studies of phase
diagrams in both one and two dimensions, only the flow of
the (static) two-particle vertex was considered, neglecting the
self-energy feedback [1]. The effect of discarding this feedback
is still under debate today, see Sec. III A. Note that those
approximations do not follow the inherent construction of
truncating the flow equations at a certain order anymore.

In this paper, we use an FRG scheme that follows the
intrinsic truncation structure and takes into account all terms
up to second order in the interaction [19]. It can be formulated
in real space as well as in momentum space [20]. With this
scheme, we study the phase diagram of the one-dimensional
spinless tight-binding model with nearest and next-nearest
neighbor interactions. The phases of this model are well
understood from previous works (see Sec. II), with phase
transitions occurring at intermediate to strong interactions. It is
thus possible to benchmark our FRG results and to determine
whether we are able to capture the different phases. We find that
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the truncated FRG can provide a qualitative understanding of
charge-ordered phases occurring at intermediate interactions,
but the quantitative predictions are not reliable. The bond order
phase for an intermediate next-nearest neighbor interaction
strength (see Sec. II) cannot be identified unambiguously from
our calculations, which shows that the truncated FRG can miss
ordering tendencies.

This paper is organized as follows: In Sec. II we describe
our model and summarize previous findings. In Sec. III we
briefly recapitulate earlier works about phase diagrams using
the FRG and outline the key points of the FRG approach
used in this paper. A more detailed derivation of the flow
equations employed here can be found in the Appendix. We
present the results of our calculations in Sec. IV, where we
study the various phases in the parameter regime of repulsive
interactions. We conclude in Sec. V.

II. MODEL

We consider a one-dimensional chain of spinless fermions
as sketched in Fig. 1 at T = 0 and at half filling, i.e., on average
one fermion per two sites. The Hamiltonian is given by

H = − t
∑

j

(c†j cj+1 + c
†
j+1cj )

+ U
∑

j

(
nj − 1

2

)(
nj+1 − 1

2

)

+ U ′ ∑
j

(
nj − 1

2

)(
nj+2 − 1

2

)
. (1)

We study both open boundary conditions (OBC) and periodic
ones (PBC). For OBC, the first two sums run from 0 to N − 2,
and the last one from 0 to N − 3. For PBC, we identify N + j

with j , and all sums run from 0 to N − 1. We have written
the Hamiltonian in a particle-hole symmetric form, such that
the chemical potential is fixed at μ = 0. In the following, we
will set t = 1 unless otherwise mentioned and thus measure
energies with respect to the bare hopping.

For U ′ = 0, the model is Bethe ansatz solvable [21,22]. The
exact solution shows that the system is in a metallic Luttinger
liquid (LL) state, where no symmetry is broken, for |U | �
2. For U > 2 a charge density wave with a unit cell of one
occupied and one unoccupied site forms (CDW-I). ForU < −2
the system is in a phase separated state.

In a mean field approximation of the model with U ′ = 0,
the system is in an ordered CDW-I state for any U > 0.
For small U , the self-consistency equation can be solved
analytically, and the result for the order parameter is 8/π (U +
π )/U exp{−(U + π )/U}. A comparison with the exact so-
lution, in which the CDW-I phase is found only for U > 2,

FIG. 1. Sketch of the one-dimensional tight-binding chain with
the hopping t , the nearest neighbor interaction U , and the next-nearest
neighbor interaction U ′.

FIG. 2. Phase diagram of the model Eq. (1) as reported by Mishra
et al. The above plot was sketched after reading off the approximate
location of the transition lines from Fig. 1 of Ref. [28]. The full lines
indicate the phase transitions, see the text for further details. The
sketches indicate the fermion distribution on the sites in the CDW
phases or the strength of the bonds in the BO phase. The dashed lines
show the cuts of the phase diagram studied in this paper.

shows that mean field theory is inappropriate to study the phase
diagram of the U ′ = 0 model.

Next, let us consider the model with U ′ �= 0. In the atomic
limit (t = 0), the system has two phases for repulsive in-
teractions. For U ′ < U/2, we obtain a CDW-I, whereas for
U ′ > U/2 the system is in a charge-ordered state with a unit
cell of two occupied and two unoccupied sites (CDW-II).

For the full model, no exact solution is known. Its phase
diagram has been studied for several decades with vari-
ous methods, among them a mixture of the renormalization
group and the exact diagonalization of small chains [23],
the modified Lanczos method [24,25], exact diagonalization
techniques [26], and the density matrix renormalization group
(DMRG) [27,28]. For repulsive interactions, four different
phases were found. The phase diagram is sketched in Fig. 2,
which qualitatively reproduces Fig. 1 of the paper by Mishra
et al. [28]. To prepare Fig. 2, we read off the various critical
interaction strengths from Fig. 1 of Ref. [28]. If the kinetic
energy [first line of Eq. (1)] is dominant, the system is in the
metallic LL phase. As discussed above, if the nearest neighbor
interactions are tuned up a phase transition to the CDW-I takes
place. The critical value Uc, which is 2 for U ′ = 0, increases
with rising U ′ since the CDW-I becomes less favorable in a
system with repulsive next-nearest neighbor interactions. For
intermediate U ′, a bond order phase (BO) emerges due to
the competition between the kinetic energy and U ′. In this
phase, the hybridization 〈c†i ci+1〉 oscillates from bond to bond.
Finally, when the next-nearest neighbor interaction is increased
further the system crosses over to a CDW-II phase. While the
CDW phases are physically very intuitive, the BO phase is
more difficult to interpret and has been missed in some studies
[25,26]. In contrast to the two-dimensional Hubbard model
[4] and the extended one-dimensional Hubbard model at half
filling [18], where ordering tendencies are expected as soon as
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a small interaction is switched on, we here face the challenge
of detecting phases in the regime of intermediate couplings.

III. FUNCTIONAL RENORMALIZATION GROUP

A. General discussion

In the FRG a flow parameter � is introduced, usually in
the single-particle Green’s function, that allows for a smooth
interpolation from an exactly solvable system to the fully
interacting model of interest. A convenient choice for the flow-
ing quantities are the one-particle irreducible vertex functions
which are the self-energy, the two-particle vertex, and so on [1].
However, following the exact flow would require the solution
of an infinite number of coupled differential equations, which
is impossible in most cases. Instead, only the flow of a few
vertex functions can be taken into account. When interested in
the renormalization of both the self-energy and the two-particle
vertex, the first approximation is to set the three-particle vertex
to its initial value zero, i.e., performing a truncation at the level
m = 2. We then obtain a closed system of coupled differential
equations for the self-energy and the two-particle vertex that
is exact up to second order in the interaction.

