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Nematic quantum phases in the bilayer honeycomb antiferromagnet
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The spin-1/2 Heisenberg antiferromagnet on the honeycomb bilayer lattice is shown to display a rich variety
of semiclassical and genuinely quantum phases, controlled by the interplay between intralayer frustration and
interlayer exchange. Employing a complementary set of techniques, comprising spin rotationally invariant
Schwinger boson mean-field theory, bond operators, and series expansions, we unveil the quantum phase diagram,
analyzing low-energy excitations and order parameters. By virtue of Schwinger bosons we scan the complete
range of exchange parameters, covering both long-range-ordered and quantum disordered ground states, and

reveal the existence of an extended, frustration-induced lattice nematic phase in a range of intermediate exchange

unexplored so far.
DOI: 10.1103/PhysRevB.97.235123

I. INTRODUCTION

Frustrated magnets are of great interest to a broad range
of subfields in physics, harboring new quantum states of
condensed matter [1,2], fueling progress on fundamental
paradigms of topological ordering [3-5], providing realistic
prospects for quantum computing [6—8] and devices for ther-
mal management technologies [9,10], inspiring research on
ultracold atomic gases [11,12], realizing elementary excita-
tions related to grand unified theories [13—15], and exhibiting
correlations found in soft matter, liquid crystals, and even
cosmic strings [16,17]. Strong frustration in quantum magnets
can ultimately lead to spin liquids, free of any broken sym-
metries, featuring long-range entanglement, topological order,
and anyonic excitations [2,18]. Proximate to such liquids, a
rich variety of additional exotic quantum matter, including
valence-bond crystals, also called lattice nematics [19], chiral
liquids [20], multipolar states [21], and more complex phases
compete for stability. Understanding such phases of matter and
their interplay is a critical outstanding problem for theory and
experiment. In this paper we take a major step forward in this
direction and detail the emergence of lattice nematic order in
an as yet unexplored region of frustrated magnets on bilayer
honeycomb lattices.

Recently, frustrated Heisenberg models on single-layer
honeycomb lattices have become a test bed for competing
spiral order, lattice nematicity, and plaquette valence-bond
states [22-39]. This interest has been propelled by the dis-
covery of bismuth oxynitrate, BisMn4O;,(NO3) [40], where
Mn** ions of spin 3/2 form honeycomb layers, with both
nearest- and next-nearest-neighbor antiferromagnetic (AFM)
exchange. Early on, however, it was noticed that in this
compound Mn** ions are grouped into pairs along the ¢ axis,
rendering the structure rather that of a bilayer honeycomb
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lattice. Despite a significant separation through bismuth atoms,
density functional calculation [41] resulted in comparable
inter- and intralayer exchanges, consistent with experimental
findings [42]. This has led to investigations of bilayer honey-
comb systems [43—49]. Most of these studies have focused on
the stability of the semiclassical phases, extending previous
work on the single-layer case.

The first indications of quantum disordered phases gen-
uinely related to the bilayer geometry and not present in the
single-layer case were provided in a small parameter window
in [47], following ideas of [50,51] and similar works [52-56].
However, a complete understanding of the quantum phase dia-
gram of the bilayer is missing, which critically hinders progress
in understanding frustrated multilayer quantum magnets in
general. Therefore, in this paper we provide a comprehensive
analysis of the quantum phases of the frustrated Heisenberg
model on the honeycomb bilayer over a wide range of coupling
strengths, including, in particular, the intermediate regime,
where both the interlayer exchange and intralayer frustration
are comparable to the intralayer first-neighbor couplings. This
part of the phase diagram has remained largely unexplored,
representing a challenge for most of the existing state-of-the-art
numerical techniques. Here, by means of a combination of
methods, among which Schwinger bosons stand out for their
ability to explore the full quantum phase diagram and to treat
on equal footing quantum and semiclassical states, we unveil
a rich structure of phases, where the interplay of frustration
and interlayer coupling is most essential, destroying magnetic
order and giving rise to exotic phases. Most noteworthy,
we will provide evidence for a lattice nematic phase in the
intermediate-coupling regime.

