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Coupled charge and spin dynamics in a photoexcited doped Mott insulator
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Using a nonequilibrium implementation of the extended dynamical mean-field theory (EDMFT) we simulate the
relaxation after photoexcitation in a strongly correlated electron system with antiferromagnetic spin interactions.
We consider the t-J model and focus on the interplay between the charge and spin dynamics in different excitation
and doping regimes. The appearance of string states after a weak photoexcitation manifests itself in a nontrivial
scaling of the relaxation time with the exchange coupling and leads to a correlated oscillatory evolution of the
kinetic energy and spin-spin correlation function. A strong excitation of the system, on the other hand, suppresses
the spin correlations and results in a relaxation that is controlled by hole scattering. We discuss the possibility of
detecting string states in optical and cold-atom experiments.
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I. INTRODUCTION

The phase diagrams of strongly correlated materials often
exhibit several competing phases [1–3], and a broad range
of experimental probes has been used to gain insights into
the complexity of these materials and their active degrees
of freedom. For example, the notorious pseudogap phase
in copper-based high-Tc superconductors has been revealed
and studied by nuclear magnetic resonance [4,5], optical
conductivity [6–8], and angle-resolved photo emission spec-
troscopy (ARPES) [9–11]. A well-documented property of
underdoped cuprates is the tendency toward a variety of
orders. In addition to superconductivity, these include stripe
and charge density wave orders [11–13], as well as nematic
orders [14]. Recently, a Lifshitz transition [15] connected to
the pseudogap phase has been observed in high-magnetic-
field transport measurements under high pressure [16]. These
different (incipient) orders are strongly intertwined, and the
main challenge in the field is to understand their connection to
superconductivity.

The pseudogap phase and superconductivity in cuprates
appears when holes are doped into a Mott-insulating par-
ent compound. Understanding the physics of doped Mott
insulators is thus essential for the formulation of a theory
of high-temperature superconductivity [1]. A minimal model
that captures the low-energy properties of cuprates is the
Hubbard model. In the strongly interacting regime, the Fermi-
Hubbard model can be mapped to the t-J model [17,18],
which describes the motion of holes in a spin background
with antiferromagnetic correlations. The same effective the-
ory can be obtained from the three-band model describing
the charge-transfer insulator setup relevant for cuprates [19]
using the insight that the doped holes form spin singlets
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[20]. Despite its apparent simplicity, the t-J model exhibits
a rich phase diagram with a striking similarity to that of
cuprates [21–23].

Our current understanding of doped antiferromagnets is to a
large extent based on numerical results. Exact diagonalization
on small clusters [21,22] has produced insights into the pairing
of doped charge carriers [22] and their interplay with short-
ranged spin and charge fluctuations [24,25]. The variational
tensor network approach (iPEPS) has shown that several
competing orders, namely, d-wave superconductivity, charge
and pair density wave states are nearly degenerate so that small
changes in model parameters can have significant effects on the
phase diagram [26]. Cluster extensions of dynamical mean-
field theory (DMFT) have been extensively used to investigate
the pairing glue [23,27–29] and to connect the pseudogap phase
with the polelike structure in the self-energy, which originates
from short-range antiferromagnetic correlations [30,31]. This
feature in the self-energy also controls the degree of particle-
hole symmetry and determines the transitions in the topology
of the Fermi surface (Lifshitz transitions) [32]. In the future,
quantum simulators may provide additional insights into the
complexity of doped antiferromagnets [33–35]. The recent
realization of Néel order [33] and canted antiferromagnetic
states [36] in cold-atom experiments open the way to study
basic questions of quantum magnetism and the effect of doping.
The possibility to measure instantaneous high-order real-space
correlation functions [37,38] in these experiments provides
an opportunity to test basic theoretical notions for doped
antiferromagnets, like resonance valence bond (RVB) states
[39], string states and Trugman paths [22,40], spiral states
[41], or stripes, within setups that provide full control over
the microscopic parameters [42].

New insights can also be obtained by studying the nonequi-
librium dynamics of charge carriers in these complex materials.
Different intrinsic timescales allow one to separate intertwined
degrees of freedom by their temporal evolution [43–45]. For
instance, the photoinduced transition from a Mott insulator to
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a metal, as well as the interband relaxation and recombination
of the charge carriers (doublons and holons) has been revealed
by pump-probe optical reflectivity in Nd2CuO4 and La2CuO4

[46,47]. The bosonic pairing glue has been disentangled into
different contributions [48], and it has been argued that the fast
relaxation time (related to antiferromagnetic fluctuations or
loop currents) is a consequence of the strong coupling between
the charge and bosonic degrees of freedom responsible for
pairing [49]. Recent pump-probe experiments on Mott insula-
tors pointed out the importance of the magnetic correlations in
strongly correlated systems and provided evidence for strong
spin-charge coupling [50,51].

There have been several theoretical attempts to shed light
on the relaxation dynamics of photodoped carriers in Mott
insulators. The short time dynamics of holes moving in an
antiferromagnetic spin background has been studied in Refs.
[52–54], while the effect of electron-phonon couplings has
been investigated in Refs. [55] and [56]. A nonequilibrium
extension of cluster DMFT [57] and exact diagonalization
calculations [58,59] have been used to demonstrate the ultrafast
relaxation of photodoped doublons in a system with strong
antiferromagnetic short-range correlations.

Here we follow a different path by using a nonequilibrium
version of the extended DMFT (EDMFT) to study the dy-
namics of photoexcited holes in the t-J model. In contrast to
exact-diagonalization-based calculations and cluster DMFT,
this approach allows one to study long-range spin and charge
correlations, while short-range correlations may not be de-
scribed as accurately. Even though the EDMFT formalism has
been introduced more than a decade ago [60], most of the
applications have focused on the role of nonlocal charge-charge
interactions and the effect of dynamical screening [61–64].
Haule and co-workers [65,66] performed the first EDMFT
simulations of the t-J model and showed that this method
captures the pseudogap phase and its connection with the
Lifshitz transition [65,66]. In this work we extend the EDMFT
formalism for the t-J model to the nonequilibrium domain by
implementing the scheme on the Kadanoff-Baym contour [43]
and use it to study the interplay between the dynamics of spin
and charge degrees of freedom.

This paper is organized as follows: In Sec. II we introduce
the two-dimensional (2D) t-J model, which captures both spin
and charge dynamics in the limit of an infinitely strong on-site
repulsion. Section III describes the nonequilibrium implemen-
tation of extended DMFT. Starting from the Hubbard model we
formulate the EDMFT for the t-J model by implementing the
projection to a reduced subspace without double occupation
on the impurity level. In Sec. IV we present simulation results
for both the equilibrium and nonequilibrium t-J model. In the
nonequilibrium case, we focus on the spin and charge dynamics
after weak and strong electric field excitations. In Sec. V we
summarize our results.

II. MODEL

We consider a strongly correlated electron system with
nonlocal spin interactions, which is driven out of equilibrium
by laser fields. The system is described by the single-band t-J
model [17,18] on a 2D square lattice with the time-dependent

Hamiltonian

H (t) = −
∑
〈i,j〉σ

[th(t)c̃†iσ c̃jσ + H.c.] − μ
∑

i

ñi

+ 1

2
J

∑
〈i,j〉

Si · Sj . (1)

Here, the c̃
†
iσ are projected fermionic creation operators of

an electron at site i with spin σ = {↑, ↓}, excluding double
occupancy. They can be expressed in terms of the usual
fermionic creation operators c

†
iσ and the density operators

niσ = c
†
iσ ciσ as c̃

†
iσ = c

†
iσ (1 − niσ̄ ), and their anticommutation

relation is given by [c̃iσ ,c̃
†
jσ ′ ]+ = δij δσσ ′(1 − nσ̄ ). The hop-

ping between neighboring sites is described by th(t), whose
time dependence is determined by the vector potential A(t) of
the applied laser field. The projected density operator is ñi =
ñi↑ + ñi↓, with ñiσ = c̃

†
iσ c̃iσ , and the hole doping is controlled

by the chemical potential μ. Finally, Si = ∑
αβ c̃

†
iασ αβ c̃iβ is

a spin operator at site i in the (Schwinger-Wigner) electron
representation, with the vector of Pauli matrices σ αβ . The
antiferromagnetic exchange parameter J controls the strength
of the spin interactions.