This system of differential equations is still difficult to
solve numerically since the self-energy depends on one fre-
quency and two real space variables (or one momentum in
the translationally invariant case), and the two-particle vertex
depends on three frequencies and four real space variables
(or three momenta). In the early works about the phase
diagram of the two-dimensional Hubbard model, additional
approximations were implemented after the truncation to keep
the computational effort manageable [6]. Only the flow of
the static two-particle vertex was considered, discarding the
self-energy feedback. The FRG was formulated in momentum
space, and due to the specific way of discretizing the Brillouin
zone this approach was called the “N -patch FRG” [5]. To study
the phases of the model, the flow equations were solved until a
divergence, termed the flow to strong coupling, was observed at
a scale ��. Analyzing which component of the vertex function
or susceptibility diverged first led to a prediction of the nature
of the ordered phase as well as a “phase diagram.” The same
approximation was employed to study the extended Hubbard
model in one dimension [18].

In later studies of the two-dimensional Hubbard model, the
above described method was extended to access also the scales
below �� [6–8,12]. For a review of the results until 2012, see
Ref. [1]. The phase diagram of this model is still an active field
of research, see, e.g., Refs. [9–11,13–17] for various refined
and extended treatments. Due to the complexity of the flow
equations, so far it has not been possible to implement an
FRG scheme that takes the full frequency dependence, the
full momentum dependence, and the self-energy flow into
account. Although a mostly unified picture concerning the
leading order instabilities in the various parameter regimes
of the two-dimensional Hubbard model has emerged over
the years, it is still not completely clear how the different
approximations affect the results.

In this paper, we apply a scheme which follows the logic
of an m = 2 order truncation. The overall concept of this
approach has first been reported in Ref. [29], building up on

ideas of Refs. [30,31], and has been extended in Ref. [19].
It is applicable for Hamiltonians with arbitrary single-particle
terms and finite-ranged interactions. The authors of Ref. [29]
called this flavor of the FRG “coupled ladder approximation”
and in Ref. [19] “extended coupled ladder approximation”
(eCLA). They were mostly interested in the transport through
quantum point contacts, calculating the conductance and
the susceptibility, with special focus on the so-called “0.7-
anomaly” [32]. As the paper by Weidinger et al. [19] contains
a detailed derivation of the flow equations in the eCLA for a
one-dimensional model including spin, in this section we only
mention the main steps and introduce the flowing quantities for
our spinless model. More details can be found in the appendix.

The Hamiltonian Eq. (1) is formulated in real space. For
a translationally invariant system, it can be advantageous to
go to momentum space. Also in this case, second order FRG
flow equations can be derived, which is covered in detail in
Ref. [20]. We therefore do not write down the momentum space
equations here. Reference [20] also contains real space flow
equations which are similar but not equal to the ones we use
here, see below. In Ref. [20], the authors used the real space
approach to study the transport with abrupt junctions, and the
momentum space approach to examine LL power-law behavior
in the occupation as a function of the momentum. Here, we
employ the momentum space FRG in addition to the real
space scheme and compare the results for phase transitions in
Sec. IV B.

B. FRG flow equations

Let us now recapitulate the main steps in the derivation
of the eCLA. The flow equations for the self-energy and the
two-particle vertex in a diagrammatic language after setting the
three-particle vertex to zero are depicted in Fig. 3. Following
the logic of the FRG, the full two-particle vertex is present
on the right-hand side of the flow equation. We now note that
the two-particle vertex can be naturally divided in different
parts [30], compare the structure of the general flow equation
for the two-particle vertex Eqs. (A2)–(A4). Then,

��(j ′
1,j

′
2; j1,j2; �,X,�) = V + ��

p + ��
x + ��

d , (2)

with the bare interaction V , the particle-particle channel ��
p ,

the exchange (sometimes also called crossed) particle-hole
channel ��

x , and the direct particle-hole channel ��
d . For our

FIG. 3. Flow equations for the self-energy �� and the two-
particle vertex ��, neglecting the three-particle vertex.
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model Hamiltonian Eq. (1), V has as nonzero components

V (j,j + 1; j,j + 1) = U, (3)

V (j,j + 2; j,j + 2) = U ′, (4)

and the corresponding ones from permutation of the indices (�
is antisymmetric under exchange of the j ′

1, j ′
2 or j1, j2 index

pair).
The key point in the eCLA is to insert (at first) only the bare

vertex V instead of the full �� on the right-hand side of the
flow equation. The neglected terms are all at least of third order
in the interaction. In a perturbative sense, our approximation
is thus as good as it was before, when we neglected the flow
of the three-particle vertex. It is then possible to restrict the
variable dependence of the vertex channels such that each
depends on only one bosonic frequency. In addition, due to
the finite range of the bare interaction, the dependence on four
real-space indices can be limited as well. In compact notation,
we can now write the vertex channels as

P
k,l;�
i,j (�) := ��

p (i,i + k; j,j + l; �) (5)

X
k,l;�
i,j (X) := ��

x (i,j + l; j,i + k; X) (6)

D
k,l;�
i,j (�) := ��

d (i,j + l; i + k,j ; �). (7)

The subscript indices i and j range in principle between 0 and
N − 1 (see the appendix for further details). The superscript
indices lie in [−LU,LU ], where LU is the spatial range of the
bare interaction. For the Hamiltonian Eq. (1),LU = 2 (orLU =
1 if U ′ = 0). The above described approximation scheme leads
to the flow equations that were used in Ref. [20] (note that the
notation in Ref. [20] is slightly different from the one used
here).

As a next step, it is also possible to include a vertex feedback
without destroying the above structure of the channels [31],
which along the flow leads to components in the vertices with
|k|,|l| > LU . Let us first consider the particle-particle channel.
Instead of inserting the bare interaction on the right-hand side
of the flow equation for ��

p , we replace

��(j ′
1,j

′
2; j1,j2; �,X,�) → �̃�

p (j ′
1,j

′
2; j1,j2; �)

:= δL
j ′

1,j
′
2
δL
j1,j2

��(j ′
1,j

′
2; j1,j2; �,0,0), (8)

where δL
i,j = 1 if |i − j | � L and zero otherwise. �̃p contains

the bare interaction as well as all components of P �(�).
Besides, also components of X�(0) and D�(0) are fed back
in the flow equation. The latter channels are taken at zero
frequency to avoid a mixing of the three bosonic frequencies.
We have now introduced the feedback length L, which restricts
the upper indices in P

k,l
i,j to lie in the range [−L,L].

With an analogous consideration for the other channels,
we arrive at a vertex that instead of O(N3

f N4), with Nf the
number of discretized frequencies (see Sec. III C), has only
O(Nf N2L2) variables. If we wanted to compute the full real-
space dependence, we would have to take L ≈ N/2 for PBC
and L = N − 1 for OBC. This parametrization is thus only
advantageous if L can be chosen much smaller. Fortunately,
this is indeed the case for our model as we will see in Sec. IV.