II. THE MODEL AND ITS PHASE DIAGRAM

The model we consider is shown in Fig. 1. Its Hamiltonian
reads

H=Y JO"§F) -8 + ), (1)

Fil,m
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FIG. 1. Schematic representation of the model. The sites (green
spheres) in each unit cell are labeled from 1 to 4. Thick vertical blue
lines indicate J, interlayer couplings, whereas thin black and red lines
indicate J; and J, first- and second-nearest neighbors, respectively.

where 7 is the position of the unit cell, ¢; are the primitive
vectors of the triangular Bravais lattice, and [, m cogrespond
to the internal label for each site in the unit cell. S;(¥) are
spin operators at basis sites 7,/ = 1, ... ,4 of the bilayer. The
couplings Jl-(l’m) are nonzero, with values J,, J;, and J, as
depicted in Fig. 1.

Before describing our calculations, we focus on the main
results, summarized in Fig. 2(a). On the classical level, § — oo,
and in the single-plane limit, i.e., at J, = 0, there are two
phases: Néel order for J,/J; < 1/6 and spiral order for
J»/Jy > 1/6. Allowing for interlayer coupling this single tran-
sition point extends into a line, independent of J, . Quantum
fluctuations lead to new nonclassical intermediate phases and
renormalize the Néel and spiral phases. Previous studies [38]
have identified continuous transitions into two frustration-
induced genuine quantum phases: a gapped spin liquid (GSL)
phase, preserving all lattice symmetries for 0.2075 < J,/J; <
0.3732, and a staggered-dimer lattice nematic phase (VBC1)
which maintains the SU(2) spin rotational and lattice transla-
tional symmetries but breaks Z3 symmetry, corresponding to
27 /3 rotations around an axis perpendicular to the plane for
0.3732 < J»/J;1 < 0.398. Another limiting case is J; — 00.
Here, an interlayer dimer product phase (IDP) is formed.

Connecting these two limits, the interplay between the
interlayer couplings J, and the frustration J, reveals
the complex phase diagram we find in Fig. 2(a). Starting from
the limit of decoupled planes, we consider the semiclassical
Néel and spiral phases first. Figure 2(a) shows that small inter-
layer couplings extend each of their windows of stability along
the J, direction, even leading to a region of competition. How-
ever, for sufficiently large J, the semiclassical phases recess
and are suppressed in favor of the IDP. Regarding the GSL and
VBCl1 phases, interlayer coupling has a dramatic consequence,
suppressing them very rapidly, reentering semiclassical phases
at finite J, . Finally, the Néel-to-IDP transition is direct. That
is not so for the spiral-to-IPD transition. In fact we find yet
another lattice nematic region (VBC2) which intervenes. To
the best of our knowledge, this has not been observed before.

Next, we detail how to arrive at our main result, i.e., Fig. 2,
using three complementary techniques, namely, Schwinger
boson mean-field theory (SBMFT) [26], Bond operators
(BOs) [57], and series expansions (SEs) [58]. While being
a mean-field approach, primarily gauged towards bosonic
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FIG. 2. (a) The different colored regions identify the phases of
model (1) in the J,-J, plane (in units of J;) determined by SBMFT.
The blue and red lines represent the border of the IDP phase predicted
by SE and BO, respectively. (b) Zoom of the phase diagram where
two paths along J, for J, = 0.3 and J, = 0.38 are indicated with
red dashed lines. (c) and (d) The evolution of the gap (connected red
circles) and the Z; directional symmetry-breaking order parameter p
(connected black squares) along the mentioned paths.
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fixed-point models, SBMFT is superior in addressing on equal
footing both semiclassical and genuinely quantum phases,
allowing us to scan all of the parameter space of Eq. (1).
The other two methods are best suited to obtaining additional
information for large interlayer coupling (BO) and for weak
frustration (SE).

