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Site-occupation embedding theory (SOET) is an alternative formulation of density functional theory (DFT)
for model Hamiltonians where the fully interacting Hubbard problem is mapped, in principle exactly, onto an
impurity-interacting (rather than a noninteracting) one. It provides a rigorous framework for combining wave-
function (or Green function)–based methods with DFT. In this work, exact expressions for the per-site energy and
double occupation of the uniform Hubbard model are derived in the context of SOET. As readily seen from these
derivations, the so-called bath contribution to the per-site correlation energy is, in addition to the latter, the key
density functional quantity to model in SOET. Various approximations based on Bethe ansatz and perturbative
solutions to the Hubbard and single-impurity Anderson models are constructed and tested on a one-dimensional
ring. The self-consistent calculation of the embedded impurity wave function has been performed with the
density-matrix renormalization group method. It has been shown that promising results are obtained in specific
regimes of correlation and density. Possible further developments have been proposed in order to provide reliable
embedding functionals and potentials.
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I. INTRODUCTION

Although the independent-particle picture is applicable to
many electronic systems, such as conventional metals and
band insulators, it drastically fails when electron correlation
becomes strong, such as in transition metal oxides where
metal-insulator transitions occur. Describing such a transition
accurately at the computational cost of an independent-particle
theory is still a challenge. In the context of density functional
theory (DFT), a correction based on the on-site two-electron
repulsion parameter U can be explicitly added to the exchange-
correlation functional, in the spirit of hybrid functionals, thus
leading to the so-called DFT+U method [1,2]. But still,
some crucial aspects are missing in the DFT+U , for instance,
strongly correlated phenomena such as the Kondo effect, which
cannot be treated within a static mean-field approximation.
Therefore, it is necessary to consider a many-body picture of
the problem.

Because it often appears that the region of interest is only
one part of a much larger system and considering strong
electron correlation as essentially local [3–5], embedding
approaches are mainly used in practice [6]. In these approaches,
the whole system is usually mapped onto an embedded quan-
tum problem, e.g., a small system called impurity and the rest of
the system called the bath [7]. The dynamical mean-field theory
(DMFT) [8–12] has been proved to treat efficiently systems
with d or f localized shells; however, there are still some cases
for which DMFT is not sufficiently accurate, especially in the
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case when nonlocal electron correlation becomes important.
In order to further improve on its performance, combined
DMFT+DFT [13] or DMFT+GW [14–19] schemes have been
proposed to recover such effects. In another promising ap-
proach, the so-called self-energy embedding theory [20–22],
strong correlation is not considered as strictly local, which
can be appreciable for real compounds. Its applicability to
both model and ab initio Hamiltonians is also appealing. All
these embedding techniques are formulated in terms of the
(frequency-dependent) one-particle Green function. On the
other hand, in the density-matrix embedding theory (DMET)
[23–29], the embedded fragment (impurity) is described with
a high-level wave-function-based method while the rest of the
system is usually treated at the mean-field level. Extensions
have been proposed in order to include correlation in the bath
[30] or for improving the description of the boundary between
the fragment and the bath [31].

Turning to DFT, its extension to model Hamiltonians is
usually referred to as site-occupation functional theory (SOFT)
[32–35]. In conventional Kohn-Sham (KS) SOFT, the physical
fully interacting many-body problem is mapped onto a non-
interacting one by means of a Hartree-exchange-correlation
(Hxc) functional of the density (i.e., the sites occupation in this
context). The SOFT has been shown to give very accurate den-
sity and energy profiles with the Bethe ansatz local density ap-
proximation (BALDA) [36–38], the spin-dependent BALDA
[39], and its fully numerical formulation [40,41]. The methods
have been applied to both repulsive [42,43] and attractive
[44,45] Hubbard models. The electronic transport has also been
studied by applying SOFT to the Anderson junction model
[46–48]. Time-dependent [49–51] and temperature-dependent
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extensions [52,53] have been investigated over the years.
Other reduced quantities can also be used, as first discussed
by Schönhammer et al. [34], such as the one-body reduced
density matrix [54–61], or the steady current in connection
with steady-state transport [62,63].