At each scale, we insert the dynamic vertex on the right-hand
side of the flow equation for the self-energy, which becomes
dynamic as well. We stress that with this strategy, our scheme
is exact up to second order in the interaction. The flow equation
for the self-energy now reads

d

d�
��

i,j (ω)

= − 1

β

∑
i ′,j ′,ω′

S�
j ′,i ′ (ω

′)
[
V (i,i ′; j,j ′) + ��

p (i,i ′; j,j ′; ω + ω′)

+ ��
x (i,i ′; j,j ′; ω − ω′) + ��

d (i,i ′; j,j ′; 0)
]
, (9)

where S� is the single-scale propagator, defined as the deriva-
tive of the full propagator with respect to the flow parameter
� at fixed self-energy. The initial condition for the sharp
cutoff specified in Eq. (12) is for finite �i given by ��i = 0
(see the appendix). However, later we will also add small
symmetry breaking terms in the initial condition to induce a
phase transition.

The flow equations for the vertex channels can be written in
a compact matrix notation (we do not write the flow equation
for D since due to symmetry D = −X) as

d

d�
P �(ω) = P̃ �(ω) · Wp�(ω) · P̃ �(ω) (10)

d

d�
X�(ω) = X̃�(ω) · Wx�(ω) · X̃�(ω). (11)

The dot represents a block-matrix multiplication in each
index, [A · B]k,l

i,j = ∑
i ′k′ A

k,k′
i,i ′ B

k′,l
i ′,j . The tilde above the vertices

indicates that the bare vertex as well as dynamic feedback
from the same channel and static feedback from the other
channels is included, see Eqs. (5) and (8) for the definition
of P̃ . The full expressions for P̃ and X̃ for our model can be
found in Eqs. (A8) and (A9) in the appendix. The matrices
Wx/p� represent a product of a single-scale propagator and a
full propagator, summed over an internal frequency. The initial
conditions are given by P �i = X�i = 0.

We introduce the FRG flow parameter by multiplying a
sharp cutoff function to the free Green’s function,

G�
0 (ω) = �(|ω| − �)G0(ω). (12)

Then, a δ distribution δ(|ω| − �) appears in the single-scale
propagator, which makes it possible to analytically evaluate the
frequency integrals. The resulting expressions for the matrices
Wx/p� are given in Eqs. (A22)–(A25), and the final flow
equation for the self-energy in Eqs. (A20) and (A21).

The flow equations described above are still complicated.
They can be simplified by applying the static approximation
[29], in which only the frequency ω = 0 is considered. Note
that this static approximation does no longer contain all
second order diagrams for the static self-energy. Thus, also
observables calculated from ��f are only exact up to first order.

C. Numerical implementation

The flow parameter � we introduced in the free Green’s
function ranges from infinity to zero. However, for compu-
tational purposes we have mapped this semi-infinite interval
to (1,0] by going to x = �/(1 + �) [29]. We usually start
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at xi = 0.999999, which corresponds to �i ≈ 106, and have
tested that starting the integration at xi closer to one does
not change the results. For the integration of the system of
coupled differential equations we use a standard Runge-Kutta
algorithm with adaptive step-size control.

For the dynamic calculation, we have to discretize the
continuous frequency ω. We will always use a geometrically
spaced grid with

ωn = ω1
an − 1

a − 1
, n = 0..Nf − 1, ω1 > 0, a > 1. (13)

If a quantity is needed at a frequency in between the discrete
grid points we use linear interpolation. A resolution with
Nf = 60, ω1 = 0.001, and a = 1.2 is in our case sufficient
to obtain converged results. We also tested that calculations
with a logarithmically spaced frequency grid do not change
the outcome.

Since we consider the half-filled case, we will always use an
even number of sites to ensure the correct filling. In addition,
we have to consider systems of size N = 4k + 2 in the case
of PBC. This is because the free system has eigenenergies
en = −2 cos(kn), kn = 2πn/N, n ∈ (−N/2,N/2]. If N is a
multiple of four, one eigenvalue is zero, and the free Hamilto-
nian cannot be inverted.

The computationally most expensive parts about the above
presented algorithm are the matrix-matrix multiplications in
Eqs. (10) and (11), since they scale as O(N3L3). In a dynamic
scheme, Eqs. (10) and (11) have to be computed for each of
the Nf frequencies. We also have to invert matrices of size
N × N to get the propagator Eq. (A18) at various frequencies.
We were able to get results for systems up to length ∼400
in the static approximation using highly optimized BLAS
routines with shared-memory parallelization. For the dynamic
case, MPI parallelization makes it possible to go up to system
sizes of ∼80. Due to the structure of the flow equations, it is
comparatively easy to parallelize the code using MPI. In our
code, each MPI rank calculates the right-hand side for a share
of frequencies (this limits the number of nodes that can be used
to Nf ), which leads to an even workload distribution.

D. Observables

After the integration of the flow equations down to �f = 0,
we obtain an approximation for the interacting self-energy and
vertex at discrete frequencies. We will later be interested in
the occupation and the hybridization, so we briefly explain
how to obtain expectation values of c

†
i cj from ��f , or rather

from the full propagator [see Eq. (A18)] at �f. For a dynamic
self-energy, we have to solve a frequency integral

〈c†i cj 〉 = 1

2π

[∫ ∞

−∞
eiω0+ G̃�f (ω)

]
i,j

. (14)

We use a quadrature integration routine and approximate
the self-energy in between the known discrete frequencies
with linear interpolation. The factor eiω0+

is only relevant at
very large ω and can be discarded when adding 1

2δij to the
result of the integral in numerical computations. For the static
approximation, we consider the self-energy as an effective
single-particle potential. Then, diagonalizing the kinetic part
of the Hamiltonian, H0, together with ��f , we can calculate

expectation values from

〈c†i cj 〉 =
∑

k

�(−λk)OikOjk (15)

with λk the eigenvalues of H̃ = H0 + ��f and O the orthog-
onal matrix that diagonalizes H̃ .

IV. RESULTS

In this section, we present results of our second order FRG
calculations and give a detailed description of how we detect
a phase transition. Unless otherwise stated, we always use the
real space scheme described in Sec. III B. In Sec. IV B, we also
compare to the momentum space approach.

A. Comparison to exact diagonalization

A good check for the implementation is a comparison
with exact diagonalization (ED). For very small systems, it
is possible to compute the full many-body Hamiltonian in
matrix form using all Fock states with N/2 occupied and
N/2 empty sites. We can then diagonalize this large matrix
to find the ground state and calculate expectation values of
operators from this. In Fig. 4 the absolute difference between
the ED and the FRG is shown for the hybridization 〈c†2c3〉
for a system with PBC, N = 10 sites, and no next-nearest
neighbor interaction U ′ = 0. We plot |〈c†2c3〉ED − 〈c†2c3〉FRG|
versus the absolute value of the interaction strength. Both
repulsive (U > 0) and attractive (U < 0) interactions were
considered. The dashed line is proportional to U 2, and the
dotted line is proportional to U 3. The difference between the
static FRG result and ED is consistent with an error ∝U 2 as
expected. The full dynamic scheme is consistent with an error
∝U 3. The discrepancy between the slope of the dotted line
and the curves for very small interactions with |�〈c†2c3〉| <

10−(7..8) is due to numerical inaccuracies of the FRG results.
For larger interactions (|U | � 0.8), higher order corrections
start to matter. Still, the FRG performs well even in this regime,
and later on we go up to interactions U, U ′ ≈ 3.