III. METHOD

Dealing with projected operators within a diagrammatic
formalism is in general a tedious task [67]. Here we will
proceed as follows: In Sec. III A we start with the extended
Hubbard model with nonlocal spin interactions

H (t) = −
∑
〈i,j〉σ

[th(t)c†iσ cjσ + H.c.] − μ
∑

i

ni

+U
∑

i

ni↓ni↑ + 1

2
J

∑
〈i,j〉

Si · Sj (2)

and the on-site interaction U . This Hamiltonian involves
the canonical fermionic operators and we can follow the
usual derivation of the EDMFT approximation [60,61]. The
projection to the subspace without double occupancy, or
equivalently, U → ∞, is done at the impurity level by re-
stricting the local many-body Hilbert space (see Sec. III B).
Due to this projection the Dyson equation is modified, and
we have to check if the high-energy part of the spectral weight
affects the solution for the low-energy projected propagator. In
Sec. III C we present a simple physical argument why this is
not the case.

A. Extended dynamical mean-field theory

In terms of the action S, the grand-canonical partition
function can be written as Z = Tr[TCeS], with TC the contour-
ordering operator on the Kadanoff-Baym contour C [43]. For
the extended Hubbard model in Eq. (2), it can be expressed as a
coherent-state path integral Z = ∫

D[c∗
i ,ci]eS with the action

S[c∗,c]

= −i

∫
C
dtdt ′

{ ∑
i

Uni↓(t)ni↑(t ′)δC(t,t ′)
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+
∑
ijσ

c∗
iσ (t)[(−i∂t − μ)δij + tij (t)]δC(t,t ′)cjσ (t ′)

+ 1

2

∑
ij

Jij Si(t) · Sj (t ′)δC(t,t ′)
}
, (3)

where we have introduced tij (t) = −th(t)δ〈i,j〉 and Jij =
Jδ〈i,j〉. It is convenient to decouple the spin-spin interaction
part of this action by using a Hubbard-Stratonovich (HS)
identity [68] with auxiliary bosonic fields φi , leading to

S[c∗,c,φ]

= −i

∫
C

⎧⎨
⎩

∑
ijσ

c∗
iσ (t)

[ − (
GH

0

)−1]
ij

(t,t ′)cjσ (t ′)

+ 1

2

∑
ij

φi(t)[J
−1]ij δC(t,t ′)φj (t ′) +

∑
i

Uni↓ni↑

− i
∑

i

φi(t)δC(t,t ′)Si(t)

⎫⎬
⎭dtdt ′, (4)

where the fermionic Hartree Green’s function [(GH
0 )−1]ij =

[(i∂t + μ)δij − tij ]δC(t,t ′) has been introduced. The corre-
sponding fermionic and bosonic Green’s functions are

Gij (t,t ′) = −i〈ci(t)c
†
j (t ′)〉,

(5)
W

α,α′
ij (t,t ′) = i〈φα

i (t)φα′
j (t ′)〉, α,α′ = x,y,z,

with the expectation value 〈. . . 〉 = 1/Z
∫

D[c∗
i ,ci](eS . . . ). It

should be noted that Wij is a tensor in spin space, which is,
however, diagonal in the paramagnetic case. The noninter-
acting Green’s functions (no coupling between the bosonic
and fermionic fields) are given by G0(t,t ′) = GH

0 (t,t ′) and
W0,ij (t,t ′) = Jij δC(t,t ′), and the Dyson equations can be de-
rived from the Baym-Kadanoff functional [61]:

G = G0 + G0 ∗ � ∗ G, W = J + J ∗ 	 ∗ W, (6)

where the fermionic (�) and bosonic (	) self-energies were
introduced, and ∗ denotes the convolution on the contour C and
a multiplication in spin space in the bosonic Dyson equation.

We now map this lattice problem to a self-consistently de-
termined quantum impurity problem by following a nonequi-
librium EDMFT procedure analogous to Ref. [63]. Using
the cavity construction [69] we obtain an auxiliary impurity
problem with a retarded Weiss field G0(t,t ′) and a retarded
spin interaction J (t,t ′) :

SU [c∗,c]eff

= −i

∫
C
dtdt ′

{ ∑
σ

c∗
σ (t)

[ − G−1
0 (t,t ′)

]
cσ (t ′)

+Un↓n↑ + S(t)

[
1

2
J (t,t ′)

]
S(t ′)

}
+ 1

2
Tr[lnJ ]. (7)

J is a tensor in spin space, but by using the SU(2) symmetry
we can impose that the diagonal elements are identical.

B. Projected impurity model

At this stage we can perform the projection to the subspace
without double occupation by sending U → ∞. The resulting
impurity action then reads

S = S0 − i

∫
C
dtdt ′

∑
σ

c̃∗
σ (t)
(t,t ′)c̃σ (t ′)

− i

∫
C
dtdt ′S(t)

[
1

2
J (t,t ′)

]
S(t ′). (8)

Here, we defined the local part of the action S0 =
−i

∫
C dtdt ′{∑σ c∗

σ (t)(−i∂t − μ)δC(t,t ′)cσ (t ′)} and the hy-
bridization function for the electrons 
(t,t ′), which is related
to the Weiss field by G−1

0 (t,t ′) = [i∂t + μ]δC(t,t ′) − 
(t,t ′).
The impurity problem (8) can be solved using strong

coupling approaches, such as the hybridization expansion [70]
or the noncrossing approximation (NCA) and its extensions
[71–73]. The idea in the latter approaches is to introduce
auxiliary pseudoparticles for the local many-body states and
an additional Lagrange multiplier to fix the normalization; a
detailed explanation is provided in Appendix A. In practice we
solve the impurity problem (8) using the noncrossing approxi-
mation (NCA) [71–73] and obtain Gimp(t,t ′) and Wimp(t,t ′).
Since the field φ does not appear in the action (8), W is
calculated from the local spin-spin correlation function by the
procedure described in Appendix B.

C. Projected Dyson equations

Given Gimp and Wimp, the fermionic self-energy � and the
bosonic self-energy (polarization) 	 are obtained from the
impurity Dyson equations

Gimp = G0 + G0 ∗ � ∗ Gimp,

Wimp = J + J ∗ 	 ∗ Wimp. (9)

These Dyson equations are valid for canonical fermionic
operators, and we need to clarify how the projection performed
on the impurity level modifies these expressions. At large
enough U we can assume that the spectral features in the
self-energy �(ω) can be separated into low-energy �L and
high-energy �H parts, which are well separated, i.e., �(ω) =
�L(ω) + �H (ω). The fermionic Dyson equation can then be
written as

G(ω) = 1

ω + μ − εk − �L(ω) − �H (ω)

= 1

ω + μ − εk − �L(ω)

+
∞∑

n=1

(�H (ω))n

(ω + μ − εk − �L(ω))n+1 . (10)

In the limit U → 0 and at low energies ω 
 U the second
term vanishes. In fact, if we assume that the spectral weight
can be described by �(ω) = Uλ1 + U 2λ2

(ω+μ−U )+iη
, as motivated

by the Hubbard-I approximation in the large U limit, the
separation between the high- and low-energy contribution to
the self-energy can be done as �H (ω) = Erf(ω − U/2)�(ω)
and �L(ω) = [1 − Erf(ω − U/2)]�(ω), and the precise form
of the self-energy does not matter due to the energy scale
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FIG. 1. (a) Equilibrium phase diagram of the t-J model in the space of temperature T and doping δ. (b) Local spectral function A(ω) for
J = 0.3 and different dopings (δ = 0.01,0.05,0.15,0.20) at temperatures T = 0.05 (solid lines) and T = 0.2 (dashed lines). The different line
colors correspond to different dopings, as indicated in panel (a).

separation. The second term in Eq. (10) is of the order of
1/U for frequencies ω 
 U and can be neglected in the
limit U → ∞. Therefore, up to 1/U corrections, the effective
Dyson equation for the low-energy degrees of freedom has the
same functional form as the full Dyson equation, and we simply
need to replace the full self-energy �(ω) by its low-energy
part �L(ω). In the nonequilibrium description the omission
of high-energy terms in the Dyson equation implies that we
are describing only the dynamics which is slower than the
timescale 1/U .