For the purpose of modeling strongly correlated regimes,
some of the authors have recently proposed an alternative
formulation of SOFT where, in contrast to standard KS
SOFT, the interacting Hubbard problem is mapped onto an
impurity-interacting one, thus leading to an in-principle-exact
site-occupation embedding theory (SOET) [64,65]. In order to
turn SOET into a practical computational method, embedding
density functional approximations must be developed. This
has been done so far only for the asymmetric Hubbard dimer
[65]. In this work we show how Bethe ansatz and perturbative
solutions to both Hubbard and Anderson models can be used
for designing local density approximations in the context
of SOET. In Ref. [65], the self-consistent impurity problem
SOET relies on was solved for an eight-site model by exact
diagonalization as a proof of concept. In this work, we also
present an implementation of SOET where the embedded
impurity system is treated with the density-matrix renormal-
ization group (DMRG) method [66–70], thus allowing for
calculations on larger rings.

The paper is organized as follows. After a brief review
of SOET (Sec. II A), exact SOET-based expressions for the
per-site energy and double occupation are derived in Sec. II B,
in the particular case of the uniform one-dimensional Hubbard
problem. Exact properties of the embedding functionals are
also presented. The construction of local density functional
approximations is then discussed in Sec. II C. A connection
between SOET and the single-impurity Anderson model is
investigated in Sec. II D. A summary of the various approx-
imations tested in this work is given in Sec. III with the
computational details. The results are discussed in Sec. IV.
Conclusions and perspectives are finally given in Sec. V.

II. THEORY

A. Site-occupation embedding theory

We focus on the one-dimensional Hubbard model in an
external potential v ≡ {vi}i ,

Ĥ (v) = T̂ + Û + V̂ , (1)

where the hopping operator,

T̂ = −t

L−1∑
i=0

∑
σ=↑,↓

(ĉ†iσ ĉi+1σ + H.c.), (2)

is the analog of the kinetic energy operator in ab initio Hamil-
tonians. Here t is the hopping integral and ĉ

†
iσ is the creation

operator of an electron at the ith site with spin σ = ↑,↓. The
site index i runs from 0 to L − 1, where L is the number of sites,
and we impose the periodic boundary condition ĉLσ = ĉ0σ . The
on-site two-electron repulsion operator is given by

Û = U

L−1∑
i=0

n̂i↑ n̂i↓, (3)

where n̂iσ = ĉ
†
iσ ĉiσ , and U represents the Hubbard interaction

between spin-up and spin-down electrons on the same site. In
order to formulate the SOFT and SOET, we further introduce
the on-site potential operator by

V̂ =
L−1∑
i=0

vi n̂i , (4)

where n̂i = n̂i↑ + n̂i↓. In order to have a self-contained paper,
this section summarizes the main equations of Ref. [65].

In SOFT, the exact ground-state energy is obtained varia-
tionally as

E(v) = min
n

{F (n) + (v|n)}, (5)

where n ≡ {ni}i is the site-occupation (simply called density
in the following) vector and (v|n) = ∑

i vini . The Levy-Lieb
(LL) functional reads

F (n) = min
�→n

{〈�|T̂ + Û |�〉}, (6)

where the minimization is restricted to wave functions � with
density n.

In the conventional KS formalism, the LL functional is
decomposed as

F (n) = Ts(n) + EHxc(n), (7)

where Ts(n) = min
�→n

{〈�|T̂ |�〉} is the t-dependent analog of the

noninteracting kinetic energy functional and

EHxc(n) = U

4

∑
i

n2
i + Ec(n) (8)

is the t- and U -dependent Hxc functional. The latter is
“universal” in a sense that it does not depend on the external
potential v.