FIG. 4. Difference between the ED and the FRG result for the
expectation value 〈c†2c3〉 for a system with N = 10, L = 2, U ′ = 0.
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B. Phase transition to CDW-I

We examine the phase transition from the metallic LL phase
to the charge density wave with pattern . . . 1010 . . . for PBC.
We consider here a fixed U ′, i.e., we move along a horizontal
line in Fig. 2. Let us start with the model with U ′ = 0, for
which the transition is at Uc = 2. When searching for phase
transitions, commonly the parameter driving the transition is
increased until a divergence in a vertex function is detected
[1]. We first use a different approach, but we will return to
the usual ansatz below. Here, we add a small initial symmetry-
breaking perturbation [6,8] that nudges the system to a CDW-I,
thus choosing in the ordered phase one of the two degenerate
ground states. Namely, we impose as an initial condition on
the diagonal of the self-energy

�
�i
j,j (ωn) = (−1)j S (16)

with a small S. As we will see below, when doing so we can
integrate the FRG flow equations down to �f = 0 for all U . We
are interested in the behavior of the CDW-I order parameter

〈Ocdwi〉 = 2

N

N−1∑
j=0

(−1)j+1〈nj 〉. (17)

We note that this way of detecting a phase transition is only
possible if the flow of the self-energy is taken into account.

We will now investigate whether or not the FRG captures
the phase transition and in particular address the following
questions: (i) How important is it to keep the frequency de-
pendence of the vertex; (ii) can we access the thermodynamic
limit—i.e., can we find convergence in N—and what is the role
of the feedback length L; (iii) how does the choice of S affect
the results; (iv) can we draw an unbiased conclusion despite
our small initial symmetry breaking term; (v) which feedback
terms are necessary in the FRG flow equations to capture the
phase transition; (vi) how does the real space scheme compare
to the momentum space approach.

(i) A comparison of the dynamic and the static (frequency
dependence neglected completely) calculation is shown in
Fig. 5. As can be seen, the CDW-I order parameter as a function
of the interaction strength shows a strong increase from a very
small value to nearly one. For N = 82, the critical interaction
at which 〈Ocdwi〉 � S is given by Uc = 1.6. The results for
the static and the dynamic calculation are very similar, and
they yield the same Uc. Apparently the static approximation
is already sufficient to capture the phase transition. Since the
dynamic calculation is computationally much more expensive,
we will only consider the static scheme for the rest of this
subsection.

(ii) We now focus on the question of convergence in N

and L. When comparing small chains, we find that the critical
interaction depends on the system length. This is due to
finite-size effects and we have to increase N until Uc does not
change anymore. Figure 6 shows that convergence is reached
for a system size of N = 258. We observe that the transition
is less sharp for larger system sizes. Figure 6 also shows the
convergence in the feedback length L. The way we set up the
real space parametrization of the vertex is only useful if L can
be chosen much smaller than N/2 (PBC). As can be seen, for
our model this is indeed the case. A feedback length of L = 10

FIG. 5. Phase transition to the CDW-I, comparison between the
static and the dynamic result for U ′ = 0, N = 82, L = 10, S =
0.001.

for a system with N = 258 sites seems to be sufficient to obtain
the converged result Uc = 1.4. Thus FRG underestimates the
critical interaction, since we know that Uc = 2 from the exact
solution.

(iii) So far, we have only shown results for S = 0.001. In
Fig. 7, we compare the results for different S for a system
with N = 82 and L = 10. A comparatively large S leads
to a smooth, smeared out transition, and for S = 0.01 and
S = 0.005 the critical interaction cannot be read off easily.
At S = 0.001, the order parameter increases from a small
value to nearly one quickly with U , and the result for the even
smaller S = 0.0005 confirms this tendency. We know from
the exact solution (S = 0) that the order parameter is exponen-
tially suppressed slightly above Uc = 2 (BKT transition) [33].
Performing DMRG with an S comparable to the one used here
shows that the interaction range over which the order parameter
increases from nearly zero to nearly one is much larger than
we would conclude from our FRG results.

FIG. 6. Phase transition to the CDW-I for different system sizes,
U ′ = 0, S = 0.001.
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FIG. 7. Comparison of different choices of the small initial
symmetry breaking term. U ′ = 0, N = 82, L = 10.

(iv) Let us now come back to the usual way of detecting a
phase transition. Connected to this is the essential question
whether the initial condition imposes the final state of the
system. If this was the case, our conclusion would be inherently
biased. Fortunately, this is not the case here.

Figure 8 shows the maximum of the absolute value of all
components of P and X when solving the flow equations
without a small initial symmetry breaking term (S = 0). As
can be seen, close to the critical interaction (above which the
order parameter became nearly one with a finite S), this value
becomes very large. For larger U , it is not possible to integrate
the flow equations down to �f = 0.

We have also examined what happens if we impose a
“wrong” initial condition which in this context means that we
nudge our system to a BO or a CDW-II state by using appro-
priate initial conditions. As for the case with S = 0, the flow
equations cannot be solved numerically for U � Uc(N,L).
An exception occurs when we start with a small symmetry

FIG. 8. Maximum of the absolute value of all components of P

and X without an initial symmetry breaking term. For U larger than
shown, it is not possible to solve the flow equations down to �f = 0.

FIG. 9. Comparison of the results for the phase transition from
the LL phase to the CDW-I for different FRG feedback schemes.
U ′ = 0, N = 42, S = 0.001. The inset shows the maximum of all
components of P and X.

breaking term for a CDW-II with �
�i
j,j = (−1)
(j+1)/2�S. Since

N/2 is an odd number (cf. Sec. III C), we favor a distribution
with site 0 unoccupied and site N − 1 occupied, and in between
repeatedly two occupied and two unoccupied sites. This means
that, since we consider PBC, an occupied and an unoccupied
site are next to each other as favored by the large U . In this
case, the FRG flows for U � Uc(N,L) in the CDW-I phase,
“overriding” the initial CDW-II bias in between.

The difficulty to obtain results for �f = 0 for large U

without a small correct initial symmetry breaking term could
arise for different reasons, namely because of numerical
problems, because of our approximations, or because there
is some underlying physical instability. From our data, we
cannot come to a final conclusion. We cannot rule out that
our approximations or numerics (such as problems with an
eigenvalue close to zero in the matrix we have to invert) cause
the problem. However, even for S = 0, the FRG indicates a
particular behavior at a certain Uc(N,L). Since imposing the
correct small initial symmetry breaking term drives the system
into an ordered phase, we believe that the FRG can indeed
capture the underlying physical phase transition.