III. SCHWINGER BOSON MEAN-FIELD THEORY
Here, spin operators are represented by two bosons [59-61],
8i(F) = b)) - & - by (),

where b;[ 7) =
matrices, and

(b}’T(F),b; ¢(}7)) is a spinor, o are the Pauli

> b}, by (F)=25

is a local constraint. Using the rotationally invariant represen-
tation [26,30,38,62-67], we define two SU(2) invariants,

- 1 - -
Alm(xay) = E Zodbl,a(x)bm,fa(y)

and

1
- - T - -
By, (%.5) = 5 Z b, ()b, o (3,
where the former generates a spin singlet between sites [ and
m and the latter generates a coherent hopping of the Schwinger
bosons. At the mean-field level, the exchange follows as

(SiX) - SuNur) = 1B = PP = [Am(E = D)%,

with

Al G =) = (A, G ),

B}, (¥ = 3) = (B}, E.5)).
These equations are solved self-consistently taking into ac-
count the constraint in the number of bosons B,,(R = O)
4N.S, with N, representing the total number of unit cells and
S being the spin strength [26,38].

After solving the mean-field equations on finite but large
lattices we primarily extract the extrapolation of the elementary
excitation gap A. The extrapolation of the gap is performed for
system sizes up to 4000 sites following a standard procedure
(see, for example, Ref. [26]), but generally, the results for sys-
tems bigger than 2000 sites did not show a strong dependence
on the size. This gap is used to classify magnetic phases, for
which A has to be zero. If A # 0, Bose condensation cannot
occur, and the phase is quantum disordered. We can also obtain
the real-space spin-correlation function C; and magnetization
m; [68]. Lattice nematic phases, which preserve the lattice
translational invariance but break Z; lattice symmetry, came

under scrutiny early on in single-layer honeycomb systems.
These imply a nonzero order parameter [22,23],

4
p= 3|[( L) - SoP)) + €7 (S8,(F) - SoF + 1))

+ S (7) - SaF — S )

Here, we have investigated this order parameter over all of the
parameter space of Fig. 2(a).

To clarify the procedure we detail our SBMFT results along
two paths, (a)—(d) at J, = 0.3 and (f)—(g) at J, = 0.38, in a
representative part of the phase diagram, depicted in Fig. 2(b).
The corresponding evolution of A (connected red circles) and
p (connected black squares) are shown in Figs. 2(c) and 2(d) for
the paths (a)—(d) and (f)—(g), respectively. The low-frustration
regime (J»/J;) was previously studied using SBMFT [26,47].

We start in the light-blue phase around point (a), where
Fig. 2(c) features a finite gap and unbroken Z; symmetry.
This identifies the GSL phase. As J, increases from zero,
the gap rapidly decreases and closes simultaneously with p
growing finite. A blowup of this is shown in the top left inset of
Fig. 2(c). This behavior is consistent with a spiral phase, which
is gapless and breaks Z; symmetry. As J, increases further,
p runs through a maximum and decreases up to a point where
A # 0 again. In stark contrast to the GSL, however, a narrow
yellow region of broken Z3; symmetry and gapful behavior
surfaces around point (c). This characterizes the lattice nematic
phase (VBC2). The top right of Fig. 2(c) shows a blowup of
this region. Very different from the VBC1 phase, VBC2 can be
found in a much larger range of parameters running all along
the upper spiral phase boundary. Finally, entering the blue
region around point (d), there is a near-first-order jump to rather
large values of A where p turns zero, restoring Z3 symmetry.
This is consistent with the IDP, adiabatically connecting to the
limit of decoupled dimers at J; = oco.

Turning to the second path [points (f) and (g)], it is obvious
from Fig. 2(d) that the phase corresponding to point (g) is
identical to the corresponding one at point (b). However,
different from the GSL at (a), the VBCI1 phase around (f)
displays behavior of A and p identical to that of point (c),
i.e., a lattice nematic.

