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Relaxation of photoexcitations in polaron-induced magnetic microstructures
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We investigate the evolution of a photoexcitation in correlated materials over a wide range of time scales.
The system studied is a one-dimensional model of a manganite with correlated electron, spin, orbital, and lattice
degrees of freedom, which we relate to the three-dimensional material Pr1−xCaxMnO3. The ground-state phases
for the entire composition range are determined and rationalized by a coarse-grained polaron model. At half
doping a pattern of antiferromagnetically coupled Zener polarons is realized. Using time-dependent density-
matrix renormalization group (tDMRG), we treat the electronic quantum dynamics following the excitation. The
emergence of quasiparticles is addressed, and the relaxation of the nonequilibrium quasiparticle distribution is
investigated via a linearized quantum-Boltzmann equation. Our approach shows that the magnetic microstructure
caused by the Zener polarons leads to an increase of the relaxation times of the excitation.
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I. INTRODUCTION

The relaxation of optical excitations in materials is a process
that is central for energy conversion in materials. In particular,
short length and time scales reveal a whole range of interesting
physical effects. In the presence of strong correlations, this
topic is one of ongoing experimental [1–6] and theoretical
studies [7–10]. A detailed understanding of these processes
is expected to open doors for new technological applications.

For example, the controlled application of pump-probe
setups on the femtosecond time scale has lead to interesting
discoveries, such as the formation of metastable states, some
of which are described to be superconducting [11]. Light
irradiation of interfaces of correlated materials has shown
the possibility to realize unconventional photovoltaic effects
[12–18] that are not based on the formation of excitons, but
rather of polarons, i.e., quasiparticles consisting of electrons
and phonons that are formed or excited by light absorption.
Pump-probe experiments in manganites have produced evi-
dence for long-lived hot-polaron states [19]. Such long-lived
states are of interest, because they have the potential to
overcome the Shockley-Queisser limit [20] for the efficiency
of solar cells.

The relaxation processes of excitations span a wide range
of time scales: The absorption process of light in pump-probe
experiments can last as short as femtoseconds, whereas the
perturbed polaronic order may persist up to time scales in
the range of nanoseconds. The focus on strong correlations
is particularly promising in the context of identifying slow
relaxation processes. Finding a unifying description of the
evolution of these excitations, particularly in the presence of
strong correlations, is a major challenge.

In this paper, we combine a number of theoretical ap-
proaches to cover the large range of time scales of a relax-

ation process for a specific material. The material chosen
has been inspired by manganites, a class of materials with
strong correlations between electrons, spins, and phonons.
In order to make the problem tractable, however, we have
chosen a one-dimensional model-manganite system, which
nevertheless contains many of the relevant properties of the
real materials. We investigate the ground-state properties of
this model system and find that they are well rationalized in
terms of polaronic order. Using the time-dependent density-
matrix renormalization group (tDMRG) in a matrix product
state (MPS) formulation [21–26], we then investigate the time
evolution following a dipole excitation, by which we model
the effect of a photoexcitation on one of the polaronic ground
states. This allows us to study the role of the electron-electron
interaction in the short-time dynamics after the excitation.
The long-time behavior of the electron relaxation is then
investigated using a linearized quantum Boltzmann equation
(LBE) [27]. The tDMRG and the LBE approaches both show
that the relaxation time scales increase with the strength of the
magnetic microstructure, which is induced by the polaronic
order.

The paper is organized as follows. A 1D tight-binding
model for the model manganite, its polaronic and magnetic
order, and the resulting effective Hubbard-type model are
presented in Sec. II. In Sec. III we present the tDMRG results
for the short-time dynamics of the local density and of the
momentum distribution function following a photoexcitation,
which we model by polarizing a single dimer in the center of the
system. In Sec. IV we discuss how to estimate the quasiparticle
momentum distribution from the numerical tDMRG results
and the computation of the quasiparticle relaxation rates from
a linearized Boltzmann equation ansatz, followed by Sec. V,
in which we summarize. The considerations on the LBE are
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FIG. 1. One-dimensional chain of corner connected MnO6 octa-
hedra of the model manganite in the coordinate system chosen.

complemented by Appendix A. In Appendix B, details on the
effect of boundary conditions on the momentum distribution
are discussed. Finally, in Appendix C details for the MPS
computations at finite temperatures and for the estimate of the
energy density of the excitation are presented.

II. POLARONIC ORDER AND EFFECTIVE MODEL

In Ref. [28], a tight-binding model for the strongly corre-
lated electronic, spin, and lattice degrees of freedom of the
three-dimensional manganite Pr1−xCaxMnO3 is developed.
Models of this type have been described by Hotta [29].
The parameters of the model have been extracted from first-
principles calculations [28]. Because the simulation of the
full quantum dynamics following a photoexcitation is out of
reach for the three-dimensional material, we replace it by a
fictitious one-dimensional manganite, which still exhibits the
main properties of the three-dimensional system. As Ref. [28]
already details the derivation of the microscopic model in the
three-dimensional case, we sketch the basic ideas here only
briefly and mention the differences leading to the 1D model
treated here.

A. Tight-binding model for manganites

The one-dimensional material consists of a chain of corner
connected MnO6 octahedra. The coordinate system has been
chosen, as shown in Fig. 1, with the z axis along the chain, and
the x and y axis along the orthogonal octahedral axes.

FIG. 2. Degrees of freedom of the tight-binding model. (top)
Orbital degrees of freedom of the eg electrons, which are treated
explicitly, and classical spin degree of freedom related to the t2g

electrons. (bottom) Breathing modeQ1 and Jahn-Teller-active phonon
modes Q2, Q3.

The dynamic electronic, spin, and lattice degrees of free-
dom of the tight-binding model, sketched in Fig. 2, are the
following:

(i) Electrons: The relevant electrons are those in the two
eg orbitals of the Mn ions. In the spirit of density-functional
theory, the eg electrons are described by one-particle wave
functions. The one-particle wave function with band index n

is expressed as

|ψn〉 =
∑
σ,α,R

|χσ,α,R〉ψσ,α,R,n (1)

in terms of local spin orbitals |χσ,α,R〉. The spin orbitals at
Mn-site R have spin σ ∈ {↑,↓} and spatial orbital character α,
denoting the dx2−y2 orbital for α = a and the d3z2−r2 orbital for
α = b.

(ii) Spins: The three low-lying, spin-aligned electrons in
the Mn-t2g states at site R are described by a classical spin �SR

of size 3
2 h̄. Recent calculations indicate this to be an excellent

approximation [30].
(iii) Lattice: The relevant phonons are the two Jahn-Teller

active distortions of the MnO6 octahedra. Their phonon am-
plitudes are denoted by Q2,R and Q3,R [31]. The mode Q3,R

describes the oblate and prolate distortion of the octahedron
at site R along the z direction. The mode Q2,R describes the
simultaneous elongation along the x and contraction along the
y direction, and vice versa. We refer here to the local Cartesian
coordinates aligned along the octahedral axes.

All other degrees of freedom are either absorbed into the
dynamical variables of the model, or they are considered as a
bath and not treated explicitly.

The total-energy functional of density-functional theory
[32,33] is replaced by the potential energy of the model, which
takes the form

Epot = Ee + ES + Eph + Ee−ph + Ee−S, (2)

where Ee is the energy of the electronic subsystem in the Mn-eg

orbitals, ES describes the antiferromagnetic interaction of the
t2g electrons on neighboring Mn sites, and Eph is the energy
of the Jahn-Teller active phonons. The coupling of electrons
with the spin of the t2g electrons and the lattice vibrations
is described by Ee−S and Ee−ph, respectively. We treat the
different terms in the following way:

(i) Electronic energy Ee: The electronic energy contribu-
tion Ee = Ekin + EU consists of the kinetic energy Ekin of
the eg electrons and their interaction EU . In the tight-binding
model, the interaction EU is treated in a Hartree-Fock-like
manner, analogous to hybrid density functionals [34], LDA+U

[35], and GW [36] calculations. All on-site matrix elements of
the Coulomb interaction within a eg shell are considered. They
can be parameterized by two Kanamori parameters [37] U

and Jxc. The hopping amplitude of the kinetic energy term is
denoted as thop.

(ii) Spin energy ES : The spin energy describes the coupling
between the t2g states of neighboring Mn sites. The coupling
is antiferromagnetic and described by the parameter JAF .

(iii) Phonon energy Eph: The phonon energy describes
a restoring force term which restores the perfect octahedron
in the absence of other interactions. Note that the octahedral
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TABLE I. Model parameters for the one-dimensional model
situation, based on the first-principle calculations on Pr1−xCaxMnO3

of Ref. [28]. JAF describes the antiferromagnetic coupling between
the t2g states of neighboring Mn sites; JH is the Hund’s coupling; U

and Jxc are the Kanamori parameters for electron-electron interaction
between eg electrons; gJT and kJT parametrize the electron-phonon
interaction; thop is the hopping amplitude of the eg electrons. With
two exceptions described in the text, they are identical to the values
extracted in Ref. [28].

JAF 32.6 meV g
†
JT 2.113 eV/Å

JH 0.653 eV kJT 5.173 eV/Å2

U 2.514 eV thop 0.585 eV
Jxc 0.692 eV

distortions of different sites are not independent but strongly
coupled via oxygen atoms shared between two octahedra.

(iv) Electron-phonon coupling Ee−ph: The electron
phonon coupling is responsible for the Jahn-Teller distortions
of the octahedra in the presence of electrons.

(v) Electron-spin coupling Ee−S : The electron spin cou-
pling is responsible for the Hund’s coupling JH between
electrons in the Mn-eg orbitals, which are described explicitly,
and the Mn-t2g electrons represented by classical spins. This
term is the origin of superexchange and double exchange,
which are responsible for the complex magnetic properties of
manganites.