(v) The crucial point to detect the phase transition is taking
into account the vertex feedback, which can be seen from a
comparison to a first-order scheme or a second-order scheme
without vertex feedback. In Fig. 9 we compare the CDW-I
order parameter for different vertex feedback schemes for a
small chain with N = 42. Without vertex feedback (i.e., if we
only insert the bare vertex on the right-hand side of the flow
equations for the vertices) there is no transition to the ordered
phase, see the curve labeled as “no vert. feed.” Including a
feedback of the vertex to itself (i.e., we replace � → V + �x

on the rhs of the flow equation for vertex �x , which implies
L = 1, label “vert. self-feed.”) already leads to the detection
of the phase transition, but at a smaller critical interaction.
Including also feedback of the other channels (labeled as “full
feedback,” but note that this is still a static calculation) and
increasing the feedback length L until we obtain converged
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results as described above leads us to our final result, Uc = 1.8
for N = 42.

To connect to the studies of the two-dimensional Hubbard
model, we have also checked what happens if we neglect the
flow of the self-energy. In this case, the expectation values such
as 〈ni〉 are unchanged from their initial values and an analysis
as above is meaningless. Instead, we focus on the maximum
of all components of the vertex as in Fig. 8. This is shown
in the inset of Fig. 9. As can be seen, for all schemes that
include a self-energy feedback all components of P and X

remain finite for all U if we include a small initial bias. This
is not the case if we neglect the flow of the self-energy. To
obtain the results for the curve labeled as “no � feed., L =
10,” we included the vertex feedback, but the self-energy was
not renormalized. Then, for interactions larger as shown, the
flow equations could not be integrated down to �f = 0. Thus
also without a self-energy feedback, we find an indication that
a phase transition at an intermediate interaction takes place,
albeit at a different interaction strength than in our full scheme.
However, the components of the two-particle vertex are much
harder to interpret compared to the case where we have access
to a renormalized self-energy and thus to the order parameter.
To gain more insight about the nature of the ordered phase
without a flowing self-energy, we would have to implement
the flow equations of the susceptibilities as well [4].

(vi) We now turn to a comparison between the real space
scheme and the momentum space approach [20]. In the latter
formulation, the thermodynamic limit can in principle be
accessed directly. However, the continuous momentum has
to be discretized for a numerical computation, and achieving
convergence in the parameters of this momentum grid can be
difficult if the discrete k points are not chosen to be equidistant.
Figure 10 shows a comparison of the real space and the
momentum space results, both in the static approximation.
The results agree nicely, in particular the critical interaction
Uc = 1.4 is the same. We attribute the remaining differences
around the critical interaction to residual finite-size effects in
the real space scheme and numerical inaccuracies.

FIG. 10. Comparison between the real-space FRG and the mo-
mentum space scheme with S = 0.001. For the real space FRG, the
system parameters are N = 258, L = 10.

FIG. 11. Phase transition LL-CDW-I for U ′ = 0.5, S = 0.001.

We conclude that our second order FRG scheme correctly
predicts a phase transition to the CDW-I, but the critical
interaction strength is underestimated. In the thermodynamic
limit, we obtain Uc = 1.4 which is smaller than the true result
due to the approximations we have applied. Besides, the order
parameter is nearly one already slightly above the critical
interaction, instead of increasing very slowly (exponentially
suppressed), which would be expected from the exact solution.

We now turn to U ′ > 0. The phase transition takes place at
a larger Uc, see Fig. 2, since a repulsive next-nearest neighbor
interaction makes the CDW-I unfavorable. The FRG result for
U ′ = 0.5 for the order parameter for different system sizes is
shown in Fig. 11. We can read off Uc(N = 42,L = 10) = 2.7
and for the thermodynamic limit Uc = 2.2. Again, we note
that for small chains, we have a larger Uc and a faster increase
of the order parameter. For the long chain, we observe that
increasing the feedback length from 10 to 20 changes the result
for 〈Ocdwi〉 more than it did in the U ′ = 0 case, cf. Fig. 6. Thus,
the convergence in L has to be tested for each parameter set.
However, although L = 20 gives a slightly changed result, the
read-off critical interaction is the same and we conclude that
L = 10 is also sufficient in this case.

Let us finally consider U ′ = 1. The small system with N =
42, L = 10 shows the same behavior as above, with a critical
interaction of 3.7. However, when going to a larger system
size with N = 258, we were not able to integrate the flow
equations to �f = 0 in the ordered phase anymore. We believe
that this is due to numerical difficulties. The interactions we
consider, U ′ = 1 and U ∼ 3, are at the verge of the strong
coupling regime. Besides, the comparatively large U ′ restrains
the formation of a CDW-I. But although we were not able to
produce converged results in the ordered phase, the FRG can
still show the onset of a different phase in the thermodynamic
limit.

C. Transition to CDW-II

For dominant next-nearest neighbor interaction, a charge
density wave with pattern . . . 110011 . . . becomes favorable.
In this subsection, we examine systems with a fixed U , i.e.,
a vertical line in Fig. 2. For PBC, we cannot obtain a perfect
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FIG. 12. Phase transition to the CDW-II, see text for further
explanations. OBC, U = 0, N = 40, L = 10.

CDW-II due to the restriction on the system size as discussed
in Sec. III C. N is not allowed to be divisible by four, and
thus we either have to impose a node somewhere in the system
or four occupied (unoccupied) sites next to each other. Both
are unfavorable for large U ′, and thus the flow equations can
not be integrated down to �f = 0 for arbitrary U ′. Therefore
we will focus on OBC in this subsection. Then, N is allowed
to be a multiple of four and we get results with �f = 0 for
all considered U ′ if we impose the correct initial symmetry
breaking term as described in the last subsection. However,
we need a larger trigger of S = 0.05 to drive the system
into the ordered phase. Here, we will concentrate on a small
chain with N = 40. As we have seen in the study of the
phase transition from the LL to the CDW-I, where we could
compare to an exact solution, the truncated FRG can only
give us qualitatively correct results for the value of the critical
interaction. Therefore, we do not study the dependence on N

here. We have also seen that the dynamic calculation yielded
the same results as the static one, and we thus consider only
the latter in this subsection. In Fig. 12, we show the outcome
of the FRG calculation for U = 0. If we impose an initial
condition with �

�i
jj = (−1)
j/2�S, we get an increase in the

order parameter

〈Ocdwii〉 = − 2

N

N−1∑
j=0

(−1)
j/2�〈nj 〉 (18)

at U ′
c = 2.5. Since S is larger than in the last subsection, the

interaction range over which the order parameter increases is
larger. As for the transition to the CDW-I we can ask again
whether our small initial nudge to the correctly ordered system
makes our ansatz inherently biased. In the inset of Fig. 12, we
show the maximum of the absolute value of all components of
P and X similar to Fig. 8. The different curves correspond to
different initial conditions: with the correct initial condition,
without a small initial symmetry breaking term, labeled as S =
0, with an initial symmetry breaking term which nudges the
system to the CDW-I phase with trigger S = 0.05, and with an
initial symmetry breaking term which biases the system to the

BO phase, also with S = 0.05. If the system is initially nudged
to the CDW-II, the maximum of the two-particle vertex stays
finite for all interactions (curve labeled with “CDW-II, S =
0.05”). In contrast, the maximum becomes very large close to
U ′ = 2.5 for the other initial conditions, and for interactions
larger than shown we cannot integrate the flow equations down
to �f = 0 anymore. The results for the system with initial bond
order trigger are different from the other ones, and we could
only obtain results up to U ′ = 2.3. We conclude that also in
this case, the FRG correctly captures the phase transition to
the CDW-II phase. The critical interaction is not as consistently
determined as for the LL-CDW-I transition, since analyzing the
system with a BO bias would give a slightly changed result,
but we can still give an estimate of U ′

c.