Turning to the SOET [64,65], we label, for convenience,
the location of the “to be embedded” impurity site in real (dis-
cretized) space as i = 0. The LL functional is then decomposed
into impurity and bath contributions as

F (n) = F imp(n) + E
bath
Hxc (n), (9)

where the impurity-interacting LL functional reads

F imp(n) = min
�→n

{〈�|T̂ + Û0|�〉}, (10)

with Û0 = Un̂0↑n̂0↓. By using Eqs. (5), (9), and (10), we obtain
the exact SOET energy expression [64,65]

E(v) = min
�

{〈�|T̂ + Û0|�〉 + E
bath
Hxc(n� ) + (v|n�)

}
, (11)

where n� ≡ {〈�|n̂i |�〉}i is the density of the trial many-body
wave function �. The optimized impurity-interacting wave
function � imp in Eq. (11) fulfills the following self-consistent
equation:(

T̂ + Û0 +
∑

i

[
vi + ∂E

bath
Hxc

(
n� imp)

∂ni

]
n̂i

)
|� imp〉

= E imp|� imp〉, (12)

where {vi + ∂E
bath
Hxc (n� imp

)/∂ni}i plays the role of an embed-
ding potential for the impurity. This potential is unique (up to
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a constant) and ensures, like the KS potential in conventional
DFT, that � imp reproduces the exact ground-state density of the
true (fully interacting) Hubbard Hamiltonian. Any correlated
method based on the explicit calculation of many-body wave
functions or Green functions could in principle be applied
for solving Eq. (12). Obviously, in order to perform practical
SOET calculations, it is necessary to develop approximations
to the complementary bath functional introduced in Eq. (9).
This is the main focus of this paper. Let us first consider the
following KS decomposition of Eq. (10),

F imp(n) = Ts(n) + E
imp
Hxc(n), (13)

where

E
imp
Hxc(n) = U

4
n2

0 + Eimp
c (n) (14)

is the analog of the Hxc functional for the impurity-interacting
system. By combining Eqs. (9) and (13), we have

E
bath
Hxc (n) = U

4

∑
i �=0

n2
i + E

bath
c (n), (15)

where the exact correlation functional for the bath,

E
bath
c (n) = Ec(n) − Eimp

c (n), (16)

is simply the difference in correlation energy between the
fully interacting system (i.e., an interacting impurity site
surrounded by interacting bath sites), for which local density
functional approximations have already been developed (see,
for example, Refs. [37,53]) and the auxiliary system consisting
of an interacting impurity site surrounded by noninteracting
bath sites, both systems having the same density n. In the rest
of this work we discuss various strategies for developing local

density functional approximations to E
bath
c (n) or, equivalently,

Ec(n) and E
imp
c (n). For that purpose, we first derive in the next

section exact properties of the latter functionals for a uniform
system.

B. Exact SOET for the uniform Hubbard model

Following Capelle and co-workers [36], we use as reference
the uniform Hubbard system (v = 0) in the following in order

to derive local density approximations for E
bath
c (n). In this

context, the standard density functional correlation energy
[37],

Ec(n) =
∑

i

ec(ni), (17)

is simply expressed in terms of the per-site correlation energy
ec(n), for which an exact analytical expression can be obtained
at half-filling from the Bethe ansatz [71]. For convenience, we
introduce the per-site analog of Eq. (16),

ebath
c (n) = ec(n0) − Eimp

c (n), (18)

which leads to the final expression,

E
bath
c (n) =

∑
i �=0

ec(ni) + ebath
c (n). (19)

Let us stress that the deviation of the impurity correlation
energy E

imp
c (n) from the conventional (total) per-site corre-

lation energy ec(n0) is the key density functional quantity
to model in the SOET. It becomes even more clear when
considering, for example, the exact (uniform) double site-
occupation expression [35]

d = 〈n̂i↑n̂i↓〉 = 1

L

∂E

∂U
= n2

4
+ ∂ec(n)

∂U
, (20)

where n denotes the uniform density in the reference Hub-
bard system with total energy E = E(v = 0). As shown in
Appendix A, the following equivalent expression is obtained
in SOET,

d = d imp + ∂ebath
c

(
n� imp)

∂U
, (21)

where d imp = 〈� imp|n̂0↑n̂0↓|� imp〉 is the double occupation of
the impurity site for the impurity-interacting wave function
� imp. Note that, in the exact theory, the latter is expected
to reproduce the uniform density only (i.e., n ≡ {ni = n}i ≡
n� imp