The parameters of the model are extracted from ab initio
calculations of the three-dimensional manganites by using
the projector-augmented wave method [38] in combination
with the local hybrid density functional PBE0r (for details,
see Ref. [28]). Compared to the treatment in Ref. [28], we
include two changes: First, we ignore the breathing distortion
Q1 used in the original 3D model and, second, we increase
the antiferromagnetic coupling for the one-dimensional model
from 12 meV to 32.6 meV. The latter was necessary to avoid
a ferromagnetic ground state, while the 3D material exhibits
a complex antiferromagnetic order. The set of parameters
obtained is reproduced in Table I.

B. Polaron and magnetic order in 1D manganites

In this section, we describe the ground-state configurations
of the one-dimensional manganite chain as obtained from the
tight-binding model Eq. (2). Beyond the purpose of providing
the ground states of the one-dimensional model, the motivation
for the present study has been to explore how the complex phase
diagram and the polaron arrangement of manganites in general
can be described and analyzed. The polaron model derived in
the following is a promising approach towards this goal.

The ground states have been determined in a two step
approach: First, stable and metastable configurations are ob-
tained using Car-Parrinello-like dynamics [39] with friction
[40]. Second, the emerging patterns and their building blocks
are identified. Moving towards a higher-level description, the
total energy is then expressed in terms of the energies of
these building blocks. The magnetic order and the resulting
polaron composition are presented in Table II. The electronic

TABLE II. Magnetic orders, polaron composition, deviation
EPM − ET B of the energy EPM from the polaron model, Eq. (3),
and energy ET B from the tight-binding model Eq. (2) for different
numbers of electrons in a 12-site unit cell of the 1D manganite.

magnetic (ET B − EPM ) ET B

Ne order composition [meV] [eV]

0 ↑↓↑↓↑↓↑↓↑↓↑↓ V12 0 −0.3912

1 ↓↑↑↑↓↑↓↑↓↑↓↑ P eV9 0 −1.98129

2 ↓↑↑↑↓↑↑↑↓↑↓↑ (P eV )2V4 0.5 −3.57088

3 ↓↑↑↑↓↑↑↑↓↑↑↑ (P eV )3 10.7 −5.15075

4 ↑↑↑↓↓↓↑↑↑↓↓↓ P e
4 59.3 −6.69231

5 a noncollinear P Z
3 P e

2 −16.2 −8.08389

6 ↑↑↓↓↑↑↓↓↑↑↓↓ P Z
6 0 −9.38383

7 ↑↑↓↓↑↓↓↑↑↓↓↓ P Z
4 P hP JT −46.7 −10.46353

8 b↑↑↑↓↓↑↓↑↑↓↑↑ P Z
3 P hP JT

3 −12.0 −11.51915

9 c↑↑↓↑↑↓↑↓↑↑↑↓ P z
2 P hP JT

5 −68.9 −12.51556

10 ↑↓↑↓↓↑↓↑↑↓↑↓ P z
2 P JT

8 −74.4 −13.51869

11 ↓↑↑↑↓↑↓↑↓↑↓↑ P hP JT
9 0 −14.47726

12 ↑↓↑↓↑↓↑↓↑↓↑↓ P JT
12 0 −15.47453

aAll the angles between classical spin vectors lie in the range of
∼(162–175)◦.
bThe average angle within the trimer is ∼〈51◦〉 and other angles are
in the range ∼(157–166)◦.
cThe average angle within the trimer is ∼〈39.5◦〉 and other angles are
in the range ∼(162–175)◦.

structure, i.e., the density of states, of the various polaron types
is provided in Fig. 3.

We obtained the following dominant patterns, which we
describe as polarons:

(1) There are sites V without eg electrons, which we denote
as vacant sites. The spins on these sites interact only weakly
with each other via the antiferromagnetic Heisenberg exchange
coupling JAF . In this language, the electron-poor manganite—
analogous to CaMnO3—consists of tightly packed V sites.

(2) The electron polaron P e is a trimer of ferromagnetically
aligned Mn sites occupied by a single eg electron. P e is
analogous to an electron polaron in CaMnO3. P e has three
electron states in the majority-spin direction: The lowest state
is occupied and fully bonding. The second state is unoccupied
and nonbonding. This state is distributed over the two outer
sites of the trimer. The third state of the electron polaron is
fully antibonding.

(3) The Zener polaron [41,42] P Z is a dimer of ferromag-
netically aligned Mn sites, which share a single eg electron.
The half-doped 1D material—analogous to Pr1/2Ca1/2MnO3

(PCMO)—can be described as a crystal of antiferromagneti-
cally coupled Zener polarons. The Zener polaron has two states
in the majority spin direction: a filled bonding and an empty
antibonding state.

(4) The hole polaron P h is a trimer of ferromagnetically
aligned Mn sites occupied by two eg electrons. P h is analogous
to a hole polaron in PrMnO3. It has the same three states as
the electron polaron, however the second, nonbonding state is
occupied as well.
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FIG. 3. Projected density of states of the tight-binding model for
the polarons in the 1D manganite chain as a function of energy in eV.
Top left: Two adjacent unoccupied sites V ; top-right: two adjacent
Jahn-Teller polarons P JT ; middle left: electron polaron P e; middle
right: hole polaron P h; bottom Zener polaron P Z . The horizontal line
indicates the Fermi level. Empty and filled y lines indicate d3z2−r2

orbitals pointing along the chain and dx2−y2 orbitals orthogonal to the
chain, respectively. The density of states is broadened by 0.05 eV.

(5) The Jahn-Teller polaron P JT is an eg electron that
occupies a single site. A crystal of Jahn-Teller polarons is
analogous to PrMnO3.

In order to extract the energies for these structural units, we
start out by setting the reference μ0 for the electron chemical
potential to the coexistence value of the electron-poor (Ne = 0)
and the electron-rich (Ne = Ns) systems that are analogous to
CaMnO3 and PrMnO3, respectively. That is, instead of the
energy E, we consider the energy E − μ0Ne of the manganite
together with a conveniently chosen electron reservoir.

TABLE III. Formation energies of polarons, number N (j )
s of sites

occupied by the polaron P j , and number N (j )
e of eg electrons on it.

polaron V P e P Z P h P JT

E
(j )
f [meV] 0 −398.3 −274.4 −324.9 0

N (j )
s 1 3 2 3 1

N (j )
e 0 1 1 2 1

With Ns , we denote the number of sites in the unit cell
and with Ne the number of electrons per unit cell. Then, we
identify the polaron composition from the magnetic order. The
formation energies of the polarons are determined in such a
way that the energy

EPM [nV ,ne,nZ,nh,nJT ]

=
∑

j∈{e,Z,h,JT }
nj

(
E

(j )
f + μ0N

(j )
e − JAF

)
(3)

of the polaron model matches the total energies obtained from
the tight-binding calculation given in Table II. With nj , we
denote the number of polarons P (j ), where j ∈ {V,e,Z,h,JT }
denotes the polaron type. With E

(j )
f , we denote the polaron

formation energy and with N
(j )
e the number of eg electrons in

the respective polaron. The values are presented in Table III.
Specifically, the polaron-formation energies have been ex-
tracted so that the energies of the model calculations are
reproduced by Eq. (3) for Ne = 0,1,6,11, and 12. Figure 4
compares the energetics of the configurations in Table II with
that of the polaron model, Eq. (3), using the values from
Table III. It is evident that the simple polaron model captures
the major features of the ground state energetics.

Interestingly, we can attribute a definite size to the electron
polaron: The mechanism limiting the size of the electron
polaron P e is the competition of the kinetic energy with the
antiferromagnetic coupling. Increasing the size of the electron
polaron on one side lowers the kinetic energy of the electron,
because it can spread over a larger region. On the other side,
there is a penalty for aligning more sites ferromagnetically.
The maximum size of the electron polaron is reached when the

0 0.5 1
(1-x)

-150

-100

-50

0

E
[m

eV
]/N

s

FIG. 4. Energy per Mn site of the model calculation (line) as a
function of the electron occupation 1 − x = Ne/Ns compared to the
sum of polaron energies given in Eq. (3) (symbols). The energy (1 −
x)μ0 of the particle reservoir has been included.
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delocalization energy gained by extending the electron polaron
by one site is exceeded by the antiferromagnetic coupling. In
the limit of large Hund’s coupling JH , the size of the polaron
is thus determined by the ratio thop/JAF of hopping parameter
and antiferromagnetic coupling. With our set of parameters,
this maximum size is three sites.

In the dilute limit, i.e., for Ne � 3, we find that the polarons
are separated by at least one vacant site V , as if there were
a nearest-neighbor repulsion between adjacent polarons. We
attribute this repulsion to the Coulomb interaction between the
wave function tails, which extend into a neighboring polaron,
with the electrons already belonging to this neighboring po-
laron.

Because of the kinetic energy cost, the smaller polarons,
such as P Z , are energetically less favorable than larger po-
larons, such as P e. Thus, they become relevant only when the
electron density is such that the larger polarons, namely the
electron polaron P e, are densely packed. For our system, this
occurs at Ne/Ns = 1/3.

Beyond this value, electron polarons P e and Zener polarons
P Z coexist until Zener polarons are densely packed. This is the
case for half doping, i.e., Ne/Ns = 1/2. This is the doping used
for the study of the optical excitation, which will be discussed
in the following section.