D. Bond order phase

Let us now turn to the BO phase, which is hardest to interpret
and detect. In this phase, the renormalized hybridization
oscillates from bond to bond. The initial condition with the
appropriate trigger is thus given by �

�i
j,j±1 = (−1)j S and the

order parameter by

〈OBO〉 = 1

N

N−1∑
j=0

(−1)j+1〈c†j cj+1 + c
†
j+1cj 〉. (19)

Since the phase transition to a BO phase arises from a
competition of the kinetic energy and the next-nearest neighbor
interactions, we examine systems with fixed U and increasing
U ′ as in the search for the CDW-II phase.

We show results of the order parameter as a function
of U ′ for several U in Fig. 13 for a system with PBC,
N = 42, L = 10, and initial bias S = 0.001. We have also
indicated where the phase transitions should approximately
take place according to Mishra et al. [28]: Color coded for the
studied nearest-neighbor interactions, the triangles pointing

FIG. 13. Phase transition from the LL to the BO phase, N =
42, L = 10, S = 0.001. The triangles pointing up indicate color
coded the transition LL–BO phase, and the triangles pointing down
BO–CDW-II according to Ref. [28]. For U ′ larger than shown in
the different curves, the flow equations cannot be integrated down to
�f = 0.
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up indicate the transition between LL and BO, whereas the
triangles pointing down show the critical U ′ at which the
transition BO–CDW-II takes place. For U ′ larger than shown,
for example U ′ > 2.7 for U = 0, the flow equations cannot
be solved down to �f = 0. This reflects a phase transition
to the CDW-II phase. As can be seen, the order parameter
increases in the expected regions, but there is no unambiguous
indication for a phase transition as was the case for the CDW
phases. Besides, the flow equations can also be integrated
down to �f = 0 in this parameter regime if no initial bias is
imposed, cf. Fig. 12. Thus for this phase, the FRG only gives
at best inconclusive results and the BO phase would have been
missed based on our FRG analysis. We verified that a dynamic
calculation does not significantly change the above presented
results; also for this full second order calculation there is no
clear phase transition from the LL phase to a bond order phase.

V. CONCLUSION

To conclude, we have used the truncated FRG to investigate
phases in a one-dimensional fermionic model. The well-known
phase transitions at intermediate interactions are especially
challenging for our weak coupling approach. We used an FRG
approximation scheme as in Refs. [19,32], which allows for
an inclusion of all terms up to second order in the interaction,
resulting in a dynamic self-energy and dynamic renormalized
vertex functions. A feedback of the vertex on the flow is
incorporated as well. This scheme can be implemented both in
real space as well as in momentum space. We have shown that
the resulting FRG flow equations enable us to map out charge
ordered phases in the one-dimensional spinless tight-binding
chain with nearest and next-nearest neighbor interactions.
Since we included a flow of the self-energy, we have direct ac-
cess to the order parameters. The frequency dependence can be
neglected in the studied cases; static and dynamic calculations
give essentially the same result. Due to our approximations, the
predicted interaction strengths at which the transitions takes
place are only qualitatively correct. It is also very difficult to
obtain conclusions about the nature of the phase transition.
An indication as clear as for the charge ordered phases is
unfortunately missing for the bond order phase. We thus find
that this FRG scheme can hint at ordered phases, but there
is no guarantee that all of them are captured. This should be
kept in mind when applying truncated FRG to other models
as well. However, the detection of the CDW phases in the
tight-binding model at intermediate critical interactions is a
step forward compared to simple perturbation theory, mean
field theory, and FRG schemes that are only correct up to first
order or neglect a vertex feedback. On this level of truncation
and with the channel decomposition, the emerging picture is
quite clear. Unfortunately, due to computational limitations, at

the moment it seems very difficult to go beyond this in order
to detect the bond order phase as well.

The consistent second order scheme we used offers a
controlled way to obtain dynamic results as well as an inclusion
of the self-energy feedback. Further applications might include
the treatment of disorder [34]. We note that for the real
space system with open boundary conditions, we could couple
noninteracting semi-infinite leads to the interacting chain. In
an FRG scheme such as above, those can be taken into account
exactly without increasing the complexity of the algorithm,
as was, e.g., done in Ref. [35]. It is therefore possible to
study transport properties. Besides, our real-space formulation
would also allow us to study a two-dimensional system by
“folding” the chain to form a two-dimensional lattice. The flow
equations stay the same, only the range of the bare interaction
would be increased. With this, we expect that we could treat
systems of spinless fermions on a cubic lattice (OBC). In
principle, other geometries should also be accessible.
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APPENDIX: DETAILED DERIVATION OF THE FRG
FLOW EQUATIONS

We start from the general FRG flow equations, neglecting
the three-particle vertex [1]. For the self-energy, it holds

d

d�
��(q ′

1,q1) = − 1

β

∑
q ′

2,q2

S�
q2,q

′
2
��(q ′

2,q
′
1; q2,q1). (A1)

In the above equation, the indices qi are general, but in our case
mean the combination of a real space index and a frequency.
S� denotes the single-scale propagator, which is defined as
S� = G�( d

d�
[G�

0 ]
−1

) G�. This is equivalent to a derivative of
the full propagator G� with respect to � at fixed self-energy
(Sec. III A).

The two-point vertex can be split into different contribu-
tions, d��/d� = d(��

p + ��
x + ��

d )/d�. Those are labeled
by “p” for the particle-particle channel, “x” for the exchange
(sometimes also called crossed) particle-hole channel, and “d”
for the direct particle-hole channel [30]. The flow equations for
the three channels are given by

d

d�
��

p (q ′
1,q

′
2; q1,q2) = 1

β

∑
q ′

3,q3,q
′
4,q4

��(q ′
1,q

′
2; q3,q4)S�

q3,q
′
3
G�

q4,q
′
4
��(q ′

3,q
′
4; q1,q2) (A2)

d

d�
��

x (q ′
1,q

′
2; q1,q2) = 1

β

∑
q ′

3,q3,q
′
4,q4

��(q ′
1,q

′
4; q3,q2)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ S�

q4,q
′
4
G�

q3,q
′
3

]
��(q ′

3,q
′
2; q1,q4) (A3)

d

d�
��

d (q ′
1,q

′
2; q1,q2) = − 1

β

∑
q ′

3,q3,q
′
4,q4

��(q ′
1,q

′
3; q1,q4)

[
S�

q3,q
′
3
G�

q4,q
′
4
+ S�

q4,q
′
4
G�

q3,q
′
3

]
��(q ′

4,q
′
2; q3,q2). (A4)
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Due to frequency conservation, we can work with only
three frequencies instead of the four (ω′

1,ω
′
2; ω1,ω2). A natural

choice are the bosonic frequencies (�,X,�) [30]

� = ω′
1 + ω′

2 = ω1 + ω2

X = ω2 − ω′
1 = ω′

2 − ω1

� = ω′
1 − ω1 = ω2 − ω′

2.