In stark contrast to the VBCI1 phase, which is rapidly
suppressed by the coupling between the planes, the VBC2
phase is induced by combined finite intralayer frustration and
interlayer coupling and therefore is associated with the bilayer
nature of the system.

IV. SERIES EXPANSION AND
BOND-OPERATOR APPROACH

For a complementary analysis of the evolution of the quan-
tum disordered phases, starting from the limit of decoupled
dimers, J, — 00, we use both series expansion (SE) [69] and
bond-operator theory (BOT) [57,70,71]. In BOT, spins at the
vertices of each dimer are written as

S = | 45Tty £1ls — Zwaﬁytﬁ y

j Tt /2,
By

sts + Ztita =1,
o

where s' (I(I) create singlet (triplet) states of the dimer and
a = 1,2,3 labels the triplet multiplet. BOT maps the spin
model onto an interacting Bose gas, for which several schemes
of treatment have been proposed [57,70-73]. Here, we use
the Holstein-Primakoff (HP) approximation [70,71], where
s is replaced by a C number and s = (1 — >__ tiz )1/ is

oot

with the constraint
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FIG. 3. Contour plot corresponding to the bond-operator boson dispersion close to condensation for (a) J,/J; = 0.1, (b) J>/J; = 0.4, and
(c) J»/J; = 0.6. Red dashed lines correspond to curves in the k space determining the classical manifold of spiral ground states.

expanded to obtain a quadratic triplon Hamiltonian. Standard
Bogoliubov diagonalization yields a ground-state energy per
unit cell of

9 3

E=—-—-+4—"— 1+ e (k)]'?
4+4N§[ er(k)]'?2,

with the triplon dispersions

er(k) = Jj—l [3+2 cos(k,) + 4 cos(ky /2) cos(v/3k, /2)]'/?

+ ZJJ—z[cos(kx) + 2 cos(k, /2) cos(x/gky/Z)]. 3)
1L

At J;=J,=0, for the latter one recovers the bare singlet-triplet
gap A = J, and for the former E = —3J, /4, consistent with
a bare singlet.

For SE we use the continuous unitary transformation (CUT)
method [54,58,74-77] starting from the limit of decoupled
dimers. This method allows us to obtain analytical expressions
for the ground-state energy and the dispersion of the elemen-
tary triplon excitations of the IDP versus J;»/J;. We have
evaluated these up to O(4). Their rather lengthy expressions
are detailed in the Appendix.

In Fig. 2(a) we show the critical lines of the gap closure of
the triplon dispersion of the IDP obtained from both BOT-HP
(red line) and SE-CUT (blue line). Clearly, comparing them
with regions of magnetic ordering obtained from SBMFT, the
general trend, i.e., the breakdown of magnetic order versus
J» and J,, is fully consistent with the IDP gap closure.
Quantitatively, however, comparing SBMFT and BOT-HP to
SE-CUT, the latter predicts a smaller range of stability for
semiclassical phases. Since the former two are mean-field
theories, such a tendency to prefer ordered phases is a well-
known shortcoming. In fact, SE-CUT locates the IDP-Néel
transition at J, ~ 1.6 for J, = 0 in Fig. 2(a), in excellent
agreement with quantum Monte Carlo calculations [43], and
moreover, SE-CUT is rather close to coupled-cluster results
for finite, but small, J, < 0.2 [48]. For larger J, the SE-CUT
becomes less reliable, and we are left with only BOT-HP to
compare to within the IDP.

