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Resonant electron tunneling spectroscopy of antibonding states in a Dirac semimetal
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Recently, it was shown both theoretically and experimentally that certain three-dimensional (3D) materials
have Dirac points in the Brillouin zone, thus being 3D analogs of graphene. Moreover, it was suggested that under
specific conditions a pair of localized impurities placed inside a three-dimensional Dirac semimetal may lead
to the formation of an unusual antibonding state. In the meantime, the effect of vibrational degrees of freedom
which are present in any realistic system has avoided attention. In this work, we address the influence of phonons
on characteristic features of (anti)bonding state, and discuss how these results can be tested experimentally via
local probing, namely, inelastic electron tunneling spectroscopy curve obtained in STM measurements.
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I. INTRODUCTION

Quantum electrodynamics (QED) is an abundant source of
ideas and concepts that form a basis of the modern science
[1]. However, direct experimental observation of many effects
predicted by QED can hardly be accomplished as it requires
achievement of the energies which can not be reached in
up-to-date experimental setups. Fortunately, in the domain
of condensed matter physics there exist low-energy analogs
of a plethora of QED phenomena. One of the most striking
examples is Weyl fermions originally proposed as massless
chiral particles mathematically described by Dirac equation [2]
and recently shown to emerge in a certain class of semimetals
with nontrivial topology [3–9].

In most of the cases the spectrum of the electrons and the
holes in metals and semiconductors can be well approximated
by parabolic dispersion relation for both conduction and
valence bands (so-called effective mass approximation). In
certain class of materials, known as topological insulators,
conduction and valence bands become inverted. Transition
between topological and trivial phases proceeds via a gapless
phase which is characterized by three-dimensional Dirac dis-
persion in the presence of both time-reversal and inversion
symmetry [10]. Interestingly, in the systems with a lack of
inversion symmetry the presence of such critical point results
in the formation of gapless Weyl nodes distributed over the
Brillouin zone and annihilating with partners of opposite
chirality, leading thus to the change in topology [11] and
appearance of the exotic surface states in the form of Fermi arcs
[12]. For the materials with the chemical potential positioned
quite close to the Weyl nodes, the term Weyl semimetal has
been coined, in which electronic structure is characterized by
bulk band crossings.

In three-dimensional (3D) materials, dispersion in the form
of massless Dirac equation with fourfold degenerate Dirac
points was predicted in Refs. [13–15]. In contrast to Weyl
nodes, this degeneracy is not topologically protected owing

to the fact that the net Chern number is zero. In certain cases,
however, the space group of a crystalline solid prevents this
mixing to happen, and symmetry-protected nodes appear. This
corresponds to the case of three-dimensional Dirac semimetals
(3D-DSM) [12,15,16] existing in the vicinity of the transition
point between topological and normal phases and stabilized
by crystalline symmetry. In these materials, valence and
conduction bands touch at discrete Dirac points, emerging
due to the overlap of the Weyl nodes in momentum space
and characterized by linear electronic dispersion in all three
directions. The latter makes such structures extremely robust
with respect to external perturbations, e.g., spin-orbit coupling.
The existence of three-dimensional Dirac points has been
predicted and experimentally verified in Na3Bi [17,18] and
Cd3As2 [19,20].

Recently, it was shown that for a pair of distant localized
impurities embedded inside the 3D-DSM one can expect the
formation of antibonding ground state [21]. In this paper, we
generalize our previous study [21] to explore the effect of
vibrational modes on the ground-state formation. We expect
that the peculiarities associated with the presence of phonons
can be detected by means of inelastic electron tunneling
spectroscopy (IETS) with the help of local probing technique,
e.g., scanning tunneling microscopy (STM). In fact, when the
energy of the tunneling electron exceeds the energy required to
excite the local vibrations, the new scattering channel related
to inelastic excitation of the local mode opens [22–24].

This paper is organized as follows: In Sec. II we present
a microscopic Hamiltonian and provide a brief description of
the methods used in our study. The results of the numerical
simulations are presented in Sec. III. Finally, we summarize
our findings in Sec. IV.