Similar arguments hold for the lattice and impurity Dyson
equations and also for the bosonic Dyson equations. The lattice
self-consistency can be closed using the method discussed
in Refs. [43,63]. However, since the bosonic lattice self-
consistency derived in Ref. [63] requires numerically expen-
sive calculations, we propose here a more elegant approach,
which we discuss in the next section.

D. Closing the bosonic lattice self-consistency

As mentioned above, we extract the local bosonic self-
energy 	 from the impurity problem. To this end, we
compare the Dyson equations Wimp = J + J ∗ 	 ∗ Wimp

and Wimp = J + J ∗ χ ∗ J with the spin-spin correlator
χ (t,t ′) = i〈S(t) S(t ′)〉. After some manipulations we obtain
the expression

(1 + χ ∗ J ) ∗ 	 = χ, (11)

which is the stable version of the Volterra integral equation
(VIE). Having extracted the self-energy 	, we can close the
lattice self-consistency by solving the lattice Dyson equation

Wk = Jk + Jk ∗ 	 ∗ Wk or (1 − Jk ∗ 	) ∗ Wk = Jk.

(12)
At this point it is useful to split Wk into an instantaneous term
Wδ

k (t) and a retarded term Wr
k (t,t ′): Wk(t,t ′) = Wδ

k (t)δ(t,t ′) +
Wr

k (t,t ′). This yields the equations

Wδ
k = Jk, [1 − (Jk ∗ 	)r )] ∗ Wr

k = (Jk ∗ 	)r ∗ Jk. (13)

The local bosonic Green’s function W is obtained from the
sum over the first Brillouin zone, and with this we can finally
update the bosonic Weiss field J (t,t ′) using the impurity

Dyson equation W = J + W ∗ 	 ∗ J in the form of another
stable VIE:

(1 + W ∗ 	) ∗ J = W. (14)

IV. RESULTS

A. Equilibrium

First, we present equilibrium EDMFT results for the t-J
model, which were obtained using the NCA impurity solver.
For the parameters of the system we choose th = 1, and unless
otherwise specified the exchange parameter is set to J = 0.3th,
which is relevant for cuprates [21]. We measure energy in units
of th and time in units of h̄/th.

1. Phase diagram

In Fig. 1(a) we present the equilibrium phase diagram of the
t-J model in the space of temperature T and hole concentration
δ. The equilibrium EDMFT calculations allow us to identify
two transition or crossover lines, which are connected with
(i) the onset of the pseudogap at T ∗(δ) and (ii) the so-called
Lifshitz transition, a topological change of the Fermi surface
from holelike to electronlike (FS) at TFS(δ). The spectral
function A(ω) = −(1/π )ImGR(ω) is shown in Fig. 1(b) for
temperatures T = 0.05 and T = 0.2. It represents the lower
Hubbard band with width ≈ 8th and features a quasiparticle
peak corresponding to holes dressed with a spin cloud. In the
low-doping regime δ � 0.15, a dip appears in the spectral
function near the Fermi energy as temperature is lowered.
The latter is a consequence of strong antiferromagnetic spin
correlations, as discussed in more detail in connection with
Fig. 3 below, and thus is a manifestation of the pseudogap state
in the EDMFT description of the t-J model. We determine the
pseudogap transition temperature by the appearance of this
local minimum and indicate this crossover scale in Fig. 1(a)
by black squares.

We next turn to the larger doping regime (δ > 0.15). Here,
we can identify a Lifshitz transition at low temperatures, which
is connected with a change of the FS from electronlike to
holelike. This is apparent in the spectral function A(ω) (see
Fig. 1) by a sharpening of the quasiparticle peak and its
shift towards positive energies. The corresponding plot of the
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FIG. 2. Intensity plots of the k-dependent spectral functions
Ak(ω) at T = 0.5 (upper panels) and at T = 0.05 (lower panels) for
J = 0.3 and different dopings (left panels: δ = 0.05; right panels:
δ = 0.20).

k-dependent spectral function Ak(ω) at ω = 0 is presented
in Appendix C. We define the Lifshitz transition temperature
TFS(δ) as the temperature where the maximum of the quasi-
particle peak of A(ω) crosses zero (i.e., shifts from negative to
positive energies). The corresponding transition line is shown
in Fig. 1(a) by the black triangles.

2. Spectral properties

In Fig. 2 we plot the momentum-resolved spectral functions
Ak(ω) = −(1/π )ImGR

k (ω) along the diagonal and edges of
the first Brillouin zone [(0,0) → (π,π ) → (π,0) → (0,0)] for
the underdoped (δ = 0.05) and overdoped (δ = 0.20) cases at
low (T = 0.05 < J ) and high (T = 0.5 > J ) temperatures.
In the calculations we use a grid with 16 × 16 k points and an
interpolation procedure. The intensity of the spectral function
is indicated by the color scale in the plots. Let us first focus
on the underdoped case with δ = 0.05 [see Figs. 2(a) and
2(b)]. At low temperature we clearly observe a quasiparticle
band with a bandwidth of ∼2J , which is represented in the
figure by the most intense features around the Fermi level
(ω = 0). Near k = (π,0) the quasiparticle band shows a flat
dispersion and lies below the Fermi level. These observations
agree with previous equilibrium studies of the t-J model
[21,25]. Furthermore, one can clearly recognize a second less
coherent band with a bandwidth of ≈7th that resembles the
noninteracting dispersion. Interestingly, at k ≈ (π/2,π/2) and
around k = (π,0) there is a coexistence of both bands, i.e.,
there exist both renormalized quasiparticles, which are strongly
influenced by spin correlations and more weakly correlated
incoherent states. However, increasing the temperature above
J [see Fig. 2(a)] leads to a merging of both bands at k ≈
(π/2,π/2) and consequently, to a so-called waterfall-like band
dispersion similar to what has been observed in previous
studies [74,75].

Now, we turn to the overdoped case [see Figs. 2(c) and
2(d)]. Here, for T < J we again observe sharp features corre-
sponding to the quasiparticle band together with the second,
less coherent band. In comparison with the underdoped case,
the quasiparticle band is broader and the unoccupied part of
the band is weakly renormalized. Both findings qualitatively

0.0
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(a)

FIG. 3. Intensity plot of the k-dependent spin-spin correlation
function Imχk(ω) at T = 0.5 (upper panels) and at T = 0.05 (lower
panels) for J = 0.3 and different dopings (left panels: δ = 0.05; right
panels: δ = 0.20).

agree with ED calculations [21]. Also, at k = (π,0) we find
a shift of the flat quasiparticle dispersion towards the Fermi
level. Finally, a temperature increase to T > J [see Fig. 2(c)]
destroys the coexistence of both bands at k ≈ (π/2,π/2) and
leads to a single-band dispersion, as in the underdoped case.