As stated in Sec. III B, the main idea used in Refs. [19,29] is
to insert the bare vertex V in the right-hand side of the flow
equations for �i, i = p,x,d. I.e., we replace �� = V + ��

p +
��

x + ��
d by V . For general finite-ranged interaction, V has

the structure

V (j ′
1,j

′
2; j1,j2) = δ

LU

j1,j2
Uj1,j2

(
δj1,j

′
1
δj2,j

′
2
− δj ′

1,j2δj ′
2,j1

)
, (A5)

where δ
LU

j1j2
= 1 for |j1 − j2| � LU with LU the range of the

interaction. For the Hamiltonian given in Eq. (1), it is

Uj1,j2 = U
(
δj1,j2+1 + δj1,j2−1

) + U ′(δj1,j2+2 + δj1,j2−2
)
(A6)

and LU = 2 (or LU = 1 for U ′ = 0).
In the following, we will give a detailed derivation for the

flow equation of the particle-particle channel and only mention
some intermediate results for the other channels. Inserting V

in the flow equation for the particle-particle channel, we get

d

d�
��

p (j ′
1,j

′
2; j1,j2; �,X,�) = δ

LU

j ′
1,j

′
2
δ

LU

j1,j2
Uj ′

1,j
′
2
Uj1,j2

1

β

∑
ω3

[
S�

j ′
1,j1

(ω3)G�
j ′

2,j2
(� − ω3)

− S�
j ′

1,j2
(ω3)G�

j ′
2,j1

(� − ω3) − S�
j ′

2,j1
(ω3)G�

j ′
1,j2

(� − ω3) + S�
j ′

2,j2
(ω3)G�

j ′
1,j1

(� − ω3)
]
. (A7)

Thus ��
p depends only on the frequency �, and it must hold

|j ′
1 − j ′

2| � LU and |j1 − j2| � LU . This leads us to define

P
k,l;�
i,j (�) := ��

p (i,i + k; j,j + l; �). (5)

From Eq. (A7), we see that i,j ∈ [0,N ), while the upper indices
k,l ∈ [−LU,LU ]. For OBC, the range of the subscript indices
is restricted by max(0, − k) � i < min(N,N + k) and similar
for j with l to ensure 0 � i + k,j + l < N . For PBC, we
identify as explained in Sec. II −(n + 1) = N − (n + 1) or
N + n = n for 0 � n < N , and the subscript indices lie in
[0,N ) independent of the superscript indices. Note that for the
particle-particle channel, the components with k = 0 or l = 0
are zero due to the antisymmetry of the vertex.

A similar consideration leads to

X
k,l;�
i,j (X) := ��

x (i,j + l; j,i + k; X) (6)

D
k,l;�
i,j (�) := ��

d (i,j + l; i + k,j ; �). (7)

Due to the antisymmetry of the vertex, D = −X and thus
we consider only the exchange particle-hole channel in the
following.

So far, no vertex feedback has been included. Guided by
our above calculations, we can—instead of replacing the full
vertex on the right-hand side of the flow equations by only the
bare interaction V —replace the full vertex by a restricted one
depending only on one frequency. In the flow equation for the
particle-particle channel, we replace [cf. Eq. (8)]

��(j ′
1ω

′
1,j

′
2ω

′
2; j1ω1,j2ω2) → �̃�

p (j ′
1,j

′
2; j1,j2; �)

:= δL
j ′

1,j
′
2
δL
j1,j2

��(j ′
1,j

′
2; j1,j2; �,0,0).

In words, �̃�
p contains the bare interaction, the full dynamic

feedback of the particle-particle channel, and a static feedback
from the other channels. This avoids a mixing of the bosonic
frequencies [31] and ensures that the structure of the restricted
channels remains valid. With this vertex feedback included, in
P

k,l;�
i,j also terms with |k|,|l| > LU can be generated and we

restrict them to the range [−L,L] with the feedback length

L. If we wanted to take into account the full real-space
dependence of the vertex, we would have to include all terms
with k,l ∈ (−N/2,N/2] for PBC and with k,l ∈ (−N,N ) for
OBC. However, as long-ranged interactions are of a higher
order in the interaction, those are expected to be small and we
hope that we can choose a much smaller L.

For a more compact notation, we introduce the matrix
P̃

k,l;�
i,j , which we get from �̃�

p as in Eq. (5). An analogous
consideration as above for the crossed particle-hole channel
leads to a definition of �̃�

x and from this as in Eq. (6) to X̃
k,l;�
i,j .

For our model Hamiltonian Eq. (1), we find

P̃
k,l;�
i,j (ω) = δi,j δk,lδ

LU

l,0 Uj,j+l − δj,i+kδk,−lδ
LU

l,0 Uj,j+l

+ P
k,l;�
i,j (ω) + δL

i+k,j δ
L
j+l,i X

(j+l−i),(i+k−j );�
i,j (0)

− δL
i,j δ

L
i+k,j+l X

(j−i),(i+k−j−l);�
i,j+l (0) (A8)

X̃
k,l;�
i,j (ω) = δi,j δk,lδ

LU

k,0Ui,i+k − δk,0δl,0δ
LU

i,j Uj,i

+ X
k,l;�
i,j (ω) + δL

i,j+lδ
L
j,i+kP

(j+l−i),(i+k−j );�
i,j (0)

− δL
i,j δ

L
i+k,j+lX

(j−i),(j+l−i−k);�
i,i+k (0). (A9)

Note that for PBC the vertex feedback has to be evaluated
carefully. For example, for the feedback of the exchange
particle-hole channel on the particle-particle channel, the first
upper index written above as j + l − i =: kx is understood to
fulfill (i + kx) mod N = (j + l) mod N and similar for the
second upper index. Take, e.g., the component P̃

−1,1;�
N−1,0 (�). A

straightforward evaluation of the X� feedback from Eq. (A8)
would yield no contribution, since j + l − i = −N + 2 <

−L. Also for the second index i + k − j = N − 2 > L and the
δL functions are not fulfilled at first glance. However, for PBC
we can go from site i + k = N − 2 to site j = 0 by adding
2 and from site j + l = 1 to site i = N − 1 by subtracting
2. Thus, there is a contribution from the term X

2,−2;�
N−1,0 (0). In

contrast, for OBC, 0 � j + l < N must be fulfilled anyways,
and kx can simply be computed from j + l − i.
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With the definitions from above, the flow equation for the
particle-particle channel is now given by

d

d�
P

k,l;�
i,j (�)

= 1

β

∑
·′

P̃
k,l′;�
i,j ′ (�)S�

j ′,i ′(ω
′)G�

j ′+l′,i ′+k′(� − ω′) P̃
k′,l;�
i ′,j (�),

(A10)

where
∑

·′ indicates a summation over all primed variables,
i.e., i ′,j ′,k′,l′ and also ω′. Defining

W
k,l;p�

i,j (�) = 1

β

∑
ω′

S�
i,j (ω′)G�

i+k,j+l(� − ω′) (A11)

we arrive at the flow equation in compact matrix multiplication
form, cf. Eq. (10),

d

d�
P �(ω) = P̃ �(ω) · Wp�(ω) · P̃ �(ω).