) and not the double occupation, hence the second density
functional contribution on the right-hand side of Eq. (21).
Turning to the per-site energy [37],

e = E

L
= ts(n) + U

4
n2 + ec(n), (22)

where ts(n) = −4t sin(πn/2)/π in the thermodynamic limit
(L → +∞), we equivalently obtain in SOET (see the proof in
Appendix B) the following exact expression,

e = ts
(
n� imp

0

) + Ud imp + t
∂ec

(
n� imp

0

)
∂t

+ ebath
c

(
n� imp)

− t
∂ebath

c

(
n� imp)

∂t
. (23)

In contrast to the regular KS expressions [Eqs. (20) and
(22)], our SOET expressions [Eqs. (21) and (23)] involve the
(embedded impurity) double occupation explicitly, which can
improve on the results significantly when approximate density
functionals are used, as shown in Sec. IV.

Returning to the exact theory, let us now highlight some
properties of ebath

c (n). Since the standard per-site correlation
functional as well as the impurity one are invariant under hole-
particle symmetry (see Ref. [35] and Appendix C), the per-
site bath correlation functional is also invariant, according to
Eq. (18), i.e., ebath

c (n) = ebath
c (2 − n). Consequently, the exact

embedding potential in the uniform case [see Eq. (12)],

∂E
bath
Hxc (n)

∂ni

∣∣∣∣∣
n=n

= (1 − δi0)

(
Un

2
+∂ec(n)

∂n

)
+ ∂ebath

c (n)

∂ni

∣∣∣∣
n=n

,

(24)

will, at half-filling (n = 1) and for a finite-size system, be equal
to U/2 everywhere in the bath and zero on the impurity site
or, equivalently, −U/2 on the impurity site and zero in the
bath (see Appendix C). In this particular case, the auxiliary
impurity-interacting system is similar to the symmetric single-
impurity Anderson model (SIAM) [72]. This feature has
already been observed numerically in the particular case of
an eight-site ring in Ref. [65], but at the time, it was not
rationalized in terms of hole-particle symmetry as we just
did. Away from half-filling, the embedding potential loses its
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uniformity in the bath since the interaction on the impurity
site breaks translation symmetry [65]. This fact, which is the
price to pay for achieving an exact embedding, explains why
ebath

c (n) should in principle depend not only on the impurity
site occupation but also on the bath site ones [see Eq. (24)].
For simplicity, the latter dependence will be neglected in the
following,

ebath
c (n) → ebath

c (n0), (25)

or, equivalently [see Eq. (18)],

Eimp
c (n) → Eimp

c (n0), (26)

thus leaving for future work the investigation of bath-
occupation-dependent density functional approximations.

C. Local density functional approximations based
on Bethe ansatz solutions

So far, only one density functional approximation to the
impurity correlation energy (referred to as two-level impurity
local density approximation (2L-ILDA) in Ref. [65]) has
been proposed. It is based on the asymmetric Hubbard dimer
and provides essentially an approximate density functional
embedding potential that is set to zero in the bath. Since
2L-ILDA does not model the correlation energy of the bath,
it cannot be used straightforwardly for calculating per-site
energies and double occupations. We propose in the following
to use Bethe ansatz solutions to (fully- or impurity-interacting)
infinite systems in order to design local density approximations
to the per-site bath correlation energy.

1. Approximation to ec(n)

Regarding the fully interacting Hubbard model, the BALDA
[36–38] (which is exact in the thermodynamic limit when U =
0, U → +∞, and for all U values when n = 1) will be used for
modeling ec(n). The correlation energy within BALDA reads

eBA
c (U,t,n) = eBA(U,t,n) − eBA(U = 0,t,n) − U

4
n2,

(27)

where the U - and t-dependence of the per-site correlation
energy will be dropped for convenience, and the per-site energy
is given by

eBA(n � 1) = −2tβ(U/t)

π
sin

(
πn

β(U/t)

)
, (28)

and

eBA(n � 1) = eBA(2 − n) + U (n − 1). (29)