3. Spin-spin correlation function

To measure the strength of the spin-spin correlations, we
calculate the dynamical spin susceptibility

χk(ω) = i

∫ tmax

0
dteiωt

〈[
Sz

k(t),Sz
−k(0)

]〉
, (15)

where we take tmax = 36. For the evaluation of χk(ω) we use
a similar trick as in Sec. III D, and rewrite the lattice Dyson
equation (1 + χk ∗ Jk) ∗ 	 = χk in the form of a stable VIE
for χk:

(1 − Jk ∗ 	) ∗ χk = 	. (16)

After the solution of this equation, we perform a Fourier
transformation of the resulting time-dependent χk(t,0). The
corresponding spectra Imχk(ω) are plotted for several dopings
and temperature values in Fig. 3. As can be seen from the
results at low temperatures, Imχk(ω) exhibits low-energy
excitations near k = (π,π ) indicating strong antiferromagnetic
correlations and a tendency to antiferromagnetic order (which
is suppressed in our simulations). The broadening of the
paramagnon is a result of fluctuations and comes from magnon-
hole as well as magnon-magnon interactions. The strength
of the spin-spin correlations decreases with increasing hole
doping (compare also with the spectra in Fig. 4(f) of Ref. [76]
for the undoped case).

B. Nonequilibrium

Next, let us discuss the nonequilibrium dynamics of the
t-J model after an electric field quench. The electric field is
incorporated into the Hamiltonian (1) by means of the Peierls
substitution, i.e., th(t) = the

iA(t) with A(t) the vector potential.
To excite the system we use the fast ramp (“quench”) protocol

A(t) = A0[Erf(t/τ ) + 1], (17)
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FIG. 4. (a) Relaxation dynamics of the normalized kinetic energy [Ekin(t)/Ekin(0)] after a weak quench excitation A(t < 0) = 0 →
A(t � 0) = 0.35. Different lines correspond to different doping and temperature values as indicated in the phase diagram in the inset.
(b) J dependence of Ekin(t) with the rescaled time t → tJ 2/3. Results are shown for T = 0.05 and doping δ = 0.05 (black lines) and δ = 0.2
(red lines).

with amplitude A0 and width τ ≈ 0.07th. In other words, we
almost suddenly (within a small fraction of an inverse hopping
time) switch the vector potential from 0 to A0 around t = 0.
Qualitatively similar results were also obtained for a pulse
excitation (see Appendix D 1).

1. Weak excitation

Figure 4(a) illustrates the time evolution of the kinetic
energy, which is normalized to its maximum value, after a weak
quench of the vector potential A(t < 0) = 0 → A(t � 0) =
0.35. Results are shown for three doping levels representing
the underdoped, optimally doped, and overdoped regime, and
two different temperatures, as illustrated in the inset of the
figure. In all cases, there is a sudden increase of the kinetic
energy after the quench excitation and a subsequent ultrafast
decrease on a timescale of a few inverse hoppings. To gain
insight into the mechanism of this relaxation, we plot in
Fig. 4(b) the time evolution of the kinetic energy for different
exchange parameters J and dopings using a rescaled time
axis t → tJ 2/3. At a fixed hole concentration the data for
different J show a nice collapse up to tJ 2/3 ≈ 0.5 and also
a good agreement in the position of the first minimum and
the subsequent oscillations. This observation implies that the
relaxation time is larger for a system with smaller J and hence
with weaker antiferromagnetic spin correlations. Moreover,
according to Refs. [53,77], the tJ 2/3 scaling indicates that
the reduction of the kinetic energy is associated with a local
disturbance of the antiferromagnetic spin background by the
creation of so-called string states [22,78].

Now, let us turn back to Fig. 4(a). For high temperatures we
observed a simple monotonic relaxation of the kinetic energy
at almost all considered hole concentrations, whereas at low
temperatures |Ekin(t)| exhibits a minimum near t ≈ 2.5 and a
subsequent recovery with superimposed slow oscillations.

At low temperatures and in the underdoped regime, where
the antiferromagnetic correlations are strong, these oscillations
are particularly pronounced and long-lived. This indicates that
both the recovery of the kinetic energy after the first minimum
and the oscillations are the manifestation of an interplay

between the charge and spin dynamics: the initially high kinetic
energy of the holes is passed to the spin background (creation of
string states), and the subsequent relaxation and thermalization
of the locally disordered spins results in a reshuffling of kinetic
and potential energy. That the spin and charge dynamics is
correlated is illustrated in Fig. 5, which plots the kinetic
energy of the system against the spin-spin correlation function
measured at the antiferromagnetic momentum k = (π,π ),
together with a line indicating the relation between these two
quantities in thermal equilibrium. At low doping the time
trace of the quenched system spirals around the postquench
equilibrium state (see inset), which nicely illustrates the energy
flow between the electronic and spin parts of the system.

The oscillating behavior is the direct consequence of
the strong interaction between spin and charge in higher-
dimensional systems, in contrast to 1D chains, which exhibit
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FIG. 5. Spin-spin correlation function at k = (π,π ) vs kinetic
energy. Black squares represent the relation between the two ob-
servables in equilibrium at different temperatures. The blue and
red lines show nonequilibrium results for δ = 0.05 at T = 0.05
after a weak [A(t < 0) = 0 → A(t � 0) = 0.35] and strong [A(t <

0) = 0 → A(t � 0) = 1.4] quench excitation, respectively. The inset
shows a zoom of the spiral behavior after the initial relaxation for the
weak excitation.
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FIG. 6. (a) Time evolution of the normalized kinetic energy [Ekin(t)/Ekin(0)] after a strong quench excitation A(t < 0) = 0 → A(t � 0) =
1.4. The parameters of the t-J -model used for the different lines are the same as in Fig. 4 (the additional orange lines correspond to doping
δ = 0.10). (b) Relaxation time τdec vs temperature T for different doping values. Error bars indicate the uncertainties in the fit with Eq. (18).
(c) Relaxation time τdec vs strength of the vector potential A at fixed temperature T = 0.05 and for different doping values.

spin-charge separation [79]. Based on the results of Fig. 5, we
propose that the strong coupling between spin and charge in
higher-dimensional systems can be unambiguously observed
both in pump-probe and cold-atom experiments. An analysis
of the optical conductivity is presented in Sec. IV B 5. The
possibility to measure the instantaneous correlation functions
allows experiments with ultracold atoms to track the time-
dependent spin-spin and spin-charge correlation function. This
ability allows the direct observation of string states, as also
discussed in Ref. [77] for a simplified t-Jz model with Ising-
like spin-spin interaction. In cold-atom systems the interaction
is tunable and the nontrivial tJ 2/3 scaling with time can serve
as an additional indicator for the presence of the string states.

2. Strong excitation

Next we focus on the nonequilibrium dynamics of the t-J
model after a rather strong quench excitation A(t < 0) = 0 →
A(t � 0) = 1.4. In Fig. 6(a) we plot again the normalized
kinetic energy as a function of time, for the same dopings
and temperatures as in Fig. 4. One finds a sudden increase of
the kinetic energy after the quench excitation and a subsequent
monotonic relaxation. A qualitatively similar behavior of the
system is observed if the excitation energy per hole is fixed
(see Appendix D 2).

To analyze the relaxation process, we fit Ekin(t) in the time
interval t ∈ [0.5,43.5] using a single exponential function

Ekin(t) = Ekin(∞) + C exp(−t/τdec), (18)

where Ekin(∞) is the approximate asymptotic value of the
kinetic energy, estimated at time t = 43.5, and τdec denotes
the relaxation time. The latter is plotted as a function of
temperature T in Fig. 6(b) for several doping values δ. In the
underdoped regime (δ < 0.15), the relaxation time shows a
strong temperature dependence—it decreases as temperature is
lowered below T ≈ J . At larger dopings, we observe that τdec

becomes almost temperature independent and that it decreases
with increasing δ. A similar behavior of the relaxation time
of photoexcited carriers in an antiferromagnetically correlated
background was also observed in Ref. [57]. This paper studied
the two-dimensional Hubbard model in the large-U regime
by means of a nonequilibrium version of cluster DMFT and

showed that the relaxation rate is proportional to the square of
the nearest-neighbor spin correlations.