In the electron-rich phase with Ne/Ns = 1, the system
forms a solid of antiferromagnetically coupled Jahn-Teller
polarons P JT . When doping the electron-rich phase with holes,
the preferred way is via a Zener polaron P Z . In analogy with
the electron-poor manganite, one would have expected that
the extended defect P h was favorable compared to the smaller
Zener polaron P Z . The reason for the preference of the Zener
polaron is that the formation of hole polarons P h from Zener
and Jahn-Teller polarons requires substantial energy

P JT + P Z → P h − 50.5 meV. (4)

Nevertheless, we encounter hole polarons in our calcula-
tions. They are formed in response to spin frustration. The
insertion of a hole into the electron rich material by forming
a Zener polaron would, at the same time, introduce a domain
wall into the antiferromagnetic order. An isolated domain wall
can either annihilate with another domain wall or combine with
a Zener polaron to form a hole polaron. With the hole polaron,
we identified a structural unit that does not contribute to the
ground state at zero Kelvin but that plays an important role for
the interconversion of polarons.

The nature of an isolated domain wall can be rationalized
from the point of view of a Zener polaron. An abrupt domain
wall in the electron-rich material is equivalent to a Zener
polaron with one additional electron. The additional electron
enters into an antibonding state, which is energetically highly
unfavorable. By forming a hole polaron, this electron is
transferred into the nonbonding state of the hole polaron, which
is energetically favorable.

The occurrence of noncollinear spin arrangements indicates
that the phase boundary can also delocalize and form a spin
spiral. The energy scale of forming these polarons is of the
order of 0.3 eV, while that of the interaction between polarons
is much smaller, i.e., of the order of 10 meV.

There is an analogy of the description of the order in man-
ganites in terms of various types of weakly interacting polarons

with molecules in chemistry. A polaron is the analogon of a
molecule. Electrons that delocalize over several Mn sites are
analogous to a chemical bond. Similar to molecules, which
can arrange into molecular crystals, the polarons arrange in
various patterns, which give rise to the complex phase diagram
of manganites. The conversion of polarons into each other is
then analogous to a chemical reaction. An example for such a
reaction between polarons is the formation of a hole polaron
from a Jahn-Teller and a Zener polaron in Eq. (4) described
above.

C. Hamiltonian for a frozen lattice of Zener polarons

In the previous section, we explored the ordered phases
of the 1D model manganite at low temperatures described
by Eq. (2). In order to study the light-absorption process
and the electronic relaxation, we focus on the electronic
degrees of freedom. In the following, we therefore freeze the
spin and lattice degrees of freedom in the ground state. The
only dynamical entities in this model are the eg electrons.
Furthermore, the Hilbert space for the eg electrons has been
limited to two d3z2−r2 spin orbitals per Mn site, i.e., |χσ,b,R〉,
which makes the model similar to a single-band Hubbard
model with spatially varying magnetic fields.

Furthermore, we will focus on the half-doped system,
because it allows us to study the role of the magnetic mi-
crostructures formed by antiferromagnetically coupled Zener
polarons on the relaxation dynamics of a photoexcitation. This
order corresponds to Ne = 6 in Table II.

As shown in Fig. 3, such a Zener polaron consists of two
neighboring Mn sites, which share a single eg electron that is
uniformly delocalized over both sites. The Mn ions inside a
Zener polaron are ferromagnetically aligned, and, without loss
of generality, we choose the spins to point along the z axis,
that is Sx = Sy = 0. This leads to the spin configuration on the
four Mn sites of the unit cell,

(Sz,1,Sz,2,Sz,3,Sz,4) = 3h̄

2
(−1,−1,+1,+1). (5)

The spin distribution is periodic, so that Sz,R+4 = Sz,R . This
means that the electrons experience the spin and lattice degrees
of freedom as a staggered magnetic field.

Because of the restriction to a collinear spin distribution of
the classical spins �SR , the two spin directions of the electrons
decouple, except through the electron-electron interaction.
Since the Jahn-Teller distortions do not modulate the potential
for the remaining orbitals of the state under investigation, we
also omit the electron-phonon coupling. As a result, the total
energy can be expressed in the form of a one-band Hubbard
model with a staggered magnetic field and total energy

E = Ekin + EU + Ee−S. (6)

Formulated in second quantization, we thus obtain the
simplified many-electron Hamiltonian for a half-doped 1D
manganite,

Ĥ =
∑
R

{
−thop

∑
σ

(ĉ†σ,R+1ĉσ,R + ĉ
†
σ,Rĉσ,R+1)

+Un̂↑,Rn̂↓,R + �

3h̄
Sz,R(n̂↑,R − n̂↓,R)

}
, (7)
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Δ U U U U U U U U
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thop thopUnit cell
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FIG. 5. Sketch of the effective Hubbard-type many-body model derived in this section. The unit cell consists of four sites, with each site
hosting a spin-up and a spin-down state. The two states are energetically separated by the Hund’s splitting � = 2JH . Electrons can hop from
one site to another with the hopping amplitude thop, provided the two states have the same spin. For the sake of clarity this is only shown for
the spin-↓ direction. If two electrons are located on the same site, they feel the screened Coulomb repulsion U (depicted by the curly line).
Otherwise, this repulsion is screened by the positively charged atoms.

with ĉ
(†)
σ,R the annihilation (creation) operator for an electron

of spin σ at position R, and the local spin occupation n̂σ,R :=
ĉ
†
σ,Rĉσ,R . Using the values of Table I, we obtain

U ≈ 4.3thop (8)

for the Hubbard interaction and

� := 2JH ≈ 2.3thop (9)

for the Hund’s splitting.
The resulting Hubbard-type model thus has a unit cell of

four sites and is sketched in Fig. 5. In relation to PCMO, it
will be interesting to study the photoexcitation for the set of
parameters (8)–(9). However, model Eq. (7) allows us to go
beyond and tune the values of U/thop and �/thop independently
from each other. Consequently, this model realizes a minimal
model for a manganite system to study the interplay between
the Hund’s coupling and the electron-electron interaction after
a photoexcitation in such systems. In the following, we will
hence study the time evolution after a photoexcitation for the
parameter values (8)–(9) using MPS and LBE techniques, and
also the results when changing the values of �/thop and U/thop.

1. Band structure of noninteracting electrons in the lattice
of frozen Zener polarons

Before discussing the photoexcitations, let us first explore
the basic features of model Eq. (7) without Coulomb in-
teraction, i.e., the case U = 0. The band structure of the
noninteracting system will elucidate the role of the Hund’s
splitting �, which acts as a staggered magnetic field on the
electronic structure. We obtain

εν(k) = s1,ν thop

√√√√2 +
(

�

2thop

)2

+ s2,ν 2

√
cos2(2ka)+

(
�

2thop

)2

,

(10)

where k is the momentum in the reduced Brillouin zone,
ν labels the bands in this reduced Brillouin zone, and
(s1,ν ,s2,ν) = (−1, + 1),(−1, − 1),(+1, − 1) and (+1, + 1)
for ν = 1,2,3,4. The spacing between the Mn ions is denoted
by a. For the details of the derivation, see Appendix A.

In Fig. 6, this band structure is shown for different values
of �/thop. Without Hund’s splitting, the system is equivalent
to a single-band Hubbard chain, which has the band structure

ε(k) = −2thop cos(ka). (11)

In the setting of the four-site unit cell, this band structure is
folded back twice into the smaller reciprocal unit cell as shown
in Fig. 6. The lowest of the four bands is occupied.

In the limit of infinite Hund’s splitting �, the band structure
develops into four nearly dispersionless bands. The nature
of the states in this limit can be identified with those of
a Hubbard dimer, respectively, a hydrogen molecule. The
isolated Hubbard dimer has a bonding and an antibonding state
for each spin direction. The energetic separation of the two
bands is given by the hopping parameter as 2thop. The electrons
of one spin direction experience a downward Zeeman-like
shift by JH = 1

2� on one Zener polaron and a similar upward

FIG. 6. One-particle band structure of PCMO for different values
of the Hund’s splitting �, which is measured in units of thop. 	 denotes
the origin of the k points and X = π/4a the zone boundary with the
Mn-Mn spacing a. One can see that the distance between the center of
the upper two bands and the center of the lower two bands is close to
� for large values of �. Furthermore, in the same limit, the distance
of the upper two bands (as well as the one of the lower two bands) is
approximately 2thop.
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FIG. 7. Time evolution of the local density 〈n̂i〉 following an excitation by applying operator Eq. (12) at the center of the system. The panels
show tDMRG results for different values of �/thop for chains with L = 40 lattice sites. Left side: U = 0; right side: U/thop = 4.3. The solid
lines indicate the maximal group velocity of the excited electrons obtained from the noninteracting band structure Eq. (10), assuming that one
electron gets excited from the first to the second band. The dotted and dashed lines indicate the phase velocity at the k value with the maximal
group velocity, as discussed in the text.

shift on the other Zener polaron. The resulting states are at
− 1

2� ± thop and 1
2� ± thop.

The bandwidth of the four bands is given by the ability
of electrons to tunnel between two second-nearest neighbor
Zener polarons, which have the same spin orientation. The
tunneling probability in turn acts as an effective hopping for
the molecular states.

As seen in Fig. 6, intermediate Hund’s splitting leads to a
coexistence of gaps, flat bands, and bands with large dispersion.
Thus, the behavior of the band structure will be nontrivial and
probably most interesting for intermediate Hund’s splitting.
The parameters in Table I show that PCMO lies in this regime.