The U/t-dependent function β(U/t) is determined by solving

−2β(U/t)

π
sin

(
π

β(U/t)

)
= −4

∫ ∞

0

dx

x

J0(x)J1(x)

1 + exp
(

U
2t

x
) ,

(30)

where J0 and J1 are zero- and first-order Bessel functions.
Although this functional has been proved to give accurate
energy and density profiles, we show here that it depicts
a wrong behavior around U = 0 away from the half-filled
case, which appears to be important for the calculation of

the double occupation in Eq. (20). Indeed, since β(0) = 2 and
∂β(U/t)/∂U |U=0 = −π/(8t) it comes

∂eBA
c (n)

∂U

∣∣∣∣
U=0

= 1

4

[
sin

(πn

2

)
− n2

]
− nπ

8
cos

(πn

2

)
,

(31)

and, consequently, for n � 1,

∂

∂n

∂eBA
c (n)

∂U

∣∣∣∣
U=0

= nπ2

16
sin

(πn

2

)
− n

2
. (32)

As readily seen from Eqs. (31) and (32), away from half-
filling, both BALDA correlation energy and potential will vary
linearly with U in the weakly correlated regime, which is, of
course, unphysical. This observation will be important when
discussing the performance of BALDA-based functionals for
the calculation of per-site energies and double occupations in
SOET, as well as for the analysis of so-called density-driven
errors (see Sec. IV).

Note that, in the thermodynamic limit, the correlation
potential ∂ec(n)/∂n exhibits a discontinuity at half-filling (n =
1) so that the exact fundamental gap can be reproduced in
KS-SOFT [36]. The BALDA can model such a discontinuity
by construction, as it can actually be seen from Eq. (32) when
n = 1, but this leads to convergence problems around the
Mott transition phase or in the Coulomb blockade regime.
Solutions have been proposed using finite temperature [53]
or ad hoc parameters [50,51,73]. On the other hand, in exact
SOET, the complementary per-site bath correlation potential
∂ebath

c (n)/∂ni is not expected to be discontinuous, neither on
the impurity site, where the two-electron repulsion is treated
explicitly, nor in the bath where the standard correlation
potential already contains the discontinuity [see Eq. (24)]. This
can be easily shown in the atomic limit (see Appendix D).

2. Approximations to Eimp
c (n0)

Turning to density functional approximations for ebath
c (n0)

or, equivalently, E
imp
c (n0), the simplest one [referred to as

impurity-BALDA (iBALDA) in the following] consists in
modeling the correlation energy of the impurity-interacting
system with the BALDA:

Eimp
c (n0)

iBALDA−−−→ eBA
c (n0). (33)

In other words, the iBALDA neglects the contribution of the
bath to the total per-site correlation energy [see Eq. (18)],

ebath
c (n0)

iBALDA−−−→ 0. (34)

Despite its apparent simplicity, this approximation will prove
to be very accurate away from half-filling, but it overestimates
the correlation energy of the impurity otherwise. This will be
discussed further in Sec. IV. Improvement can be considered
either by increasing the number of impurities [64] (and still use
the iBALDA), in analogy with the DMET [23], or by develop-
ing more accurate approximations to ebath

c (n0) while keeping a
single-impurity site. The latter option is of course preferable
in terms of computational cost. It can be implemented, in
the half-filled case, by exploiting the already mentioned (see
Sec. II B) analogy between the auxiliary impurity-interacting
system and the symmetric SIAM. Using the latter for extracting
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an approximate E
imp
c (n0) functional gives, when combined

with the BALDA, an approximation that will be referred to
as the SIAM-BALDA[n = 1] in the following,

ebath
c (n0 =1)

SIAM−−−−−−→
BALDA[n=1]

eBA
c (n0 =1) − ESIAM

c (U,�,n0 =1),

(35)

where � is the impurity level width parameter of the SIAM
[74]. For clarity, we postpone to Sec. II D discussion of the
choice of � in the context of SOET. The correlation energy in
the symmetric SIAM can be well described in all correlation
regimes by a simple interpolation between the weakly and the
strongly correlated limits,