This behavior of τdec can be explained by the two dominant
relaxation processes in our model: (i) relaxation through hole
scattering and (ii) relaxation through transfer of kinetic energy
to the spin background. Since the short-range spin correlations
get weaker with increasing temperature and increasing doping
(see Sec. IV A 3), the dominant process at high T or large
hole concentration is hole scattering. This implies a faster
thermalization of the system with increasing doping at fixed
temperature, and hence shorter relaxation times [see Fig. 6(b)],
because additional holes provide additional relaxation chan-
nels. In the opposite limit of low doping and for temperatures
roughly below J the antiferromagnetic spin correlations are
strong and the relaxation process (ii) dominates the dynamics.
In this case local and collective spin excitations provide
efficient relaxation channels that lead to a shorter relaxation
time at lower temperature. For instance, a noticeable decrease
of τdec is found for δ = 0.05 as temperature is lowered below
T ≈ J [see Fig. 6(b)].

To provide additional support for the relevance of these two
relaxation processes, we performed calculations of the relax-
ation time for several excitation strengths. Since short-range
spin correlations get weakened with increasing excitation
strength, the relaxation through transfer of kinetic energy to
the spin background should be suppressed. On the other hand,
the relaxation through hole scattering should get faster due to
an enhanced scattering rate. These effects are demonstrated
in Fig. 6(c), where we fix the temperature at T = 0.05 < J

and vary the amplitude of the vector potential A after the
quench. Clearly, the relaxation time for δ = 0.05 increases
with A, whereas it slightly decreases with increasing A for
larger doping.

3. Spectral function

In order to gain additional insights into the relaxation
dynamics of the t-J model, we calculate the time-dependent
spectral function A(t,ω) = − 1

π
Im

∫ t+tmax

t
dt ′eiω(t ′−t)GR(t ′,t)

from a partial Fourier transformation of the Green’s function
with respect to t ′. The Fourier time window is set to tmax =
22. The resulting spectra at T = 0.05 for the underdoped
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FIG. 7. Temporal evolution of the spectral function A(t,ω) (left panels), the real part of the impurity retarded spin-spin interaction
ReJ R(t,ω) (middle panels), and the real part of the on-site (dashed lines) and nearest-neighbor (solid lines) screened effective lattice interaction
ReWR

ij (t,ω) − Jij (right panels). The dynamics of the underdoped (δ = 0.05) spin system with J = 0.3 at T = 0.05 is shown after the weak and
strong excitations in panels (a1)–(c1) and (a2)–(c2), respectively, while the temporal evolution of the overdoped (δ = 0.20) system is presented
in panels (d1)–(f1) and (d2)–(f2). The black dashed lines in the left and middle panels represent initial equilibrium results. The insets in the
middle panels show the real part of the time-dependent impurity spin-spin interaction ReJ R in the static limit (ω = 0).

(δ = 0.05) and overdoped (δ = 0.20) system are shown in
Figs. 7(a1)(a2) and 7(d1)(d2), respectively. Figures 7(a1) and
7(d1) show the results after a weak excitation (as described in
Sec. IV B 1), whereas the strong excitation case (as described
in Sec. IV B 2) is presented in Figs. 7(a2) and 7(d2).

Let us first discuss the weak excitation regime of the under-
doped spin system [Fig. 7(a1)]. In this case the quasiparticle
peak gets slightly broader and its height is reduced after
the excitation. The pseudogap [local minimum in A(t,ω)]
closes, but there is no significant shift of the position of the
quasiparticle band and the incoherent part of the spectrum. On
the other hand, a stronger excitation of the system [Fig. 7(a2)]
destroys the quasiparticle peak almost completely and leads
to a substantial shift of the lower Hubbard band to higher
energies. After the relaxation of the system at t � 10 a very
broad quasiparticle feature is recovered. The evolution of
the spectral function is thus consistent with a rapid heating
of the system and the thermalization at a (pulse-dependent)
temperature above T ∗.

Now, we turn to the overdoped case, which is illustrated
in Figs. 7(d1) and 7(d2). After the weak excitation the
quasiparticle peak gets broader, whereas the peak position
is barely changed [see Fig. 7(d1)]. A further increase of the
excitation strength [see Fig. 7(d2)] leads to the complete
melting of the quasiparticle peak and a simultaneous shift of
the spectral weight to lower energies. Again, the dynamics can
be understood in terms of a (pulse-dependent) heating of the

system. (In this overdoped case, the system thermalizes already
at t � 4.)

4. Dynamics of the effective interaction

EDMFT maps the lattice system with intersite hopping and
nonlocal antiferromagnetic spin interactions onto an effective
single-site impurity problem with a hybridization function
(mimicking the electron hopping processes) and an on-site
retarded spin-spin interaction J . It is interesting to look at the
frequency dependence of J R , whose real part is plotted in the
middle panels of Fig. 7. The static value is negative, which in-
dicates ferromagnetic correlations along the time axis. Robust
ferromagnetic spin-spin correlations in time are the impurity
model manifestation of strong antiferromagnetic correlations
in space. Indeed, as we move from the underdoped [Figs. 7(b1)
and 7(b2)] to the overdoped [Figs. 7(e1) and 7(e2)] regime,
the static value in the initial equilibrium solution (dashed line)
shifts closer to zero, indicating more strongly fluctuating spins
and hence weaker antiferromagnetic correlations.

The excitation of the underdoped system by a weak
pulse leads to a moderate reduction in the absolute value
of ReJ R(ω = 0,t) followed by slow oscillations (see inset)
with the same frequency as previously observed in the time
evolution of the kinetic energy. This is consistent with the
fact that antiferromagnetic correlations are still strong in an
underdoped system that thermalizes at a temperature close to
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T ∗ [see Fig. 7(a1)]. After the strong excitation, the melting of
the antiferromagnetic correlations is reflected in a substantially
reduced |ReJ R(ω,t)| and an absence of oscillations in the
static value. In the overdoped regime [Figs. 7(e1) and 7(e2)],
where the antiferromagnetic tendency is weaker already in the
initial state, we do not find coherent oscillations in the evolution
of J even after a weak excitation pulse.

A more intuitive quantity than the retarded impurity spin-
spin interaction is the screened lattice interaction Wij . In the
right-hand panels of Fig. 7 we plot the real and imaginary parts
of the on-site Wloc and nearest-neighbor WNN in the initial
state and in the thermalized state after the pulse. In the figure,
we subtract the bare lattice interaction Jij , which is equal to
J = 0.3 for the nearest-neighbor component and zero for the
on-site component. While Wloc behaves in a way analogous
to the impurity interaction J , the static value of ReWR

NN − J

is positive, which reflects an enhanced effective antiferromag-
netic nearest-neighbor coupling. The weak excitation results
in a reduction of ReWR

NN − J by less than 50%, especially
in the underdoped regime, while the strong excitation almost
completely melts the screening contribution to the effective
nearest-neighbor coupling.

5. Optical conductivity

A fast relaxation of the Drude weight due to a strong
coupling between charge and spin degrees of freedom has
already been observed in optical experiments, see Ref. [49].
Here we propose that with a better time resolution additional
oscillations should be revealed on top of the fast relaxation,
which would serve as a “smoking gun” for the presence of
string states and strong coupling between spin and charge.
The frequency of these oscillations depends on the exchange
interaction, which allows one to track the dependence of
this microscopic parameter on external parameters such as
pressure. The photoinduced oscillations should be strongest
at weak and moderate strength of the pulse in order not to
destroy the spin background.