III. PHOTOEXCITATION DYNAMICS

A. Treatment of light-matter interaction

A simple way to model the photoexcitation is to assume
it to create particle-hole-like excitations [7,43–46]. Here, we
start from a ground state described in terms of Zener polarons,
in which the electron density is equally distributed. We then
model the photoexcitation as inducing an electric dipole on a
single polaron. The conceptually simplest operator then is

ŶR =
∑

σ

ĉ
†
σ,R+1ĉσ,R, (12)

with R and R + 1 being lattice sites both located on the same
polaron.

In this paper, we will treat a single excitation on lattices
with typically 40 sites. As discussed in Appendix C, assuming
a light pulse of duration of 1 fs, this corresponds to an intensity
of ∼108 W/mm.

B. Details of the tDMRG calculations

We use the two-site time evolution matrix-product operator
(MPO) introduced in Ref. [47] with a time step of �t = 0.05.
In this approach, the operator exponential of the propagator

Û (t) = e− i
h̄
Ĥ�t (13)

is given by an MPO. In Ref. [47] two representations are
introduced; we chose the one denoted as Ŵ II , which is
considered to be more accurate. The Hamiltonian is given in
terms of finite state machines and is subsequently transformed
into the MPO form [48,49].

Two main error sources need to be considered: First, the
error due to the truncation of the MPS matrices to dimension
χMPS. In all simulations, the entanglement induced by the
perturbation, as quantified by the von Neumann entropy [50],
is rather small. Therefore, a matrix dimension of χMPS = 512
for systems with up to L = 40 lattice sites was sufficient to
obtain a discarded weight ε ∼ 10−8 (∼10−4) at the end of the
time evolutions for �/thop = 8 (� = 0). The second source of
error is due to the approximation of the operator exponential
and is explained in detail in Ref. [47]. As it is much smaller
than the error due to the truncation, this error is negligible. The
MPS code used is implemented using the SciPAL [51] library,
which is a framework based on C++ expression templates,
and provides the possibility to use CPUs as well as GPUs by
calling efficient implementations of BLAS and cuBLAS [52]
functions.

C. Short-time dynamics after the photoexcitation

In Fig. 7, we show the tDMRG results for the time evolution
of the local densities 〈n̂R〉 := 〈n̂↑,R + n̂↓,R〉 following a pho-
toexcitation. This is modeled by applying operator Eq. (12) at
the center of the system to the ground state obtained from
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a DMRG calculation, which induces a local dipole on the
Zener polaron at the center of the system. We display results
for �/thop = 0, 2.3, 8 and compare the cases U = 0 (left
panels) to the case U/thop = 4.3 (right panels). The case with
�/thop = 2.3 and U/thop = 4.3 corresponds to the values of
Table I.

Let us start the discussion with the behavior at � = 0. In
the ground state we observe Friedel-like density oscillations
caused by the open boundary conditions used [53,54]. They
are typical for the Luttinger liquid phase [55] realized in the
Hubbard chain at this value of the filling [56]. These Friedel-
like oscillations are stable and do not change with time.

On top, we see that the local excitation created at the
center of the system spreads through the lattice with constant
maximum speed. This light-cone behavior is captured by a
Lieb-Robinson bound [57], which states that in nonrelativistic
quantum lattice systems with a short-ranged Hamiltonian
information spreads with a finite maximal velocity.

In this case, for U = 0 and � = 0, the maximal group
velocity allowed by the band structure Eq. (10) is the Fermi
velocity vF = 2 thop a

h̄
. In the units used (a = thop = h̄ = 1), this

leads to a slope of 2 in the light cone, which is what is seen
in Fig. 7 for � = U = 0. For U > 0 and � = 0, the velocity
gets modified by the interaction, but as expected from Luttinger
liquid theory [55], the system will always show ballistic motion
of the excitation, i.e., it will propagate with a constant maximal
velocity through the system.

For finite values of � the Friedel-like oscillations disappear.
This is expected, since for any finite value of � a band gap
is formed so that the Fermi surface vanishes, and with it the
Luttinger liquid phase and the Friedel-like oscillations.

By increasing the value of �/thop, the velocity of the spread
of the excitation is seen to decrease. For U = 0 this is expected
from the single-particle band structure Eq. (10), in which
the bands become flatter with increasing �/thop, which also
reduces the maximal group velocity.

For the times shown t/thop � 20 (corresponding to ∼23 fs
using the values of Table I), for �/thop = 8 the speed of
the excitation is close to zero, since the group velocities
obtained from the band structure are very small already (e.g.,
the maximal group velocity for an electron excited to the
second band is v ≈ 0.08 thopa

h̄
). At the site of the excitation,

the dipole-like density oscillations become clearly weaker
with time for �/thop = 2.3 as the energy is transferred to
the neighboring sites. For the largest Hund’s splitting shown,
�/thop = 8, the dipole oscillations remain concentrated on the
central site on the time scale shown.

While for � = 0 the noninteracting electrons move with
the expected Fermi velocity vF = 2 thopa

h̄
, for the intermediate

value �/thop = 2.3 an interesting structure emerges, which
is apparently caused by the presence of both dipole-like
oscillations of the electron on the excited Zener polaron and the
relatively small tunneling barrier between the polarons: When
the electron reaches the boundary between two Zener polarons,
it gets partially reflected, but can also partially tunnel to the next
polaron. This happens again for both the transmitted as well as
the reflected part of the electron when they reach the border to
the next polaron, and so on. The result is the intricate pattern
seen in Fig. 7, in which the excited electron seems to spread
through the system in a ping-pong or billiard-like manner for

U = 0 and �/thop = 2.3. However, now a further interesting
effect comes into play, which leads to linear structures with
a slope substantially larger than the maximal group velocity
allowed by the band structure. This was discussed in Ref. [58]
in the context of interacting Mott insulators: The spread
of information through the lattice is governed by the Lieb-
Robinson velocity, which here can be estimated as the maximal
group velocity determined by vg,ν = ∂εν(k)/∂k, with the band
ν, to which the electron is excited to. However, as described
in Ref. [58], within the light cone and in its vicinity it is
possible to have linear structures with a slope corresponding
to the maximal phase velocity instead, which is determined via
vp,ν = εν(k∗)/k∗, where k∗ is the momentum, at which vg,ν is
maximal. The phase velocity can be substantially larger than
the maximal group velocity. This corresponds to what is seen
in Fig. 7 for U = 0 and �/thop = 2.3: The excitation causes
linear structures, whose slope is in excellent agreement with
the maximal phase velocity obtained from the band ν = 2 in
Eq. (10). However, the structure is seen to be strong only as
long as it is within or close to the light cone, which is obtained
from the maximal group velocity determined from ε2(k) in
Eq. (10). As soon as they reach the border of the light cone,
their amplitude decays quickly, so that they do not contribute
to the spread of information through the lattice.

In the presence of repulsive U , it is an interesting question
whether the ballistic transport will prevail, or if the interparticle
scattering might change its speed, e.g., inhibiting transport by
slowing down the spreading of the excitation, or enhancing
transport by increasing its velocity. Also, it is possible that
transport at finite U could change its nature from ballistic to
diffusive, or that even at a relatively small value of �/thop the
excitation might get trapped.

The right side of Fig. 7 shows results for U/thop = 4.3.
For � = 0, as discussed above, the ballistic motion prevails,
as expected for a Luttinger liquid. At finite �/thop, however,
the behavior changes significantly when comparing to the
corresponding U = 0 cases: At �/thop = 2.3, the ping-pong-
like structure disappears and is replaced by a more diffuse
looking behavior. This is captured by the following scenario:
Due to the rather strong interaction, the electron scatters as
soon as it tunnels to the neighboring Zener polaron, since
there the electron is of opposite spin, so that the Hubbard
term comes into play. This scattering induces on one hand a
dipole oscillation also on this Zener polaron, and on the other
hand a partial tunneling of the electron of opposite spin to
the neighboring lattice site. There, the mechanism repeats, and
again a dipole-like oscillation also on this Zener polaron is
excited, and partial tunneling of the electron with opposite
spin direction to the further Zener polaron is induced, and so
on. The resulting picture is a sequence of dipole oscillations
formed on each Zener polaron, with an amplitude decreasing
the further one moves away from the site of the excitation.
This sequence of dipole oscillations seems to replace the
ping-pong pattern observed at U = 0. It is difficult to judge
whether the motion of the original excitation through the
system remains ballistic, or if it might change its nature.
However, the strongest features are deep inside the light cone
prescribed by the group velocity of the noninteracting system
and seem to move with a smaller velocity, or in a diffusive
manner.
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Also at large �/thop = 8, the effect of a finite value of U

is significant: While at U = 0, on the time scales shown, there
was essentially no spread of the excitation to the neighboring
sites, now the dynamics is clearly composed of the dipole oscil-
lation on the excited dimer, plus additional dipole oscillations
on the close lying neighboring dimers. Again, it is difficult to
conclude whether transport might be diffusive or ballistic. We
leave this interesting aspect for future research.

We complement this discussion by considering the time
evolution of the local density 〈n̂R〉 on the excited dimer in more
detail. In Fig. 8, we show our tDMRG results at U = 0 and 4.3
for the different values of �/thop indicated there. In contrast to
the different behavior seen in Fig. 7 when comparing the results
for U = 0 to the ones for U/thop = 4.3, in all cases shown and
on the time scale displayed, the time evolution on the site of the
excitation is qualitatively similar with and without interaction.
On the time scale shown, three different types of behavior
seem to exist: For �/thop = 8 the value of the local density
shows a coherent oscillation for all times shown t/thop � 20
(corresponding to ∼23 fs using the values of Table I). The
amplitude of this oscillation decays only slowly. As can be
seen in Fig. 7, the reason for this are the dipole oscillations on
the Zener polaron where the excitation was created, which are
present for both values of U/thop. As the group velocity for
the excitation moving away from this place is so small in this
case, the dipole oscillations decay only slowly. For the local
density, the effect of U is to weakly dampen its oscillation.