An analogous calculation yields the flow equation for X, cf.
Eq. (11),

d

d�
X�(ω) = X̃�(ω) · Wx�(ω) · X̃�(ω),

W
k,l;x�
i,j (X) = 1

β

∑
ω

[
S�

i+k,j+l(ω)G�
i,j (X + ω)

+ S�
i,j (X + ω)G�

i+k,j+l(ω)
]
. (A12)

The initial condition for the vertex is ��i = V , such that P �i =
X�i = 0.

Inserting our channel-decomposed two-point vertex in the
flow equation for the self-energy leads to

d

d�
��

i,j (ω) = − 1

β

∑
ω′

⎧⎨
⎩δi,j

LU∑
k=−LU

Uj,j+kS�
i+k,i+k(ω′) − δ

LU

i,j Uj,iS
�
i,j (ω′) +

N∑
j2=0

L∑
l=−L

S�
j2,j2+l(ω

′)D(j−i),l;�
i,j2

(0)

+
L∑

k=−L

L∑
l=−L

S�
i+k,j+l(ω

′)
[
P

k,l;�
i,j (ω + ω′) + X

k,l;�
i,j (ω − ω′)

]
⎫⎬
⎭. (A13)

The initial condition ��i for the Hamiltonian Eq. (1) when
using the sharp cutoff specified below in Eq. (12) requires
special care [36]. In theory, our flow starts at � = ∞, but
numerically we have to start at a finite value �i < ∞. Due to
the slow decay of the right-hand side of the flow equation for the
self-energy, there is a finite contribution from the integration
from � = ∞ to our numerical �i that we have to take into
account. This problem does not occur in the flow equation of
the two-particle vertex. The above described analysis yields
��i (ω) = 0 [36], unless we impose a small initial symmetry
breaking term.

The self-energy and the vertices fulfill the following sym-
metries

��
i,j (ω) = ��

j,i(ω) = [�i,j (−ω)]� (A14)

P
k,l
i,j (�) = P

l,k
j,i (�) = P

−k,−l
i+k,j+l(�)

= −P
k,−l
i,j+l(�) = [

P
k,l
i,j (−�)

]�
(A15)

X
k,l
i,j (X) = X

l,k
j,i (X) = X

−k,−l
i+k,j+l(−X) = [

X
k,l
i,j (−X)

]�
. (A16)

When discretizing the frequencies, we can work with ω � 0
and infer the quantities at negative frequencies with complex
conjugation.

So far, no cutoff has been imposed in the flow equations. We
choose a sharp cutoff function [cf. Eq. (12)] G�

0 (ω) = �(|ω| −
�)G0(ω) such that the frequency integrals on the right-hand
side can be evaluated analytically. Products of δ distributions
and step functions can be computed according to Ref. [37] as

δε(x − �)f [�ε(x − �)] → δ(x − �)
∫ 1

0
f (t)dt. (A17)

The expression that finally appears in the flow equations is the
full Green’s function where the cutoff function is no longer
present, but it is still scale dependent since the self-energy
depends on �:

G̃�(ω) = [[G0(ω)]−1 − ��(ω)]−1. (A18)

For the self-energy, the only cutoff dependence comes from
the single-scale propagator

S�(ω) = −δ(|ω| − �)G0(ω)[1−��(ω)G0(ω)�(|ω| − �)]−2.

(A19)

We thus find the following flow equation for the self-energy
��(ω),

π
d

d�
��

i,i+m(ω) = − δm,0
[
U

(
Re

{
G̃�

i−1,i−1(�)
} + Re

{
G̃�

i+1,i+1(�)
}) + U ′(Re

{
G̃�

i−2,i−2(�)
} + Re

{
G̃�

i+2,i+2(�)
})]

+ δm,1 U Re
{
G̃�

i,i+1(�)
} + δm,2 U ′ Re

{
G̃�

i,i+2(�)
} + δL

m,0

N∑
j2=0

L∑
l=−L

Re
{
G̃�

j2,j2+l(�)
}
X

m,l;�
i,j2

(0)

− 1

2

∑
ω′=±�

L∑
k=−L

L∑
l=−L

G̃�
i+k,i+m+l(ω

′)
[
P

k,l;�
i,i+m(ω + ω′) + X

k,l;�
i,i+m(ω − ω′)

]
. (A20)
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For ω = 0, the last line simplifies to

−
L∑

k,l=−L

Re
{
G̃�

i+k,i+m+l(�)
[
P

k,l;�
i,i+m(�) + X

k,l;�
i,i+m(�)�

]}
. (A21)

We can calculate the frequency integrals in the matrices Wp/x� analytically as well. In those expressions, there are also step
functions from the full Green’s function next to the step functions and delta distribution of the single-scale propagator. We finally
arrive at

W
k,l;p�

i,j (ω)
ω>0= 1

2π

{[
G̃�

i,j (�)
]� G̃�

i+k,j+l(ω + �) + �(ω − 2�) G̃�
i,j (�)G̃�

i+k,j+l(ω − �)
}

(A22)

W
k,l;x�
i,j (ω)

ω>0= 1

2π

{
G̃�

i+k,j+l(�)G̃�
i,j (ω + �) + [

G̃�
i,j (�)

]� [
G̃�

i+k,j+l(ω + �)
]�

+ �(ω − 2�)
(
G̃�

i,j (�)
[
G̃�

i+k,j+l(ω − �)
]� + [

G̃�
i+k,j+l(�)

]� G̃�
i,j (ω − �)

)}
. (A23)

At zero frequency, the W matrices are given by

W
k,l;p�

i,j (0) = 1

2π
Re

{
G̃�

i,j (�)
[
G̃�

i+k,j+l(�)
]�}

(A24)

W
k,l;x�
i,j (0) = 1

π
Re

{
G̃�

i,j (�)G̃�
i+k,j+l(�)

}
. (A25)

We used that for ω > 0 (and � � 0) �(|ω − �| − �) =
�(ω − 2�). Note that in the calculation of Wp/x�(0) the step
functions from the Green’s function have the same argument as

the delta distribution and the step functions from S� and have
thus to be taken into account when using Eq. (A17). Setting
ω = 0 in Eqs. (A22) and (A23) does not give the correct result.

As described in the main text in Sec. III B, we can simplify
the flow equations by going to a static approximation, which
then no longer contains all second order terms. To do so, we
only keep the frequency ω = 0. Then all flowing quantities are
real and only the simpler versions of the flow equations as in
Eqs. (A21), (A24), and (A25) remain.
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