II. ANALYTICAL RESULTS

In this section we provide the microscopic Hamiltonian and
introduce the analytical technique used throughout the paper.
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For simplicity, we consider the coupling to a single-phonon
mode present in the system and treat electron-phonon inter-
action by means of Lang-Firsov transformation. We further
utilize the equation-of-motion (EOM) approach [21,25] to
evaluate the local density of states (LDOS) and see how
the presence of the vibrational degrees of freedom affects
the formation of antibonding state (we put h̄ = 1 throughout
the calculations).

A. Model Hamiltonian

Consider the geometry schematically shown in the Fig. 1:
two localized impurities are embedded into 3D-DSM, and each
of them is supposed to possess vibrational degree of freedom.
The Hamiltonian of such a system may be represented as

H = H0 + Hd + Hhyb + He-ph + Hph. (1)

In Eq. (1) the first term corresponds to the low-energy effective
Hamiltonian of 3D-DSM,

H0 =
∑
kσ

∑
τ=±

τvF (k · σ )c†kστ ckστ , (2)

where the three-dimensional wave vector k = (kx,ky,kz) spec-
ifies electronic states, σ stands for a vector of Pauli matrices,
and vF is the Fermi velocity at the Dirac point. Moreover,
ckστ (c†kστ ) stands for the annihilation (creation) operator of
an electron with spin σ and chirality τ . The second term in (1)
describes a pair of impurities, modeled by the Hubbard-type
Hamiltonian

Hd =
∑
jσ

εjσ d
†
jσ djσ +

∑
j

Ujnj↑nj↓, (3)

with single-particle energy εjσ and onsite Coulomb repulsion
Uj , whereas d

†
jσ and djσ label creation and annihilation

operators, respectively, njσ = d
†
jσ djσ counts the number of

electrons with spin projection σ at site j , and nj = nj↑ + nj↓.
The third term in (1),

Hhyb =
∑
jkσ

∑
τ=±

(
Vjkd

†
jσ ckστ + V ∗

jkc
†
kστ djσ

)
, (4)

FIG. 1. Schematic representation of the model system: two im-
purities, positioned at R1 and R2 with energy levels ε1σ and ε2σ , are
embedded into a three-dimensional Dirac semimetal. We account for
the vibrational degrees by coupling a phonon mode of the coupling
strength λ and energy ω0 to each of the impurities.

represents the hybridization between the electronic states of
impurities and conduction electrons with the tunneling matrix
element Vjk = v0e

ik·Rj /
√

N , the amplitude v0 is chosen the
same for both impurities positioned at Rj (j = 1,2), N is the
normalization factor yielding the total number of states. This
element well describes the electronic scattering by impurities
and neglects the exponential decay towards the STM tip. It
means that our findings would be just attenuated at the surface,
without loss of generality. The fourth term in (1) corresponds
to the electron-phonon interaction, thus accounting for the
possibility of impurity vibrations

He-ph = λ
∑

j

nj (a†
j + aj ), (5)

where λ is the electron-phonon coupling strength, whileaj (a†
j )

stands for annihilation (creation) operator of bosonic mode at
j th site. The last term in (1),

Hph = ω0

∑
j

a
†
j aj , (6)

corresponds to the free phonons. We restrict our analysis to a
single mode with the frequency ω0.