Finally, we comment on the location in k space of Bose
condensation within the BOT-HP compared to the classical
magnetic pitch vector Q of the bilayer at S — co. As men-
tioned previously, the latter is independent of J, , comprising
a Néel state for each plane for 0 < J,/J; < 1/6 and, for
1/6 < J2/Jy, a set of classically degenerate coplanar spiral
ground states with

Si(F) = (=1)'S[cos(Q - F + )i +sin(Q - F + 6)]1,

where the pitch vector lies on the closed curve
cos(Qy) + cos (—% + ﬁ%)

+cos <% + \@&) YA B

2 2 2
and the phase 6; obeys 6, = m + 63 4 [22]. Comparing this
now to the critical wave vector é for Bose condensation within
the BOT-HP, we first have Q = (0,0), corresponding to a Néel
order for J, < % For J, > %, condensation does not occur at

a single point but on lines in k space. Remarkably, these are
identical to those from the classical states. This is illustrated in
Figs. 3(a)-3(c), where we plot contours of the boson dispersion
close to condensation at J, = 0.1,0.4, and 0.6 and incorporate
the degenerate classical spiral pitch vector locations by red
dashed lines. In turn, while quantum fluctuations may modify
such agreement, it is, nevertheless, interesting to realize that
BOT-HP provides some guidance as to the type of semiclassical
phase that will emerge upon gap closure.

V. CONCLUSION

In conclusion, the interplay between intralayer frustration
and interlayer exchange allows for a rich variety of classical
and quantum disordered phases to compete for stability in the
bilayer honeycomb antiferromagnet. In this paper, evidence for
these phases has been provided over a wide range of coupling
constants using three complementary methods, yielding con-
sistent results. Most noteworthy, at intermediate coupling, we
have discovered a lattice nematic phase which exists in aregion
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of parameter space substantially larger than similar phases
observed previously in the model at small interlayer coupling.
While we have carried out our analysis on a spin-1/2 model,
our findings may be relevant for understanding the absence
of magnetic order in the spin-3/2 honeycomb bilayer material
Bi;Mn40,,(NO3), where first-principles calculations suggest
exchange paths that are identical to our microscopic model and
are all of similar magnitude.
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APPENDIX: SERIES EXPANSION

Here, we provide some additional details about the series
expansion results presented in this work. The dimer series
expansion SE calculations start from the limit of isolated
interlayer dimers coupled via J, . For this we decompose the
model Hamiltonian of Eq. (1) into

H = Hy+ V(J1,)2),

where Hj represents decoupled interlayer dimers and V (Jy,J>)
is the interaction part of the Hamiltonian, connecting dimers
via on-layer nearest (J;) and next-nearest (J,) couplings in
units of J, (see Fig. 1).

The spectrum of Hj is equidistant, which allows us to or-
ganize the level structure of Hj in a block-diagonal form, with

J

each block labeled by an energy quantum number Q. In this
way, Q = 0 represents the ground state (vacuum), where all
dimers are in the singlet state. The Q = 1 sector is composed
of states obtained by creating one-triplet excitation (particle)
on a given dimer and so on. The cases in which Q > 2 represent
multiparticle states and are not considered here.

The interacting part of the Hamiltonian V(J;,J;) mixes
different Q sectors, Losing H, the block diagonal structure of
H,. However, it is possible to restore the block-diagonal form
by application of continuous unitary transformations, using
the flow equation method of Wegner [74]. The method can be
applied perturbatively, transforming H into a block-diagonal
effective Hamiltonian H.g, which has the structure

[o.¢]
Hey = Ho + ch,mflnjzmv

n,m

where ¢, , are weighted products of terms in V (Jy, J) which
conserve the Q number, whose weights are determined by re-
cursive differential equations (see further details in Ref. [58]).