In the other extreme case displayed at � = 0, one sees
that the coherent oscillation of the local density is completely
suppressed, and the value of the local density drops very
quickly to the equilibrium value 0.5 and then shows only
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FIG. 9. Time evolution of the local density 〈n̂R+1〉 after the
operator Eq. (12) was applied to R = L/2 + 1 for �/thop = 2.3 and
U/thop = 4.3, which is close to the parameters of Table I. The plot
compares tDMRG results for systems with L = 16 (violet boxes),
L = 24 (green circles), L = 32 (blue up-pointing triangles), L = 40
(red down-pointing triangles), L = 48 (yellow diamonds), and L =
64 (dark blue pentagons). The results displayed are obtained with MPS
matrix dimension χMPS = 5000. Additionally the time evolution for
� = 0 and U/thop = 4.3 for a system with L = 40 and χMPS = 500
is plotted (black pluses).

tiny oscillations around this value. This drop happens on a
time scale t/thop < 10, corresponding to ∼11 fs using the
parameters of Table I. The reason for this is that the excitation
moves freely through the system, as discussed above, so that at
the site of the excitation the local density relaxes quickly to the
equilibrium value, up to the small oscillations seen in Fig. 8.
This is also true at finite U , where the system is in a Luttinger
liquid phase [55].

For intermediate values of �/thop, the time evolution of the
local density on this time scale �30 fs reflects both aspects: At
short times, coherent oscillations are seen, which are indicative
for the dipole oscillation of the excited electron, whereas at
later times the local density relaxes to its equilibrium value of
0.5, since the excitation then is spreading through the system.
Interestingly, the amplitudes of the oscillations around the
equilibrium value are larger than for � = 0 and do not depend
on the system size, as can be seen in Fig. 9, so that finite size
effects seem to be excluded as cause for this behavior.

D. Time evolution of the electronic momentum
distribution function

In this section, we present the time evolution of the momen-
tum distribution at short times using the tDMRG, from which
we obtain the time evolution of the electronic one-particle
reduced density matrix

σ,i,j (t) = 〈ĉ†σ,i ĉσ,j 〉(t). (14)

The time evolution of the momentum distribution is obtained
by Fourier transforming the one-particle reduced density ma-
trix by projecting onto the four bands of the noninteracting
system. The momentum distribution of each band ν ∈ B =
{1,2,3,4} is then obtained by the corresponding transformation
of the creation and annihilation operators (see Appendix A),
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leading to

nel
σ,ν(k,t) =

∑
�,�′∈Z
j,j ′∈B

ei2πk(�−�′) T ∗
σνj (k) σ,4�+j,4�′+j ′ (t) Tσνj ′(k),

(15)

where the matrices Tσνj (k) are the unitary matrices holding the
eigenvectors of the Hamiltonian of a single unit cell, as derived
in detail in Appendix A. In Fig. 10, we compare the momentum
distribution of the ground state with the one obtained directly
after the excitation. The system is excited by applying operator
Eq. (12) to the central site of the system for �/thop = 2.3 and
U/thop = 4.3.

Note that the excitation affects predominantly one spin
direction, which is due to the spin polarization of the polaron
on which the excitation takes place. Let us first discuss the
momentum distribution of the ground state. Because we are
at quarter filling, as expected, the first band ν = 1 is highest
populated, and the population of the higher bands is negligi-
bly small but finite since U > 0. Note that at U/thop = 4.3
the populations are slightly inverted, so that the momentum
distribution at k = 0 is somewhat smaller than at finite k.
This is absent at U = 0, as further discussed in Appendix B.
At finite U , we associate this effect with the projection onto
the noninteracting band structure. It would be interesting to
compare to the one-particle spectral function A(k,ω) at finite
U , which can be measured in ARPES [59] experiments and
which provides details of the band structure in the interacting
case. As this exceeds the scope of this paper, we leave this
aspect for future investigations. Here, we pursue a simpler path
and consider the time evolution of the noninteracting bands and
their populations as indicators for the strength of the scattering
between the bands and for time scales emerging in the course
of the time evolution.

The photoexcitation moves particles from the lowest band
to the higher ones. As we model it as strongly localized in
real space, the excitation here transfers all possible momenta
in contrast to light, for which the momentum transfer is
negligible. For �/thop = 2.3, the second and third band get a
higher population, whereas the one of the fourth band remains
very small. For the largest value of the Hund’s splitting,
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�/thop = 8 treated in the previous section, the most affected
band is the second one; the population of the two highest bands
remains very small. Hence, the lowest band ν = 1 is highest
populated in the ground state and remains highest populated
also after the excitation in all cases treated.

Due to the finite value of U/thop, we expect the electrons
to scatter so that the population of the four bands changes in
time. In Figs. 11 and 12, we show the time evolution of the
populations of both spin directions for each of the four bands∑

k nel
σ,ν(k,t) for �/thop = 2.3 and �/thop = 8, respectively.

Clearly, scattering between the bands takes place. In contrast to
the time evolution of the local densities treated in the previous
section, the band populations in Figs. 11 and 12 are indicative
for bulk behavior and hence are better suitable for identifying
time scales, on which the excitation evolves. As displayed in
Fig. 11 for �/thop = 2.3, the populations of the first and second
band seem to relax to a stationary value of ∼9.45 and ∼0.35
on a time scale of ∼5thop (corresponding to ∼6 fs using the
parameters of Table I). The populations of both spin directions
relax to the same value and afterwards show rather small
oscillations around these values. Similar behavior is also seen
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in the third and fourth band. For �/thop = 8, instead, relaxation
happens only at a time t/thop > 30. The first two bands seem
to reach a population of ∼9.8 and ∼0.2, respectively. The third
and fourth band have very small populations. The population
of both spin directions seems to relax to the same value, even
though at t = 0 they significantly differ.

As seen in Figs. 11 and 12 the spin moment inside the bands
seems to relax on a short time scale �50 fs. These results
indicate that the relaxation time increases with the value of
�/thop. However, it is still possible that further aspects can
become important for the lifetimes of the excitations. The
question arises, if one can make a quantitative prediction for
the lifetime of the excitation in the presence of U and � also in
cases, which are not amenable to the tDMRG. As much longer
times are barely accessible to the tDMRG, we therefore now
turn over to the LBE treatment, which is suitable to extract
lifetimes of the excitations.

IV. QUASIPARTICLE RELAXATION

In this section, we use the numerically exact results for the
time evolution obtained by MPS to estimate the quasiparticle
content needed for a quantum Boltzmann equation (BE).
The BE will then provide us with information about the
long-time behavior after the excitation, which is inaccessible
using the tDMRG because of the fast growth of entanglement
[50] with time.

A. Calculation of the quasiparticle momentum distribution
from the tDMRG results

The applicability of the BE for our one-dimensional model
is justified by the same reasoning as in Refs. [27,60,61], see also
Refs. [62,63]: The quasifree property of the system persists up
to time scales ∝U−2 and intervening scattering processes with
a rate ∝U 2 allow one to use the fermionic BE on all time scales.

One important point to realize is that within Fermi liquid
theory, the BE requires the quasiparticle distribution function
as input and not the distribution function for the electrons
themselves [64] (notice that otherwise the zero temperature
ground state of an interacting Fermi liquid would not be a
fixed point of the BE). So as a first step, we need to find this
quasiparticle momentum distribution from the tDMRG results.

For the sake of simplicity we suppress the band and the spin
index in the following. The equilibrium distribution function
of the electrons nel(k) is defined via Eq. (15). The quasiparticle
distribution function nqp(k) is the Fermi-Dirac distribution for
the noninteracting band structure Eq. (10), here at T = 0. For
a Fermi liquid at zero temperature, the relation to nel(k) in the
vicinity of the Fermi surface is then:

lim
k→kF

{
nel(k) − 1

2 − Z
(
nqp(k) − 1

2

)} = 0. (16)

If we use this relation away from the Fermi surface, it defines
a k-dependent quasiparticle residue Z(k), which describes the
spectral weight of the pole in the one-particle Green’s function
for momentum k

nel(k) − 1
2 = Z(k)

(
nqp(k) − 1

2

)
, (17)
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FIG. 13. Comparison of the electronic and the quasiparticle
momentum distributions obtained with DMRG via Eq. (19) for a
system with L = 40, �/thop = 2.3, and U/thop = 4.3 just after the
photoexcitation by applying operator Eq. (12) at the center of the
system.

which gives us the means to determine Z(k) from the equilib-
rium distribution

Z(k) = nel(k) − 1
2

nqp(k) − 1
2

. (18)

We now apply (17) to the nonequilibrium situation as well:

nel(k,t) − 1

2
= Z(k)

(
nqp(k,t) − 1

2

)
(19)

⇒ nqp(k,t) = 1

2
+ 1

Z(k)

(
nel(k,t) − 1

2

)
(20)

= 1

2
+ nqp(k) − 1

2

nel(k) − 1
2

(
nel(k,t) − 1

2

)
. (21)

This yields the desired relation between the distribution func-
tion of the electrons nel(k,t) measured by tDMRG and the
quasiparticle distribution function of the quasiparticlesnqp(k,t)
as input for the BE. The justification for the step from (17)
to (19) comes from the continuous unitary transformation
approach as used in Ref. [65]: Z(k) describes the spectral
weight of the electron with quasimomentum k which prop-
agates coherently between scattering processes described by
the BE. This reasoning is a good approximation as verified
by comparison with numerically exact results in Ref. [65]. It
is important to note that Eq. (19) is only applicable after the
short-time regime in which quasiparticles form.