B. Lang-Firsov transformation

The Hamiltonian (1) resembles that of two-site Anderson-
Holstein model, interacting with a single vibron mode, that
can be rigorously approached using Lang-Firsov canonical
transformation [26,27]. The latter eliminates the electron-
phonon coupling (He-ph) and leads to the renormalization of
impurity elements (Hd,Hhyb). The transformed Hamiltonian
H̃ = SHS−1 reads as

H̃ = H0 + H̃d + H̃hyb + Hph, (7a)

H̃d =
∑
jσ

ε̃jσ njσ +
∑

j

Ũjnj↑nj↓, (7b)

H̃hyb =
∑
jkσ

∑
τ=±

(
Vjkd̃

†
jσ ckστ + V ∗

jkc
†
kστ d̃jσ

)
, (7c)

where S = exp[
∑

j xjnj ] is anti-Hermitian generator with

xj = λ(aj − a
†
j )/ω0, while ε̃jσ = εjσ − λ2

ω0
and Ũj = Uj −

2λ2

ω0
represent the renormalization of the particle energy and

onsite Coulomb repulsion due to their coupling with the j th
phonon. The absence of an explicit electron-phonon coupling
term in Eq. (7a) is justified by the renormalization d̃jσ = djσ X̂j

in the hybridization term by the phonon shift generator X̂j =
exj . The price one has to pay for that type of transformation
is the necessity to work with polaron-type qusiparticles, i.e.,
electrons surrounded by phonon clouds. The effects of the
polaronic interactions in the molecule ground state can be
analyzed via probing LDOS of the system, e.g., with the
application of STM, defined as

LDOS (ε,Rm) = − 1

π

∑
σ

Im
[
GR

σ (ε,Rm)
]
, (8)
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where

GR
σ (ε,Rm) = 1

N

∑
kk′

∑
ττ ′

e−i(k−k′)·RmGR
kστ |k′στ ′(ε) (9)

is the retarded Green’s function of the system in the energy
domain at the STM tip position Rm. We further proceed
our analysis with EOM approach to the Green’s functions of
conduction electrons in time domain

GR
kστ |k′στ ′(t) = −iθ (t)〈{ckστ (t),c†k′στ ′(0)}〉H̃, (10)

where the angular brackets 〈. . .〉H̃ denote the thermal averaging
with respect to the transformed Hamiltonian (7a). In a similar
way, we define Green’s functions of d electrons

GR
jσ |j ′σ (t) = −iθ (t)〈{d̃jσ (t),d̃†

j ′σ (0)}〉H̃
= −iθ (t)〈{djσ (t),d†

j ′σ (0)}〉H. (11)

C. Equation-of-motion approach

In general, the EOM formalism implies calculation of time
derivatives of the Green’s functions of the system. If the sys-
tem Hamiltonian contains the interaction terms, these deriva-
tives lead to higher-order Green’s functions which at some
point should be truncated to close the system of differential
equations.

Applying standard EOM techniques to GR
kστ |k′στ ′(ε) and

performing summation over τ and τ ′ described in Eq. (9), we
derive∑

ττ ′
GR

kστ |k′στ ′(ε) = fkδkk′ + fkfk′
∑
jj ′

V ∗
jk GR

jσ |j ′σ (ε) Vj ′k′ ,

(12)

where fk = 2ε/(ε2 − v2
F k2). Thereby, Eq. (8) gives

LDOS(ε) = ρ0(ε) +
∑

σ

∑
jj ′

δρσ
jj ′(ε), (13)

where ρ0(ε) ≡ − 1
πN

Im{∑k fk}=V ε2/(Nπ2h̄3v3
F )=3ε2/D3

stands for the bare 3D-DSM density of states (here, V is the vol-
ume occupied by the system and we defined the half-bandwidth
of the system D), while the contribution stemming from the
scattering of conduction electrons off localized impurities may
be represented as

δρσ
jj ′ (ε) = − 1

πv2
0

Im
[
�mj (ε)GR

jσ |j ′σ (ε)�j ′m(ε)
]
. (14)

Note that Eq. (14) corresponds to the electronic waves scattered
by the localized impurities directly into the host semimetal for
j ′ = j and the waves scattered between the impurities via host
if j ′ is opposite to j , i.e., j ′ = j̄ . Remarkably, the self-energy
determined in (14),

�mj (ε) = v2
0

N

∑
k

fk eik·(Rm−Rj ), (15)

is not affected by the vibrations given that just localized phonon
modes are considered in our model. However, the Green’s
function of the localized levels (11) is renormalized by the
phonon shift generator, thus being responsible for the coupling
between the electron and phonon subsystems.