Since the clearest evidence for the appearance of string
states was observed in the underdoped case (see Sec. IV B 1),
we focus in the following on the spin system with doping
δ = 0.05. We investigate the time evolution of the optical
conductivity σ (t ′,t), which for the case of a local self-energy
reduces to a Green’s function bubble [66,69,80]. The real-
time dynamics is calculated using a similar procedure as
described in Ref. [80]. From σ (t ′,t) we then calculate the
frequency-dependent optical conductivity by performing the
partial “forward” Fourier transformation

σ (ω,t) =
∫ t+tmax

t

dt ′eiω(t ′−t)σ (t ′,t) (19)

with respect to the time difference t ′ − t at given time t . Here,
we set tmax = 22. It should be noted that the nonequilibrium
generalization of the f-sum rule [81] takes the following form
[82]: ∫ ∞

−∞
dωRe[σ ](ω,t) = πσ (t,t) = −πEkin(t), (20)

where Ekin(t) is the expectation value of the kinetic part of
the Hamiltonian (1) measured at time t . In equilibrium the

peak in the imaginary part of the optical conductivity Im[σ ](ω)
corresponds to the “mid-infrared peak” originating from the
spin fluctuations [21,22].

In the upper and lower panels of Fig. 8, we present the
time-dependent optical conductivity as a function of frequency
for the weak (as discussed in Sec. IV B 1) and the strong (as
discussed in Sec. IV B 2) excitation regimes, respectively. In
equilibrium, the real part of the optical conductivity shows a
sharp Drude peak on top of a broad background. The Drude
peak is then partially reduced after the quench in the weak
excitation case [see Fig. 8(a1)], and even more in the strong
excitation limit [see Fig. 8(a2)]. Interestingly, in the latter case
the Drude peak partially recovers at later times (t = 36), i.e.,
after thermalization, whereas in the weak excitation regime it
is further reduced and oscillates. The reduction of the Drude
peak and subsequent oscillations are consistent with ED studies
[59], and we have checked that the reduced conductivity is a
thermal effect. From the inset of Fig. 8 one can see that the
oscillations in the ω = 0 value of the Drude peak are slightly
shifted compared to the oscillations in the kinetic energy (cf.
Figs. 4 and 6).

In Figs. 8(b1) and 8(b2) we plot the temporal evolution of
the change in the real part of the optical conductivity with
respect to Re[σ ](ω,t = 1). The signal intensity is indicated by
the color scale in the plots. In the weak excitation case, the
height of the Drude peak stays suppressed after t > 2.5 and
shows an oscillating behavior. Its width gets slightly broader
with time and also shows some oscillations. Since the spin
correlations are still quite strong after the weak excitation, this
time evolution can be interpreted as an energy exchange with
the antiferromagnetic background. After a strong excitation,
the weight of the Drude peak initially drops and then partially
recovers after t ≈ 1. In this case, the photoexcited system
is essentially thermalized at time t = 4.5, as confirmed by
the energy distribution function. The initial decrease in the
Drude weight may be understood as a heating effect and is
consistent with simulation results for the photoexcited doped
Hubbard model within single-site DMFT. The increase of the
Drude weight at later times may be understood as a cooling
by spin disordering, where the antiferromagnetic background
plays the role of a “heat bath.” This dynamics goes beyond the
single-site DMFT description of the Hubbard model, which
does not capture the effect of nonlocal spin correlations but
resembles the dynamics of a system coupled to a bosonic bath
[83]. The overall dynamics of the Drude peak is consistent with
ED studies [59].

From the optical conductivity σ (t ′,t) we can calculate the
current density induced by a probe pulse, a quantity that is
more readily accessible in an experiment. In order to simu-
late realistic experimental conditions, we describe the probe
pulse by Epr(t) = E0 exp[−(t − tpr)2/τ 2] sin[ω(t − tpr)] and
set ω = 200 and τ = 0.05. This represents a short pulse with a
few cycles, as illustrated in the inset of Fig. 8(c2). The induced
current jpr at time t is obtained from the convolution of the
optical conductivity with the probe pulse,

jpr(t) =
∫ t

0
σ (t,t ′)Epr(t

′)dt ′, (21)

and the results are presented in Figs. 8(c1) and 8(c2) for
the weak and the strong excitation, respectively. Clearly, in
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FIG. 8. Time-dependent optical conductivity σ (ω,t) in the underdoped case (δ = 0.05) at T = 0.05 after (a1)–(b1) the weak quench
excitation with A(t < 0) = 0 → A(t � 0) = 0.35 and (a2)–(b2) the strong quench excitation with A(t < 0) = 0 → A(t � 0) = 1.4. In panels
(a1) and (a2) the real (solid lines) and the imaginary (dashed lines) part of the optical conductivity are shown for the equilibrium case (black),
at t = 1 (red), and t = 36 (blue). The inset illustrates the time-dependent height of the Drude peak Re[σ ](ω = 0,t). In panels (b1) and (b2) the
time-dependent change of the optical conductivity with respect to Re[σ ](ω,t = 1.0) is presented as an intensity plot. The intensity values are
normalized to max(Re[σ ](ω,t)-Re[σ ](ω,t = 1.0)). Panels (c1) and (c2) plot the current density jpr(tpr) induced by a probe pulse as a function
of the probing delay time tpr for the weak and strong excitation, respectively. The form of the probe pulse for tpr = 0 is shown in the inset.

the weak excitation case illustrated in Fig. 8(c1) the induced
current density jpr shows pronounced oscillations as a function
of the probe pulse delay. This behavior resembles the dynamics
of the kinetic energy shown in Fig. 4. A similar agreement
between the temporal evolution of the induced current and
the kinetic energy is observed in the strong excitation regime
[cf. Figs. 8(c2) and 6]. These observations illustrate that the
nontrivial interplay between spin and charge dynamics can be
directly measured in a pump-probe experiment.

V. SUMMARY AND CONCLUSIONS

We studied the coupling between charge and spin dynamics
in doped Mott insulators described by the two-dimensional
t-J model. To simulate the real-time evolution in these
strongly correlated electron systems we used a nonequilibrium
implementation of the extended DMFT formalism in com-
bination with a noncrossing approximation impurity solver.
This formalism allows one to take into account nonlocal spin
interactions, as well as short-ranged and long-ranged spin
correlations.

The relaxation after a weak photoexcitation exhibits strong
correlations between the spin and charge dynamics which can
be related to the appearance of so-called string states. Direct
evidence for this local disturbance of the antiferromagnetic
spin background is (i) the nontrivial scaling of the primary
relaxation time with the exchange coupling J , and (ii) the
subsequent coupled oscillations in the kinetic energy and

spin-spin correlation function. These oscillations, which last
for many periods, illustrate the flow of energy between the
spin and charge degrees of freedom. The latter effect is most
pronounced in the underdoped regime at low temperatures
(T < J ), where the spin-spin correlations are the strongest,
and when the excitation density is low enough such that
the effective temperature of the underdoped system remains
below or close to the pseudogap crossover temperature T ∗. We
also observed related oscillations in the height of the Drude
peak of the optical conductivity and in the current induced
by a probe pulse. This provides a path for experimentalists
to detect string states in femtosecond pump-probe studies of
strongly correlated materials with strong antiferromagnetic
correlations, such as cuprate superconductors. Moreover, since
the frequency of the oscillations depends on the exchange cou-
pling J , such experiments allow one to track this microscopic
quantity as a function of macroscopic parameters.