1. DMRG results for the momentum-distribution function
of the quasiparticles

In Fig. 13, we show the quasiparticle distribution obtained
from Eq. (19) at the beginning of the time evolution after
applying operator Eq. (12) at the center of the system. Although
we expect the quasiparticle picture to be better applicable
at later times, it is nevertheless instructive to compare these
electronic and quasiparticle distributions to each other at t = 0.
According to Eq. (19), we expect a renormalization by a
k-dependent quasiparticle residue Z(k), which is, however,
constant in time. Thus, the time evolution of the quasiparticle
momentum distribution will be similar to the one of the
electrons, if the renormalization is not too strong. For both
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values of � shown, the renormalization of the electronic
momentum distribution is very small. This is an important
finding and justifies the following treatment with LBE.

B. Linearized multiband Boltzmann
equation for long-time relaxation

Based on the effective model from Sec. II C, Eq. (7), we
can investigate the relaxation of the electrons due to electron-
electron interactions by means of a quantum BE. We use it
in a similar manner as Biebl and Kehrein in Ref. [27], who
investigated the thermalization rates of a Hubbard model with
next-nearest-neighbor hopping. Furthermore, we perform a
linearization of the BE to determine the relaxation rates.

To investigate the relaxation of the quasimomentum dis-
tribution (QMD) n

qp
σ,ν(k,t), we use the multiband quantum

Boltzmann equation (BE)

ṅqp
σ,ν(k,t) = Icoll[n

qp]σ,ν(k,t), (22)

with the collision term Icoll[nqp]σ,ν(k,t). With the BE, we can
estimate arbitrary time scales, which can also be longer than
the spin relaxation time. In the following we assume that the ↑
particles have the same quasiparticle momentum distribution
n

qp
σ,ν(k,t) as those with spin ↓. Hence, the spin index σ is

not written explicitly any more, i.e., n
qp
ν (k,t) = n

qp
↑,ν(k,t) =

n
qp
↓,ν(k,t).

The collision term is

I (coll)
ν1

(k1)

=
(

4a

2π

)2
πU 2

h̄thop

∫
dk2dk3dk4

×
∑

ν2,ν3,ν4∈B
|��ν,�k|2

∑
G

δ(P�k+G)δ(W�ν,�k)

×

⎧⎪⎨
⎪⎩
[
1−nqp

ν1
(k1,t)

][
1−nqp

ν2
(k2,t)

]
nqp

ν3
(k3,t) nqp

ν4
(k4,t)︸ ︷︷ ︸

gain term

− nqp
ν1

(k1,t) nqp
ν2

(k2,t)
[
1−nqp

ν3
(k3,t)

][
1−nqp

ν4
(k4,t)

]︸ ︷︷ ︸
loss term

⎫⎪⎬
⎪⎭,

(23)

with �ν = (ν1, . . . ,ν4),�k = (k1, . . . ,k4). Furthermore, we de-
fine ��ν,�k as the matrix element of the interaction taken at
four momenta in four bands, see Eq. (A11). The momentum is
conserved by δ(P�k) with P�k = k1 + k2 − k3 − k4 and the recip-
rocal lattice vector G. It is important to note that the summation
over G ∈ Z is not an artificial addition but emergent from
the derivation of Icoll. We express the energy conservation via
W�ν,�k := 1

thop
(ε1 + ε2 − ε3 − ε4) obtained from the one-particle

band structure Eq. (10).
The collision integral of a model describing an infinite

lattice naturally allows for Umklapp processes. We account
for this by integrating k4 over a region larger than only the
first Brillouin zone. We want to emphasize that this is an exact
reformulation of the derived collision integral.

In order to investigate the long time relaxation, we lin-
earize the BE around the thermal distribution fν(k) = 1/{1 +
exp[β(εν(k) − μ)]}. Here μ is the chemical potential and β

is the inverse final temperature. It can be determined via
DMRG by setting the total energy of the system after the
photoexcitation equal to the corresponding thermal expectation

value, 〈Ĥ 〉(t) = Tr(exp [−βĤ]Ĥ)
Tr(exp [−βĤ])

, for details see Appendix C.
In order to perform the linearization, we define a perturba-

tion φν(k,t) by [66]

nqp
ν (k,t) = 1

1 + exp{β[εν(k) − μ] − φν(k,t)} . (24)

Note that at this point we could also use the numerical
results for n

qp
ν (k,t). However, as discussed in Sec. IV A 1,

the quasiparticle distribution obtained from the tDMRG is
very similar to the electronic one. The conceptually simplest
approach is therefore to follow Ref. [27] and assume the
quasiparticles to possess a distribution function as in Eq. (24).
In future investigations, this can be refined by directly using
the numerical results at large-enough times.

Equation (24) leads to the linearized BE

φ̇ν(k,t) = L̂[φ]ν(k,t). (25)

The operator L̂ acts on the perturbation φ and returns the
change of the perturbation:

L̂[φ]ν1 =
(

4a

2π

)2
πU 2

h̄thop

∫
dk2dk3dk4

∑
ν2,ν3,ν4∈B

×|��ν,�k|2δ(P�k) δ(P�k+G)

× [1−fν2(k2,t)]fν3(k3,t)fν4(k4,t)

fν1(k1,t)
[φν1(k1,t)

+φν2(k2,t)−φν3(k3,t)−φν4(k4,t)]. (26)

L̂ is hermitian in the scalar product

〈φ,ψ〉 := 4a

∫
dk

2π

∑
ν∈B

φν(k)fν(k)[1 − fν(k)] ψν(k), (27)

which induces the norm ‖φ‖ = √〈φ,φ〉. Therefore, we can
represent the perturbation φν(k,t) by the eigenfunctions χ (j )

ν (k)
and eigenvalues λj of L̂:

φν(k,t) =
∑

j

Aj (0) e−λj t χ (j )
ν (k). (28)

The amplitudes Aj (0) = 〈φν(k,0),χ (j )〉/‖χ (j )‖2 are the over-
laps of the respective eigenfunction and the initial perturbation
φν(k,0) at time t = 0. The eigenvalues of L̂ are the relaxation
rates of the corresponding contribution Aj (0). One can proof
that L̂ is positive definite, i.e., its eigenvalues are non-negative.
As long as the eigenvalues are positive, the factor e−λj t leads to
the decay of the corresponding contribution of the perturbation
φν(k,t). For λj = 0, the respective part of the perturbation
φν(k,t) does not decay.

There are two eigenvalues that are zero for any choice of the
model parameters: χ (1)

ν (k) = const, and χ (2)
ν (k) = εν(k). For

both, the factor [φ1 + φ2 − φ3 − φ4] in Eq. (26) vanishes. They
correspond to conservation of particles and conservation of
energy, respectively.
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FIG. 14. Relaxation rates as obtained from the linearized Boltzmann equation approach for � = 1,2,4 from left to right. The eigenvalues
λn of L̂ are sorted by their magnitude, and we plot the lowest ones (n = 1,2,3,...) as a function of inverse temperature β. In all of the plots,
the full lines are calculations with the lowest two bands, the dashed lines indicate a calculation with the three lowest bands, and the dotted
lines denote a computation with all four bands. The eigenvalues n = 1,2,3 are zero within numerical precision. Note that, for the 3- and
4-band calculations, there is an additional zero eigenvalue, which we omit for comparability. As two examples for relaxation times, we consider
u = U/thop = 4.3 at room temperature β = thop/(kB × 300 K) ≈ 23 and at the temperature after excitation, which we estimate in Appendix
C, β = 1.4. With � = 2.3, thop ≈ 0.585 eV, and t0 := h̄/πthop ≈ 0.12 fs the smallest relaxation time is 1/λ4 = 109t0/u

2 ≈ 6.5 ns for room
temperature and 1/λ4 = 103t0/u

2 ≈ 6.5 fs for the temperature after the excitation treated in Sec. III.

C. Relaxation rates from linearized Boltzmann equations

The relaxation rates are found by diagonalizing the di-
mensionless linear operator t0(thop/U )2L̂[φ] with the time
scale t0 = h̄/2πthop ≈ 0.18 fs. The result of our numerical
evaluation is shown in Fig. 14. There, we plot the results
for a 2-band, a 3-band, and a 4-band calculation, in which
we always use the lowest bands possible. For final inverse
temperature above β ≈ 1, the calculations reveal the same
relaxation rates. This means that the upper bands are not
involved in the relaxation for low temperatures. Moreover, for
low temperature, the relaxation rates decay exponentially in β.

For inverse temperatures larger than β = 30, the lowest
eigenvalues are zero within numerical precision. Thus, for low
temperatures, the corresponding contributions to the perturba-
tion φν(k,t) become frozen.