To get a further analytical insight, we decouple the electron
Green’s function of Eq. (11) using analog of the Born-
Oppenheimer approximation [24,27], thus treating electron
and phonon degrees of freedom separately,

GR
jσ |j ′σ (t) ≈ gR

jσ |j ′σ (t)〈X̂j (t)X̂†
j ′(0)〉H̄ph

, (16a)

gR
jσ |j ′σ (t) = −iθ (t)〈{djσ (t),d†

j ′σ (0)}〉H̄el
, (16b)

where X̂j (t) = eiH̃ph t X̂j e
−iH̃ph t . Interestingly, averaging of

phonon shift operators dresses diagonal (j ′ = j ) and off-
diagonal (j ′ �= j ) components of Eq. (16a) in a different way,
namely,

GR
jσ |jσ (ε) = e−β coth z

∞∑
n=−∞

gR
jσ |jσ (ε − nω0)

× In(2β csch z) enz, (17)

and another for j ′ = j̄ �= j ,

GR
jσ |j̄σ

(ε) = gR
jσ |j̄σ

(ε) e−β coth z, (18)

z = ω0/(2kT ), β = λ2/ω2
0, while In(y) stands for the modified

nth-order Bessel function for complex arguments, coth y =
(ey + e−y)/(ey − e−y) and csch y = 2/(ey − e−y) denote hy-
perbolic cotangent and hyperbolic cosecant, respectively. The
pure electronic Green’s function gR

jσ |j ′σ (ε) is evaluated by
means of its EOM with respect only to the electronic part of
the Hamiltonian described in Eq. (7a), leading to

[
ε − ε̃jσ − �̃jj (ε)

]
gR

jσ |j ′σ (ε) = δjj ′ + Ũj G(4)
jσ σ̄ |j ′σ (ε)

+ �̃j j̄ (ε) gR
j̄σ |j ′σ (ε), (19)

where renormalized self-energies �̃jj = 〈X̂j X̂
†
j 〉H̃ph

�jj and

�̃j j̄ = 〈X̂j X̂
†
j̄
〉H̃ph

�jj̄ . In Eq. (19) we have also in-

troduced the two-particle Green’s function G(4)
jσ σ̄ |j ′σ (t) =

−θ (t)〈{djσ (t)njσ̄ (t),d†
j ′σ (0)}〉 with σ̄ = −σ that is known to

be responsible for generating an infinite set of high-order
Green’s functions. To truncate the infinite hierarchy of such
obtained equations, we make use of the Hubbard I decoupling
scheme [21,28]. This approach provides a reliable description
of impurities away from the Kondo regime in metals. Such
a phenomenon appears as a sharp peak at the Fermi level in
the impurities density of states for low-temperatures regimes
(T  TK , where TK is the Kondo temperature of the system).
Accounting for the fact that in 3D-DSM ρ0(εF ) = 0, we can
safely apply the Hubbard I framework in the current system
even with T  TK . After straightforward algebra, we derive[

ε − ε̃jσ − Ũj −
∑

k

fk|Vjk|2〈X̂j X̂
†
j 〉H̃ph

]
G(4)

jσ σ̄ |j ′σ (ε)

= 〈njσ̄ 〉
[
δjj ′ +

∑
k

fkV
∗
jkVj̄k〈X̂j X̂

†
j̄
〉H̃ph

gR
j̄σ |j ′σ (ε)

]
.