The Q-number conservation allows the direct computation
of several observables from H.g in terms of a SE in J;, J,. For
the present model we have performed O(4) SE in Ji,J, for
ground-state energy (Q = 0) and for the triplet dispersion w,
i.e., @ = 1. Of particular interest for this work is the dispersion
since it allows us to delimit the extension of the IDP phase.
Note that the dispersion has two branches due to the presence
of two dimers per unit cell in the honeycomb lattice. We
refer to Ref. [58] for technical details about the calculation.
The complete expression for both branches of the dispersion
w+(J1,J2) up to fourth order in Jy, J, has the following form:

w+(J1,J2) = Fa(Jy,J2) + b(J1, o),

where

a(J1, 1) = 8J1/3 + 2 cos(a,) + 2 cos(ax — ay) + 2 cos(aty)| — 2J7 cos(er, — o)) — 2J7 cos(ery) + 7J}
+ D (5JF = 2011, 4 2675 — 6.15) cos(at,) — TJ7 Ty cos(aty — aty)+5J7 Ty cos[2(ax — ay)]+ 107 J> cos2ar; — ary)
+IOJ,2J2 cos(ay + o) + 10J12J2 cos(ay — 2ary) — 7J12J2 cos(ary) + 5J12J2 cos(2ary) — 18],2J2 — 2J,2 cos(oy — ay)
—2J7 cos(ay) + 6J7 — [2J7 + JE(T +2) + J1 b9, — 4) + 1> (35 + 81> — 8)] cos(ax) — 971 J5 cos(ax — ary)
—2J1J5 cos[2(aty — ay)] — 4J1 J5 cosay — ay) — 41 J5 cos(ay + ay) — 41 J5 cos(a, — 2ay) — 9J1J5 cos(ary)
—2J; J22 cos(2ay) + 1944 .122 +4J1Jrcos(ay — ay) +4J1Jrcos(ay) —4J1 0 — 3J23 cos(ay — ay
+26J5 cos[2(a, — ay)] + 575 cos[3(ax — )] + 22J5 cosa, — ay) + 1575 cos(Ber, — a,) + 225 cos(a, + a,)
-}-15123 cos(2ary + o) + 15123 cos(ar, + 20) + 22J23 cos(ory — 2ary) + 15J23 cos(3or, — 2axy) + 15J23 cos(ory — 3ay)
+15J5 cos2a, — 3a,) + 5J5 cos(3e,) — 3J5 cos(ary) + 26J;5 cos(2ay) + 5J5 cos(3a,) — 6J5 — 8J3 cos(a, — ay)
—6J3 cos[2(ety — ay)] — 12J3 cos(2a, — ay) — 12J3 cos(aty + ) — 12J3 cos(a, — 2aty) — 8JF cos(ay)

—6122 cos(2ay) + 6]22 + 8J3 cos(a, — ay) + 8J5 cos(ary) — 8|

and

1

b(J1,J2) = 1+ —{4cos(e)J; — 10cos(2a,)J; + 4 cos(er, — ) I} — 10 cos[2(a, — ay)]J; — 20 cosa, — ) J}

128

+4cos(ay)J; — 10 cos2a,)J} — 20 cos(er, + a,)J} — 20 cos(er, — 2ay)J) — 87J) — 4321, 07
4965 cos(e, ) J; — 32 cos(a, )i + 3275 cosRa,) I} 4+ 965 cos(ar, — )i — 32 cos(er, — ) J;
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+32J; cos[2(ay — ay)]J; + 645 cosa, — ay)J} + 965 cos(ay)J; — 32 cos(ay)J; + 325 cosRary ) J}

6405 cos(er, + a,)J; 4+ 6405 cos(ar, — 2a,)J7 + 7207 + 298877 JF — 720, 7 + 927 cos(a, ) J}

+64.J, cos(a, ) J7 — 32 cos(a,)J? — 3647 cos(2a,)J}

+48.5 cos(2a, )} — 60J7 cos(3a, )7 + 92JF cos(a, — ay)J}f

+64.J5 cos(a, — ay)Jf — 32cos(ar, — ay)Jf — 36475 cos[2(ax — )1} + 485 cos[2(er, — o)1 I}

—60J3 cos[3(at, — a,)]J} — 368J3 cosQat, — ) J{ + 965 cos(at, — ay)JE — 180JF cos(3a, — ay)J}