The eigenvalues n = 1,2,3 depicted in Fig. 14 are numeri-
cally zero for every β. For the 3-band and 4-band calculations,
there is an additional zero eigenvalue λ+, which we exclude
from Fig. 14 for a better comparison of the other eigenvalues.
We can explain these zero relaxation rates analytically. They
correspond to the eigenfunctions(

χ (1)
ν (k)

)
ν=1,..,4 = (1,1,1,1) ∀k,(

χ (2)
ν (k)

)
ν=1,..,4 = (ε1(k),ε2(k),ε3(k),ε4(k)) ∀k,(

χ (3)
ν (k)

)
ν=1,..,4 = (1,0,1,0) ∀k,

(χ (+)
ν (k))ν=1,..,4 = (1,1,0,0) ∀k. (29)

Because L̂ is linear, all combinations of these eigenfunctions
are conserved. They correspond to quantum-mechanical state-
space operators of the form �̂[ψ] = ∫ dk ψν(k) n

qp
ν (k):

�̂[χ (1)] = N̂ (total number of particles),

�̂[χ (2)] = Ĥ + O(U ) (total energy),

�̂[χ (3)] = N̂1 + N̂3,

�̂[χ (+)] = N̂1 + N̂2, (30)

with the band number operators N̂ν = ∫ dk n
qp
ν (k). Hence, a

contribution of type χ (1)
ν (k) leads to a change of the total

number of particles 〈N̂〉. Likewise, a contribution of type
χ (2)

ν (k) changes the energy density. However, by construction
of (24) the initial perturbation φν(k,0) has zero overlap with
χ (1)

ν (k) and χ (2)
ν (k) and we can ignore these two eigenfunctions

with vanishing rates.
The eigenfunctionχ (3)

ν (k) means that the number of particles
in the first plus those in the third band cannot be changed
during the relaxation process. Similarly, χ (+)

ν (k) is related
to the conservation of particles in the first plus the second
band. Obviously, this eigenfunction is the same as χ (1)

ν (k), if
we do not include the bands 3 and 4. This is the reason for
the additional zero eigenvalue λ+ in the 3- and 4-band case.
A contribution from either of the eigenfunctions χ (3)

ν (k) and
χ (+)

ν (k) leads to at least two different chemical potentials in the
long time limit. The cause of this is the relatively large value
of �. Therefore, the gaps between the bands are so large that
some of the two-particle scattering processes are forbidden by
energy conservation. More specifically, an interband relaxation
requires the energy to be picked up by other interband or
multiple intraband excitations. The limitation of scattering pro-
cesses to two-electron processes, as in our study, suppresses the
possibility of interband relaxation at the expense of increasing
the intraband temperature. Higher-order scattering processes
will eventually become important for low final temperature.

The relaxation rates depend very sensitively on the final
temperature and thereby the energy density of the photoex-
citation. In the case treated in Sec. III, we treat systems with
typically 40 lattice sites, in which one electron gets excited. As
discussed in more detail in Appendix C, this corresponds to an
energy density leading to a final inverse temperature β ≈ 1.4.
For such high temperatures, the relaxation rates obtained from
the LBE lead to a relaxation time scale ∼5–100 fs, depending
in detail on the values of �/thop and U/thop. This prediction
can now be compared to the numerical tDMRG results. As can
be seen in Figs. 11 and 12, the tDMRG results indicate that
band occupations of the first band seem to relax to expectation
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values, which agree with the thermal expectation values up
to a few percent. Particle number conservation then leads to
a difference of the band occupations in the other bands of
similar absolute magnitude. This discrepancy can be due to the
choice of boundary conditions and finite size effects, so that the
results seem to be in good agreement with the corresponding
thermal state. As the LBE predicts a relaxation to a thermal
state on comparable time scales, we conclude that the LBE
treatment has predictive power for estimating relaxation rates
also in other cases. For example, when choosing an energy
density such that the final temperature is of the order of
room temperature (β ≈ 23), for �/thop = 2.3 and U/thop =
4.3, we obtain life times of several nanoseconds. We believe
this estimate for time scales can be useful to guide future
experiments on similar systems.

V. CONCLUSIONS AND SUMMARY

We present a combined theoretical approach to treat typical
aspects of the relaxation behavior of photoexcitations in corre-
lated materials over a wide range of time scales. Specifically,
we combined tight-binding models, which describe the inter-
play of electrons, spins, and phonons, with numerically exact
tDMRG studies and kinetic calculations using the linearized
quantum Boltzmann equation.

In order to alleviate the difficulties related to higher di-
mensions, we performed our study on a hypothetical one-
dimensional manganite. This limitation to a one-dimensional
material simplifies the description in several points: It helps
to visualize the complex polaron and spin orders, it permits
the study of the initial relaxation processes using tDMRG,
which works particularly well in one-dimensional systems, and
finally, it simplifies the high-dimensional integrals required
for the collision term in the linearized quantum Boltzmann
equation.

The tight-binding calculations showed that a polaronic
microstructure is realized. This can be described in an effective
way in terms of the aggregation of various types of polarons,
such as electron, hole, Zener, and Jahn-Teller polarons. Hence,
the low-energy scale of 1D manganites can be well described
in terms of polarons as basic entities, their reactions and
interactions. This description provides a blueprint on how
to rationalize the complex orbital, polaron, and spin orders
in real materials in higher dimensions. Furthermore, it is a
promising route towards more coarse grained simulations of
the relaxation dynamics on the very long time scale dominated
by the polaronic order.

The subsequent calculations have been performed with the
spin and lattice degrees of freedom frozen in. Consistent with
the electronic structure obtained from the tight-binding model,
the electrons experience a sequence of Zener polarons, which
are Mn dimers. Each dimer has two ferromagnetically coupled
Mn sites, while two Zener polarons are antiferromagnetically
coupled with each other. The resulting Hubbard-like model
is controlled by three parameters, the hopping thop between
two Mn sites, the Hund’s splitting � between spin up and
spin-down electrons, and the Coulomb interaction U between
the electrons.

The excitation and the short-time initial relaxation has
been studied using tDMRG simulations. In the absence of an

interaction, the excitation of a specific Zener polaron produces
internal dipole oscillations, which can be described as an
electron-hole pair. Since the excitation is local in real space, it is
spread over the entire reciprocal unit cell in momentum space.
Electrons and holes propagate with a velocity determined by
the slopes of the band structure. An intricate pattern of dipole
oscillations inside the light cone of the excitation emerges at
intermediate values of�/thop, with structures propagating with
the phase velocity at the k value of the maximal group velocity,
rather than with the group velocity itself. The group velocity
decreases with increasing Hund’s splitting, as it effectively
decouples Zener polarons.

The electron-electron interaction U induces a coupling
of the dipole oscillations with different spins. It thus is
responsible for a very rapid relaxation of the magnetic moment
of the individual bands. While the role of U is secondary
in equilibrium, it has a pronounced effect on the dynamics,
which differs strongly from that of noninteracting electrons.
The tDMRG results for the momentum distribution clearly
show that scattering due to the electron interaction leads
to a redistribution of the electrons on the four bands on a
femtosecond time scale. This timescale increases with � for
fixed U .

The estimate of the quasiparticle content from the electronic
momentum distributions reveals that only a small renormaliza-
tion is present, so that the time evolution of the quasiparticle
momentum distribution is very similar to the one of free
electrons. The relaxation rates have been determined with
the linearized quantum Boltzmann equation. For all values
of Hund’s splitting, the lifetimes scale as ∼thop/U 2. A large
Coulomb interaction increases the rate of scattering and thus
increases the relaxation rate. As shown in Fig. 14, a strong
polaron microstructure expressed by the Hund’s splitting �

leads to an enhanced lifetime of the excitations. This finding
is in agreement with the tDMRG results.

The thermalization rates in our PCMO model are always
exponentially suppressed as a function of the inverse final
temperature (this is different from Ref. [27]), which would
be a clear experimental signature if initially the sample is at
sufficiently low temperature. This exponential suppression is
a specific consequence of the one-dimensional nature of our
PCMO model. However, it should be noted that depending
on the strength of the electron-phonon coupling this signature
might be hidden by coupling to the phonon bath. Realistic
modeling and inclusion of the phonon degrees of freedom is
left to future work.
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APPENDIX A: BOLTZMANN EQUATION
FOR ELECTRON RELAXATION

Based on the effective model from Sec. II C, Eq. (7), we
investigate the relaxation of the electrons due to electron-
electron interactions by means of a BE. We use it in a
similar manner as Biebl and Kehrein [27], who investigated
the thermalization rates of a Hubbard model. Furthermore we
perform a linearization of the BE to find the relaxation rates.

Multiband Boltzmann equation

In this Appendix, we describe the definitions used in setting
up the BE. A first step towards calculating the BE is finding the
one-particle bands εν(k) as eigenvalues of the noninteracting
Hamiltonian Ĥ0.

We consider a unit cell with four Mn sites. The noninteract-
ing Hamiltonian for a system with N unit cells has the form

Ĥ0 =
∑

σ∈{↑,↓}

4∑
j,j ′=1

N∑
�,�′=1

hσ,j,j ′,�,�′ ĉ
†
σ,j,�ĉσ,j ′,�′ , (A1)

where σ ∈ {↑,↓} is the spin index, j ∈ {1,2,3,4} is the site
index in the unit cell, and � is the index of the lattice translation
τ� = 4a�, where a is the Mn-Mn distance and � is an integer.
We consider periodic boundary conditions with N unit cells.
The limit N → ∞ is taken. The position of a Mn site is
Rj,� = aj + τ�. With ĉ

†
σ,j,� and ĉσ,j,�, we denote the creation

and annihilation operators of the Mn-eg orbital at Rj,� pointing
along the chain.

In a Bloch representation, the creation and annihilation
operators b̂

†
σ,j (k) and b̂σ,j (k) are defined via

b̂
†
σ,j (k) :=

√
4a

2π

N∑
�=1

eikτ� ĉ
†
σ,j,�, (A2)

and the k-points spacing is �k = 2π
4aN

. The k points are chosen
from the interval k ∈ [− π

4a
, π

4a
].

In this basis, the noninteracting Hamiltonian is

Ĥ0 =
∫

dk
∑

σ∈{↑,↓}

4∑
j,j ′=1

hσ,j,j ′ (k)b̂†σ,j (k)b̂σ,j ′ (k), (A3)

with

hσ,j,j ′ (k) =
N∑

�=1

hσ,j,j ′,�,0e
ikτ� . (A4)

The k-dependent Hamiltonian has the form

hσ (k) =

⎛
⎜⎜⎜⎝

σ�/2 −thop 0 −thopei4ak

−thop σ�/2 −thop 0
0 −thop −σ�/2 −thop

−thope−i4ak 0 −thop −σ�/2

⎞
⎟⎟⎟⎠,

(A5)

where we use σ = 1 for the Hamiltonian of the spin-up
electrons and σ = −1 for that of the spin down electrons.