(20)
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The expression (20) can be closed upon identifying the
fermionic occupation number according to

〈njσ 〉 = − 1

π

∫ D

−D

nF (ε) Im
[
gR

jσ |jσ (ε)
]
dε, (21)

with nF (ε) = 1/(eε/kT + 1) being the Fermi-Dirac distribu-
tion. Finally, combining Eqs. (17)–(20), we find the diagonal
components of Green’s function as

GR
jσ |jσ (ε) =

∞∑
n=−∞

λσ̄
j In(2β csch z) enz−β coth z

ε − nω0 − ε̃jσ − Λσ
jj (ε − nω0)

, (22)

whereas off-diagonal components of Green’s function may be
determined from

GR
jσ |j̄σ

(ε) = �̃j j̄ (ε)

ε − ε̃jσ − �̃(ε)

λσ̄
j λσ̄

j̄
e−β coth z

ε − ε̃jσ − Λσ
jj (ε)

, (23)

provided that

λσ̄
j = 1 + Ũj 〈njσ̄ 〉

ε − ε̃jσ − Ũj − �̃0(ε)
(24)

and

Λσ
jj (ε) = �̃0(ε) + �̃j j̄ (ε)�̃j j̄ (ε)

ε − ε̃j̄σ − �̃0(ε)
. (25)

It should be pointed out that although the Born-Oppenheimer
decoupling apparently disregards any correlation between
electron and phonon degrees of freedom, both local (�0) and
nonlocal (�jj̄ ) electronic self-energies, defined in Eq. (15),
are renormalized by the phonon field, so that �̃0(ε) =
�0(ε) e−β coth z and �̃j j̄ (ε) = �jj̄ (ε) e−β coth z, respectively. Af-
ter summating over all available states in the k space and
introducing the energy cutoff D as the half-bandwidth of the
3D-DSM, the bare self-energy may be written as follows:

�R
0 (ε) = 3v2

0

D3

(
ε2 ln

∣∣∣∣D + ε

D − ε

∣∣∣∣ − 2D2 − iπε2

)
, (26)

for Rjj = 0 and

�R
jj̄

(ε) = −3πv2
0

D3

εh̄vF

|Rj j̄ |
exp

(
i
ε|Rj j̄ |
h̄vF

)
, (27)

for Rj j̄ = Rj − Rj̄ . We have also established that the presence
of vibrations results in the diagonal components of the Green’s
function of the system (11) being dressed, thus creating an
infinite set of polaronic states. This entire set of states is
modulated by the exponential factor which depends on the ratio
λ/ω0 and is quite sensitive to the temperature T . The latter
suggests that tuning these quantities determines how many
polaronic states are involved in the formation of the ground
state.

III. NUMERICAL RESULTS

In order to explore the role of polaronic interactions in the
formation of the molecular state of two identical impurities
placed at R1,2 = (0,±1.5,0) nm with energy levels εjσ =
−0.1D, onsite Coulomb repulsion Uj = 0.2D and hybridiza-
tion strength v0 = 0.2D, we consider a phonon mode with
energy ω0 = 0.01D coupled to each impurity as sketched in

FIG. 2. Electronic properties of the system in the valence band
with εjσ = −0.10D, Uj = 0.20D, v0 = 0.20D, ω0 = 0.01D, and
λ = 0.7ω0 for T = 10 K (left panels) and T = 40 K (right panels).
Impurities density of states presenting the electronic and polaronic
levels (a) and (d). The profiles of δρjj ′ (ω) at Rm = (1,1,1) nm for
j ′ = j (solid green curve) and j ′ = j̄ (dashed red curve) revealing the
interferences between diagonal and mixed electronic waves scattering
(b) and (e). Total LDOS (c), described in Eq. (13), displaying a pure
electronic ground state formed by a destructive interference shown
in panel (b). Total LDOS revealing the emergence of a lowest-energy
polaronic mode due to the thermal excitation (f). The insets display
the entire spectrum of each panel, i.e., valence and conduction bands.