In the opposite limit of strong excitations, we observed a
rapid suppression of the spin-spin correlations, resulting in the
relaxation of the system mainly through the hole scattering
channel. Based on the temporal evolution of the spectral
functions and correlation functions we interpret the dynamics
of the underdoped system as a rapid heating and subsequent
thermalization at T > T ∗. Moreover, in this strong excitation
regime, we observed a complete melting of the quasiparticle
band after the field quench for all considered dopings. The
closing of the pseudogap results in a substantial shift of the
lower Hubbard band to higher energies in the underdoped case,
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while in the overdoped case the spectral weight is shifted to
lower energies.

On the methodological side, our study shows that the
EDMFT treatment of the t-J model can reproduce and extend
previous numerical equilibrium and nonequilibrium results
on doped Mott insulators. The formalism provides unique
insights, for example, into the time evolution of effective
nonlocal exchange couplings, and it allowed us to reveal the
conditions for strongly coupled charge and spin dynamics in
two-dimensional photodoped Mott insulators. In the future, it
would be interesting to combine this nonequilibrium EDMFT
approach with a cluster DMFT treatment of short-range corre-
lations.
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APPENDIX A: IMPURITY PROBLEM

A detailed description of the nonequilibrium impurity
solver based on a combination of a hybridization expansion and
a weak-coupling expansion in powers of a retarded interaction
can be found in Ref. [63]. In this Appendix we explain how
this technique can be adapted to the impurity model (8), which
features a retarded spin-spin interaction.

The double expansion in powers of 
 andJ of the partition
function Z = Trc[TCe

S ] with action

S = − i

∫
C
dtdt ′

∑
σ

c†σ (t)
σ (t,t ′)cσ (t ′)

+ 1

2

∫
C
dtdt ′S(t)J (t,t ′)S(t ′) +

∫
C
dtHloc(t) + const.

(A1)

and Hloc(t) = −μ̃
∑

σ n̄σ (t) leads to the expression

Z =
∞∑

n=0

∞∑
m=0

(−i)n

n!

(−i)m

m!

∑
σ1...σn

Trc

×
[ ∫

C
dt1 . . . dtn′

∫
C
dt̃1 . . . dt̃m′TCe

−i
∫
C dtHloc(t)

× c†σ1
(t1)cσ1 (t ′1) . . . c†σn

(tn)cσn
(t ′n)

× [S(t̃1) · S(t̃ ′1)] . . . [S(t̃m) · S(t̃ ′m)]

×
σ1 (t1,t
′
1) . . . 
σn

(tn,t
′
n)J (t̃1,t̃

′
1) . . .J (t̃m,t̃ ′m)

]
.

In order to evaluate the trace over the electronic configurations
one can insert a complete set of states

∑
n |n〉〈n| between

consecutive operators O. At this point we can project onto the
subspace of the local many-body space by restricting the sum
over states and adding the Lagrange multiplier into the action
to impose the normalization, namely, S = S + λ(

∑
n |n〉〈n| −

1). This factors the trace into a product of impurity propagators

g and vertices for the electrons (Fσ ) and bosons (B):

gn(t,t ′) = −i〈n|Tce
−i

∫ t

t ′ dt̄Hloc(t̄)|n〉,
F σ

nm = 〈n|cσ |m〉,
Bnm = 〈n|S|m〉,

(A2)

where the spin vertex S mixes spin-up and -down states. The
main difference to the method used in Ref. [63] are the vertices
related to the retarded spin-spin interaction. The expression for
the lowest-order diagram in the pseudoparticle self-energy is
given by

�p(t,t ′) = i[Fσg(t,t ′)F̄ σ
σ (t ′,t)] + i[Bg(t,t ′)BJ (t ′,t)],
(A3)

and writing out the second term explicitly using the Pauli
matrices σα

ss ′ , where α = x,y,z and s,s ′ = {↑, ↓}, we get

�2
p,s(t,t

′) = i[Bg(t,t ′)BJ (t ′,t)]

= i
1

4

∑
αs ′

σα
ss ′σ

α
s ′sgs ′ (t,t ′)Jφα (t ′,t)

= i
1

4

∑
αs ′

σα
ss ′σ

α
s ′sgs ′ (t,t ′)Jφ(t ′,t)

= i
1

4

∑
s ′

[2gs ′ (t,t ′) − δs,s ′gs(t,t
′)]Jφ(t ′,t)

= i
3

4
gs(t,t

′)Jφ(t ′,t). (A4)

In the step from the second to the third line we have used the
spin symmetry Jφα = Jφ , from the third to the fourth line we
used the completeness relation for the Pauli matrices, namely,
�σab �σcd = 2δadδbc − δabδcd , and in the last line we used the fact
that we are in the paramagnetic case with gs = gs̄ . The explicit
expressions for the NCA pseudoparticle self-energies become

�0(t,t ′) = i[(−1)G1σ (t,t ′)�σ (t ′,t)],
(A5)

�1,σ (t,t ′) = i
[
G0(t,t ′)�σ (t,t ′) + 3

4G1,σ (t,t ′)Jφ(t ′,t)
]
,

where �0 and �1,σ are the holon and pseudofermion self-
energy, respectively. Surprisingly, this NCA expression for
the model with retarded spin-spin interaction has the same
structure as the corresponding expression in the model with
retarded density-density interaction (up to a factor 3/4 which
for the impurity problem can be absorbed into a redefinition
of the interaction strength). This is, however, a peculiarity of
the NCA approximation. At the one-crossing approximation
(OCA) level we can see the emergence of a more general
structure (summation over repeated indices is assumed):

�4
p,s(t,t

′) = i[Bg(t,t1)Bg(t1,t2)Bg(t2,t)J (t,t2)J (t1,t
′)]

= i 1
24 σ

α
ss1

σβ
s1s2

σα
s2s3

σβ
s3s

× gs1 (t,t1)gs2 (t1,t2)gs3 (t2,t
′)Jα(t,t2)Jβ(t1,t

′)

= i 1
24 [4δs,s1,s2,s3,s4 − 2δs,s3δs1,s2

− 2δs,s1δs2,s3 + δs,s1,s2,s3,s4]

× gs1 (t,t1)gs2 (t1,t2)gs3 (t2,t
′)Jα(t,t2)Jβ(t1,t

′).

(A6)

235125-11



BITTNER, GOLEŽ, STRAND, ECKSTEIN, AND WERNER PHYSICAL REVIEW B 97, 235125 (2018)

This expression cannot be mapped onto the corresponding
OCA expression for the model with retarded density-density
interactions. Note that our approach is different from the
method used by Otsuki in Refs. [76,84], which employs a
Lang-Firsov approach for the Sz-Sz components of the retarded
spin-spin interaction and implements a Monte Carlo sampling
of the spin-flip scattering, while here we perform a weak-
coupling expansion in the entire retarded spin-spin interaction
term.