Diagonalization yields the eigenvalues εσ,ν and the unitary
matrix Tσ,j,ν holding the eigenvectors

4∑
j ′=1

hσ,j,j ′ (k)Tσ,j ′,ν(k) = Tσ,j,ν(k)εσ,ν(k). (A6)

This leads to the band structure Eq. (10).
The Hamilton operator is brought into the diagonal form

using the creation and annihilation operators for specific bands

â†
σ,ν(k) =

4∑
j=1

b̂
†
σ,j (k)Tσ,j,ν(k). (A7)

This yields

Ĥ0 =
∑

ν

∑
σ

∫
dk εν(k)n̂σ,ν(k), (A8)

where n̂σ,ν(k) := â†
σ,ν(k)âσ,ν(k) is the number operator for a

particle in band ν and with wave vector k.
The interaction has the Hubbard form

Ĥint =
N∑

�=1

4∑
j=1

Uĉ
†
↑,j,�ĉ

†
↓,j,�ĉ↓,j,�ĉ↑,j,�, (A9)

which yields

Ĥint = 4aU

2π

∑
ν1,ν2,ν3,ν4

∫
dk1 . . .

∫
dk4

×��ν,�k
∑
n∈Z

δ(P�k + Gn)

× â
†
↑,ν1

(k1)â†
↓,ν2

(k2)â↓,ν3 (k3)â↑,ν4 (k4), (A10)

with

��ν,�k :=
4∑

j=1

T ∗
↑,j,ν1

(k1)T ∗
↓,j,ν2

(k2)T↓,j,ν3 (k3)T↑,j,ν4 (k4) (A11)

and

P�k := k1 + k2 − k3 − k4. (A12)

With Gn = 2π
4a

n, we denote the reciprocal lattice vectors. The
terms with nonzero reciprocal lattice vectors describe Umklapp
processes, for which part of the momentum of the scatter-
ing particles is absorbed by the lattice. Band structure and
interaction determine the collision term Icoll of the Boltzmann
equation, leading to Eq. (23).

APPENDIX B: MOMENTUM DISTRIBUTION FOR U = 0

In this Appendix we show that the population inversion
seen in Fig. 10 at U/thop = 4.3 vanishes for U = 0. In Fig. 15
the momentum distribution for a system similar to Fig. 10
with open boundary conditions, but with U = 0, is shown.
Without interactions, we expect at quarter filling that before
the excitation the lowest band is completely filled and the other
three bands completely empty. We obtain small differences
to this expectation, which we associate with the choice of
boundary conditions: In Fig. 16 we present results for the
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FIG. 15. Momentum distribution for a system with open bound-
ary conditions, L = 40, �/thop = 2.3, and U/thop = 0 before (ma-
genta) and just after (green) the photoexcitation by applying operator
Eq. (12) at the center of the system as obtained by the DMRG.

same parameters, but with periodic boundary conditions. As
can be seen, here the expectation is perfectly matched. Note
that the effect of the excitation is independent of the boundary
conditions used. We see that for �/thop = 2.3 at U = 0
particles are excited from the lowest band to all higher bands.
The resulting distributions show a peak at the 	 point in
the first, second, and fourth band, while in the third band a
minimum is obtained. The differences to this behavior visible
in Fig. 10 we associate to the effect of a finite value of U/thop.

APPENDIX C: ESTIMATING TEMPERATURE AND
ENERGY DENSITY OF THE EXCITATION USING MPS

In this Appendix we discuss how we obtained the values
for the inverse temperature β and the energy density due to the
excitation, Eq. (12).

1. Final temperature of the excited state

We use the purification approach discussed, e.g., in
Refs. [26] to compute the properties of the equilibrium state at
finite temperatures. In this approach the complete calculation
takes place in an enlarged Hilbert space, which is created by
adding an ancilla site to each physical site. To obtain the state
at a given temperature we perform an imaginary time evolution
starting from a suitable state at infinite temperature (β = 0).

Reference [67] presents a way to obtain such a state, which
conserves the two U (1) symmetries of the model (total spin
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FIG. 16. Momentum distribution as in Fig. 15 but with periodic
boundary conditions.

-40

-20

 0

 0.1  1

Δ/thop=2.3, U=0

E/
t h

op

β

Eexc/thop

-40

-20

 0

 0.1  1

Δ/thop=2.3, U=4.3

E/
t h

op

β

Eexc/thop

-100

-80

-60

 0.1  1

Δ/thop=8, U=0

E/
t h

op

β

Eexc/thop

-100

-80

-60

 0.1  1

Δ/thop=8, U=4.3

E/
t h

op

β

Eexc/thop

FIG. 17. Energy of systems with L = 40, �/thop = 2.3, 8, and
U/thop = 0, 8 as a function of the inverse temperature β. The results
are obtained using DMRG by an imaginary time evolution starting
from the ground state of (C1), which is a suitable state with β = 0
in the physical space. The dashed horizontal lines indicate the energy
after the excitation, which is obtained by computing the expectation
value Eexc = 〈ψ(t)|Ĥ |ψ(t)〉 = const, with Ĥ the Hamiltonian (7) and
|ψ(t)〉 the state after the excitation at time t . The intersection of the
finite-temperature results and Eexc indicates the value of β, which can
be associated to the energy of the excitation.

and particle number conservation) independently within the
physical and the ancilla system. The idea is to formulate a
so-called entangler Hamiltonian or entangler, whose ground
state is the desired state at β = 0. Note that the entangler is
constructed only by fixing the particle statistics, i.e., S = 1/2
fermions in our case. Therefore the entangler can be used for
any Hubbard like system to obtain an infinite temperature state.
We follow Ref. [67] and use the entangler Hamiltonian

Ĥ
Spin- 1

2 -fermions
C2 = −

∑
i �=j, σ=↑,↓

�̂
†
σ,i�̂σ,j + H.c. (C1)

with �̂σ,i = ĉσ,i ĉσ̄ ,a(i)P̂
σ
i and P̂ σ

i = |1 − n̂σ̄ ,i − n̂σ,a(i)|. The
index i labels a site in the physical space, the index a(i) the
corresponding site on the ancilla space. In our MPS approach,
we first formulate this long-range-interaction Hamiltonian as a
finite state automaton (see Ref. [49] for details). In order to do
so, we need to rewrite the projector, because it is not possible
to evaluate the absolute value of a sum of operators within the
finite state automaton framework. This leads to

P̂ σ
i = |1 − n̂σ̄ ,i − n̂σ,a(i)| = (P̂ σ

i

)2
= 1 − 2n̂σ̄ ,i − 2n̂σ,a(i) + n̂σ̄ ,i n̂σ,a(i)

+ n̂σ,a(i)n̂σ̄ ,i + n̂2
σ̄ ,i + n̂2

σ,a(i)

= 1 − n̂σ̄ ,i − n̂σ,a(i) + 2n̂σ̄ ,i n̂σ,a(i). (C2)

In Fig. 17 the imaginary time evolution starting from an
infinite temperature state obtained as ground state of (C1) is
shown for different values of �/thop and U/thop. In thermal
equilibrium, the value of E(β) shown in Fig. 17 and of the

TABLE IV. Values of the energy of the excited states.

Eexc/thop U/thop = 0 U/thop = 4.3

�/thop = 2.3 −47.302 −45.354
�/thop = 8 −100.90 −100.55
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TABLE V. Values of the inverse temperature β at which E(β) =
Eexc.

β U/thop = 0 U/thop = 4.3

�/thop = 2.3 1.56 1.43
�/thop = 8 1.45 1.44

energy of the excited state Eexc = 〈ψ(t)|Ĥ |ψ(t)〉 = const is
the same for the Hamiltonian (7). Hence, the value of β for
which E(β) = Eexc corresponds to the temperature of the
system after equilibration. The values for Eexc are displayed
in Table IV; the corresponding values of β are shown in
Table V.

2. Estimating the energy density of the excitation

We estimate the energy density of the excitation by con-
sidering the difference of the energy of the excited state to
the ground state, Eexc − E0, and dividing it by the length of
the finite system used in our simulations. In this approach, we
assume that the finite system considered represents a typical
part of the lattice, which is excited by the incoming light, so
that the energy density of the finite system would correspond
to the one of an infinite lattice.

TABLE VI. Energy of the ground states.

Egs/thop U/thop = 0 U/thop = 4.3

�/thop = 2.3 −48.753 −46.973
�/thop = 8 −102.11 −101.76

Furthermore, we assume that the intensity I of the incoming
light amounts to the same energy density. We hence obtain

I = Egroundstate − Eexcited state

a L τ
. (C3)

We use as value for the Mn-Mn distance a = 3.818 Å, see
Ref. [68]. The duration of the light pulse is estimated to be
τ = 1 fs. The values for the ground state energies are given in
Table VI and are obtained via DMRG for chains with L = 40
sites.

This leads to an intensity ∼108 W/mm. In a pump-probe
setup, this would be the intensity of the pump laser in case of
perfect absorption of the pump pulse. This value hence serves
as a lower bound for the intensity needed to reproduce a sce-
nario similar to the one discussed in this paper. As the intensity
of lasers with ultrashort light pulses can reach ∼10 TW/mm,
the estimate shows that similar investigations are within reach
of typical pump-probe setups.
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