Fig. 1. Noteworthy, it was already shown in Ref. [21] that
in the absence of vibrations, the emergence of antibonding
ground state is independent on the choice of the electronic
parameters (εjσ ,Uj ,v0) as long as these quantities do not
create resonant levels very far from the Dirac point, where
the linear dispersion relation approximation does not hold
anymore. For sake of feasibility, we follow D ≈ 0.2 eV with
h̄vF ≈ 5 eVÅ for Cd3As2 [29,30]. The diagonal components
of Green’s function described in Eq. (22) generate an ensemble
of polaronic sidebands with energies ε̃jσ owing to the presence
of the poles at ε = nω0, so that high phonon energies may
give rise to the resonance levels near the band threshold.
Meanwhile, within Born-Oppenheimer approximation, these
levels appear only around the Fermi energy which, according
to Ref. [31], represents a suitable description for local polaronic
interactions in the weak coupling limit (ω0,λ  v0). Further-
more, if we consider ω0 in a strong coupling limit (ω0,λ �
v0), for instance, the diagonal Green’s function should be
renormalized just by e−g coth z instead of the summation found
in Eq. (22) [31]. However, no qualitative change in the nature
of the ground state shows up in this scenario.

As a pair of identical impurities is considered, their densi-
ties of states, defined by LDOSjj (ε) = − 1

π
Im[

∑
σ GR

jσ |jσ (ε)],
exhibit exactly the same behavior. In Fig. 2(a) these densities
of states for λ = 0.7ω0 and T = 10 K present sidebands in the
valence band. Close inspection of Fig. 2(b), which displays the
induced local density of states [δρjj ′(ε)] at Rm = (1,1,1) nm,
reveals that the mixed term indicates the energetic position of
the pure electronic states since there is no polaronic interaction
in the mixed Green’s function described by Eq. (23). Together
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with them, we also find four peaks in the diagonal Green’s func-
tion for n = 0. Thereby, both the destructive and constructive
interference at these energies create pure electronic states, thus
indicating that all other resonances correspond to polaronic
modes. We highlight that despite the low temperature (T =
10 K), a set polaronic mode emerges just because the electronic
tunneling between impurity and host, described by the pure
electronic state at ε = −0.09D, excites the phonon degree of
freedom. Thereby, all polaronic modes exclusively excited by
the electron tunneling are located at highest energetic positions
in comparison with state at ε = −0.10D. Upon increase of the
temperature to T = 40 K, some thermally excited phonons
are absorbed in process of the electronic scattering, giving
rise to additional modes in the density of states as can be
seen in Fig. 2(d). As an aftermath, the LDOS displayed in
Fig. 2(f) exhibits a different ground state [32] as compared to
the LDOS presented in Fig. 2(c). In summary, for T = 10 K the
ground state is created by the destructive interference between
pure electronic states, whereas for T = 40 K the constructive
interference [δρ11(ε) + δρ22(ε)] of the polaronic modes at
ε = −0.11D creates a new ground state. We call attention that
in Figs. 2(c) and 2(f) the background ρ0 ∼ ε2 is not noticed
due to the pronounced induced LDOS amplitude δρjj ′ . In the
latter, the ratio h̄vF /D|Rmj | from Eq. (27) modulates such
amplitude as can be seen in Eq. (14), while in the former vF

enters inversely. It means that one should properly choose
the separation between the impurities and Fermi velocity,
which is material dependent, to notice the background scaling.
Moreover, as we considered the weak coupling regime, the
peak’s broadening is ruled by the Anderson parameter �(ε) =
πv2

0ρ(ε) with ρ(ε) ∝ ε2. Hence, for energies near the Fermi
level (ε/D  1), the broadening is small enough to form sharp
peaks.

The detection of inelastic features is usually performed by
looking at d2I/dV 2 ∝ dLDOS(ε)/dε [22–24]. However, as
the bonding ground state is assisted by vibrations, it emerges
in the DOS as just a peak. Consequently, such state is of
resonant type as well as the corresponding antibonding state,
which is of pure electronic nature. The direct implication is
that both signals reveal a similar profile as shown in Fig. 3,
wherein the former stems from resonant inelastic electron-
phonon scattering. If temperature is further increased, other
assisted phonon sidebands would emerge configuring new
ground states, but all of them with bonding characteristics
once that the unique antibonding state comes from an indirect
tunneling that is decoupled from the local phonon perturbation,
thus preventing any new bonding-antibonding crossover.