1. Calculation of the impurity Green’s function
and spin susceptibility

All impurity correlation functions can be expressed in
terms of the pseudoparticle propagators. In order to see
this we write an arbitrary impurity operator in the sub-
space with Q = 1 pseudoparticles (for a more precise treat-
ment see Refs. [43,73]) as A

†
i = ∑

m,n F i
mna

†
man or Ai =∑

m,n F i
nma

†
man, where F i

mn = 〈m|A†
i |n〉. The impurity Green’s

function can then be expressed as

Gimp(t,t ′) = − i〈c(t)c†(t ′)〉
= − i

∑
n1,n2,m1,m2

〈n1|c|m1〉〈m2|c†|n2〉

× 〈
a†

n1
(t)am1 (t)a†

m2
(t ′)an2 (t ′)

〉
= − i

∑
n1,n2,m1,m2

〈n1|c|m1〉〈m2|c†|n2〉

× [〈
an2 (t ′)a†

n1
(t)

〉〈
am1 (t)a†

m2
(t ′)

〉
ξn1n2

+ 〈
am1 (t)a†

n1
(t)

〉〈
an2 (t ′)a†

m2
(t ′)

〉]
= − i3

∑
n1,n2,m1,m2

Gn2,n1 (t ′,t)〈n1|c|m1〉

× Gm1,m2 (t,t ′)〈m2|c†|n2〉ξn1n2

= iTr[G(t ′,t) ∗ c ∗ G(t,t ′) ∗ c† ∗ ξ ], (A7)

where from the second to third line we have used Wick’s
theorem. The equal time components (loops) in the sixth row
vanish in the Q = 1 subspace. G is a matrix representation
of the pseudoparticle propagators, while c is the matrix
representation of the annihilation operators in pseudoparticle
space. Furthermore, ξ is the matrix representation of commu-
tator/anticommutator relations in pseudoparticle space. The
same procedure can be used to evaluate the 〈Sz(t)Sz(t ′)〉
correlator (note that it is defined without a factor −1) and the
final result is

χzz = i〈Sz(t)Sz(t ′)〉
= −iTr[G(t ′,t) ∗ Sz ∗ G(t,t ′) ∗ Sz ∗ ξ ]

= − i

4

∑
s

Gs,s(t,t
′)Gs,s(t

′,t) = − i

2
Gs(t,t

′)Gs(t
′,t),

(A8)

where in the last line we only have a sum over singly occupied
pseudoparticle states and assumed that spin is not important in
the paramagnetic case. Sz and G are defined by the following

matrix form:

Sz =
⎛
⎝0 0 0

0 1/2 0
0 0 −1/2

⎞
⎠, G =

⎛
⎝G0 0 0

0 G↑ 0
0 0 G↓

⎞
⎠.

(A9)
A similar result can be obtained for χxx and χyy . By using the
matrix form of Sx and Sy we obtain

Sx =
⎛
⎝0 0 0

0 0 1/2
0 1/2 0

⎞
⎠, Sy =

⎛
⎝0 0 0

0 0 −i/2
0 i/2 0

⎞
⎠,

(A10)
and after a simple matrix multiplication one gets the following
result:

χxx = − i

4
[G↑(t,t ′)G↓(t ′,t) + G↓(t,t ′)G↑(t ′,t)] = χyy.

(A11)

Hence, for G↑ = G↓ the spin susceptibilities are equivalent,
χxx = χyy = χzz, as it should be in the paramagnetic case.

APPENDIX B: BOSONIC PROPAGATOR
FROM SPIN-SPIN CORRELATIONS

We can calculate the bosonic propagator W (t,t ′) =
i〈φ(t)φ(t ′)〉 from the spin-spin correlator χ (t,t ′) =
i〈S(t)S(t ′)〉, which can be extracted from the impurity
calculation. By using the action defined in Eq. (4) we obtain
the expression

W
ij

imp(t,t ′) = −2
δ ln(Z)

δJ −1
ij (t ′,t)

= 2Jik(t,t1) ∗
[

δ ln(Z)

δJ (t1,t2)

]
kl

∗ J (t2,t
′)lj , (B1)

where we have used the chain rule and the relation δJ (t1,t2)
δJ −1(t ′,t) =

−J (t1,t ′)J (t,t2). Using Eq. (7) we obtain δ ln[Z]
δJ = − 1

2χimp +
1
2J −1 and finally arrive at

Wii
imp = J ii − J ij δij ∗ χ

jk

impδki ∗ J ii

= J ii − J ii ∗ χii
imp ∗ J ii . (B2)

Note that the spin-spin correlators χii
imp, i = x,y,z are equiva-

lent for the paramagnetic case (see Sec. A 1).

APPENDIX C: EQUILIBRIUM FERMI SURFACE

In Fig. 9 we plot a scan of the k-dependent spectral function
Ak(ω = 0) at energy ω = 0 and temperature T = 0.05 for
different doping values. Results are shown for the upper-right
quadrant of the first Brillouin zone. In the calculations we
use a grid with 32 × 32 k points and apply an interpolation
procedure. The intensity of the spectral function is indicated
by the color scale in the plots. As one can see, increasing
doping leads to a shift of the spectral weight from the corner
at around k = (π,π ) of the Brillouin zone towards its center.
This indicates a transition from a holelike to an electronlike
Fermi surface and represents the Lifshitz transition introduced
in Sec. IV A 1.
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FIG. 9. Intensity plots of the k-dependent spectral function at
constant energy Ak(ω = 0) and temperature T = 0.05 for different
doping values: (a) δ = 0.05, (b) δ = 0.15, (c) δ = 0.20, and (d)
δ = 0.27. The results are plotted for the upper-right quadrant of the
first Brillouin zone.

APPENDIX D: NONEQUILIBRIUM RESULTS

1. Dynamics after a pulse excitation

To simulate a pulse excitation we model the electric field
E(t) = −∂tA(t) by

E(t) = E0 sin(ωt) exp
(−4.6t2/τ 2

w

)
, (D1)

with ω and E0 being the frequency and field amplitude,
respectively. The field has a Gaussian envelope of width τw.
For our calculations we use ω = 6.0 and τw = 2.1. In Fig. 10
we present the temporal evolution of the kinetic energy, which
is normalized to its value at t = 0. In order to perform a
qualitative comparison with the results for the electric field

0.2 0.4 0.6 0.8 1.0

0.8

1.2

1.6

2.0

T

τ d
ec

0.05
0.10
0.15
0.20

FIG. 11. Relaxation time τdec vs temperature T for different
doping values after an electric field quench with a constant excitation
energy per hole (
E/δ = 0.1). Error bars indicate the uncertainties
in the fitting with Eq. (18).

quench presented in Sec. IV B 1 we consider a weak excitation
(E0 = 2.0) of the system at T = 0.05 in the underdoped (δ =
0.05, black line) and overdoped (δ = 0.20, red line) regimes.
From Fig. 10(a) one can clearly see that after pumping there
is a primary relaxation with subsequent oscillations at low
doping, whereas at larger doping the oscillations are strongly
suppressed. The primary relaxation rate and oscillations scale
with tJ 2/3, as can be seen from Fig. 10(b). All in all, these
observations show a good qualitative agreement with the
results for the electric field quench in Sec. IV B 1.

2. Dynamics after an electric field quench with fixed
excitation energy per hole

In contrast to the case discussed in Sec. IV B 2, where we
used a strong quench of the same intensity for all calculations,
here we adjust the quench amplitude in order to fix the
excitation energy per hole (
E/δ = 0.1). The relaxation time

0 5 10 15
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n
o
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(E
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n
( t
))

t

(a)

tJ2/3

FIG. 10. (a) Relaxation dynamics of the normalized kinetic energy [Ekin(t)/Ekin(0)] after a pulse excitation with E0 = 2.0, ω = 6.0, and
τw = 2.1 for J = 0.3 in the underdoped (δ = 0.05, black line) and overdoped (δ = 0.20, red line) cases at T = 0.05. (b) J dependence of
Ekin(t) plotted as a function of the rescaled time tJ 2/3. The different line colors correspond to the same dopings as in panel (a).
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after excitation is again extracted using Eq. (18). The resulting
τdec is plotted in Fig. 11 as a function of temperature for
several dopings δ. As one can see by comparing Fig. 11
and Fig. 6 from Sec. IV B 2, the qualitative behavior of the
relaxation rate for each doping is the same, and hence our
conclusions do not depend on the particular excitation process.
In other words, since in the underdoped regime (δ = 0.05)

the spin-spin correlations are strong below T < J , one ob-
serves a lowering of τdec by reducing temperature. In this
regime, the relaxation is dominated by the interaction with
the antiferromagnetic spin background. At the other consid-
ered doping values the spin-spin correlations are comparably
small and the system relaxes mainly through hole scattering
processes.
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