+92J3 cos(ay) I} + 6445 cos(ery ) J7 — 32 cos(a,) I} — 36473 cos(2a,)JE + 4875 cos(2a,)JE — 60J3 cos(3a)J}
—368J5 cos(at, + ay)J{ + 965 cos(ay + ay)Ji — 180J5 cos(2a, + ay) I — 180J5 cos(ay + 2a,)J}

—368J7 cos(at, — 2a,)J} + 965 cos(a, — 2a,)J7 — 180J3 cos(Baty — 2a,)JE — 180JF cos(a, — 3a,)J}
—180J5 cos(2ay — 3a,)Ji + 144J7 — 545 — 336J5 + 288J5 + 1685 cos(a,) — 128J5 cos(a,) — 64J5 cos(ay)
+128J; cos(ay) + 165 cos(2a) + 645 cos(2a,) — 32J7 cos(2a,) — 1045 cos(3a,)

+16J3 cos(3a,) — 10J5 cos(da,) + 168J5 cos(a, — a,) — 128J5 cos(a, — a,) — 64JF cos(ar, — @)

+128J, cos(a, — ay) + 16J5 cos[2(a, — ay)] + 645 cos[2(er, — a,)] — 32J5 cos[2(a, — ay)]

—104J5 cos[3(a, — ay)]+16J5 cos[3(ay — ay)]— 105 cos[4(a, — )]+ 136J5 cos(2a, — )

+32J5 cos(2a, — ay) — 64J5 cos(Rar, — ay) — 112J5 cos(3e, — @) + 48J; cosBer, — aty)

—40J3 cos(da, — ay) + 168J5 cos(a,) — 128J5 cos(a,) — 64J5 cos(ay) + 1285 cos(a,) + 1675 cos(2a,)
+64J5 cos(2a,) — 32J7 cos(2a,) — 104J5 cos(3a,) + 16J5 cos(3a,) — 10J5 cos(dar,)

—}—136124 cos(ay + o) + 32]23 cos(ay +ay) — 64J22 cos(ay +ary) — 60]24 cos[2(ay + ay)] — 112J24 cos(2orx + ay)
+48.123 cosCo+ay) — 40]24 cosBay+ary) — 112]24 cos(o, + 2aty) + 48]23 cos(oy + 2ay) + 136]24 cos(oy — 2aty)
+32J5 cos(a, — 2ay) — 64J3 cos(ax — 2ay) — 60J5 cos[2(e, — 2a)] — 112J5 cos(3ar, — 2at,)

+48J5 cos(3a, — 2a,) — 60J5 cos(da, — 2ay)

—112J5 cos(at, — 3ay) + 48J; cos(a, — 3a,) — 112J5 cos(2e, — 3aty)

+48J5 cos(2a, — 3a,) — 40J5 cos(da, — 3ay)

—40J3 cos(a, — 4ay) — 40J5 cos(3a, — day) — 40J2% cos(a, + 3a,)),

in which « are related to the k reciprocal lattice vectors by o, = \/Tgkx + %ky and oy = —‘/751@( + %ky.
The triplet gap A4 (J;,J>), that is, the minimum of the two dispersion branches w.(J;,J;) along the range presented in this
work, is given by

128 8 16 2 4 8 8 4 2

3J4 943, 39J%JF  3J2J, 351J,J3  274,JF 94 ), 3J
B Pt W 172 29192 2 2 _ U1 1. Al
16 8 + 8 2 8 T 2 T |7 (AD)

165J%  9J3J, 3J3 3J2J% 3J%), 3JF 33JF 313 3J?
ALy, ) = — 1 172 1 192 12+ 1 2 2 2

(

Finally, the critical line in the plane J,-J, presentedin Fig. 2(a) solving AL(1/Jy,J»/J1) = 0 since the unit in the main text
of the main text (blue line) was then obtained by numerically is J; and not J; as presented here.
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