To better understand the change in the nature of the ground
state, a topographic analysis of the LDOS on the surface
Rm = (x,y,1) nm is presented in Fig. 4. We start by analyzing
the surface LDOS for the two energies of interest, ε = −0.10D

and −0.11D, which correspond to the ground states found
in Fig. 2 for T = 10 and 40 K, respectively. In Fig. 4(a),
an antibonding profile characterizes the ground state of the
molecule. However, the thermally excited polaronic state
which emerges for high temperatures, shown in Fig. 2(f),
creates a new ground state of a bonding character as can be
seen in Fig. 4(b). To comprehend this transition, we should look
at the surface LDOS at ε = −0.11D for T = 10 K displayed
in Fig. 4(c). One can notice highly attenuated LDOS signal

(a)

(b)

FIG. 3. The dLDOS(ε)/dε = 0 profile on the valence bands with
the parameters: εjσ = −0.10D, Uj = 0.20D, v0 = 0.20D, ω0 =
0.01D, and λ = 0.7ω0 for T = 10 K (a) and T = 40 K (b). The
vertical dashed lines mark the energetic position of the ground
states.

presenting an antibonding characteristic, pointing out that this
is just the spread of the ground state found at ε = −0.10D, as
shown in Fig. 4(a). This means that indeed there is no thermally
excited state for T = 10 K. In contrast, for T = 30 K displayed
in Fig. 4(d), the LDOS signal is enhanced by thermally excited
polarons. These results show, thus, that the transition between
ground states has crossover character.

The formation of an antibonding ground state was first
discovered in a system of coupled quantum dots [33,34].
It is manifested as negative electronic hopping between the
dots mediated by spin-orbit coupling. In the meantime, it

FIG. 4. LDOS topography of the surface of 3D-DSM [Rm =
(x,y,1) nm plane]. For T = 10 K (a), at the ground state energy
ε = −0.10D, an antibonding profile emerges due to the destructive
interference between the waves scattered by the impurities. For higher
temperature T = 40 K (b), the ground state at ε = −0.11D features
bonding characteristics. The orbital characteristics of the state ε =
−0.11D for T = 10 K (c) and T = 30 K (d), respectively, revealing
smooth crossover in the nature of the ground state.
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turns out that a similar effect takes place in the model in
question: Indeed, Friedel-type oscillations of electron density
well inside 3D-DSM results in the effective hopping term
Λσ

jj (ε) of Eq. (25) between the impurities being negative. In
quantum dot systems, the antibonding ground state is found
at zero temperature. Hence, the molecule is always found in
its ground state due to the maximum probability given by the
statistical weight of Boltzmann factor. For finite temperatures,
however, there is a probability to find the molecule out of
the ground state. As the molecular spectrum changes with
temperature due to the phonon degrees of freedom [32], it is
not straightforward to determine this probability as a function
of temperature. Despite this, for each temperature the ground-
state probability can be determined by pgs = 1

Z
e−βεgs , where Z

is the partition function. Hence, for T = 10 K the probability
to find the molecule in its ground state (antibonding) is ∼1,
exhibiting that for such temperature the molecule is always in
its lowest-energy state. While that for T = 40 K, the molecule
presents pgs ∼ 0.943 of being in its new ground state (bonding,
due to the emergence of the new polaronic level) and with
p1st ∼ 0.053 of being in first excited state (antibonding, which
was the former ground state).

IV. CONCLUSIONS AND OUTLOOK

In summary, we theoretically investigated the role of the po-
laronic interactions in formation of the molecular ground state
for two atoms placed inside a 3D-DSM. It was demonstrated
that the increasing of the temperature favors the emergence
of polaronic modes at lower energetic positions in compar-
ison with pure electronic states that are responsible for the
antibonding character of the ground state. As a consequence,
the ground state experiences an antibonding-bonding smooth
crossover. Our theoretical findings may be probed by means
of STM measurements and will trigger further experimental
activity in this direction.
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