ESIAM
c (U,�,n = 1)

= 1

1 + f
ESIAM

c,U/�→0(U,�)+ f

1 + f
ESIAM

c,U/�→∞(U,�,n=1),

(36)

where f = f (U/�) = eU/�−6.876. Here in the weakly corre-
lated limit, we use Yamada’s perturbative expression through
fourth order in U/� [75],

ESIAM
c,U/�→0(U,�) = U 2

π�

[
−0.0369 + 0.0008

(
U

π�

)2
]
. (37)

Regarding the strongly correlated limit, we propose to use
a simplified version of the density functional approximation
developed by Bergfield et al., which relies on the BA solution to
the strongly correlated SIAM [46,47]. An impurity correlation
energy functional is obtained by integrating (with respect to the
density n) the parameterized correlation potential of Eqs. (15)
and (16) in Ref. [46], which gives

ESIAM
c,U/�→∞(U,�,n) = α(U,�)

U

2
[Ec(U,�,n) − Ec(U,�,0)],

Ec(U,�,n) = n − n2

2
+ 2

π
(1 − n)tan−1

[
(1 − n)

σ

]

− σ

π
ln

[
1 +

(
(1 − n)

σ

)2
]
, (38)

where α(U,�) = U/(U + 5.68�) and

σ = 0.811
�

U
− 0.39

(
�

U

)2

− 0.168

(
�

U

)3

. (39)

Note that in order to be able to use the interpolation in Eq. (36)
in any regime of correlation, i.e., for all values of U/�, we need
to reconsider the parametrization in Eq. (39). Indeed, when
passing through σ = 0 or, equivalently, when U/� ≈ 0.755,
the correlation energy undergoes a jump because of the tan−1

function, as shown in Fig. 1. For this reason, we will use in the
SIAM-BALDA[n = 1] approximation the simpler (and still
reasonably accurate) expression,

σ
SIAM−−−−−−→

BALDA[n=1]

8�

π2U
, (40)

which originates from the BA solution as U → +∞ [46].
Note that, with this choice, ESIAM

c,U/�→∞(U,�,n = 1) becomes

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 1 2 3 4 5 6 7 8

E
im

p
c

(n
=

1)
/t

U/t

DMRG
Yamada
Bergfield et al. [modified]
Bergfield et al. [original]
Interpolation

FIG. 1. Correlation energy of the embedded impurity for the
half-filled 32-site one-dimensional Hubbard model. Various approx-
imations are tested for � = t (see Sec. II D): Eq. (37) [blue curve],
Eq. (38) combined with Eq. (39) [green curve], and Eq. (38) combined
with Eq. (40) [red curve]. The interpolation SIAM-BALDA[n = 1]
relies on [Eq. (36) combined with Eq. (40)] is shown with points in
purple. The accurate DMRG result (see Ref. [65] for further details
about the accurate calculation of correlation energies) is shown in
black for comparison.

positive for smaller U/� values, which is, of course, unphys-
ical. This artefact is actually removed by the interpolation in
Eq. (36), as shown in Fig. 1. The numerical value 6.876 in the
interpolation function f simply corresponds to the crossing
point between Yamada’s [Eq. (37)] and modified Bergfield’s
[Eqs. (38) and (40)] approximate correlation energies.

D. Connecting SOET to the SIAM

In order to use density functional approximations based on
the SIAM in the context of SOET, we need to relate the impurity
level width parameter � of the SIAM to the parameters of
the (original) Hubbard problem t and U , and, possibly, the
density. This is the purpose of this section. Let us start with
the expression for the Hamiltonian of the symmetric SIAM
written in (discretized) real space,

Ĥ SIAM = −t
∑

σ

L∑
i=1

(ĉ†iσ ĉi+1σ + H.c.)

+V
∑

σ

(ĉ†1σ d̂σ + ĉ
†
Lσ d̂σ + H.c.)

+Un̂d↑n̂d↓ − U

2
n̂d , (41)

where we denote d̂σ = ĉ0σ , n̂dσ = d̂†
σ d̂σ , and n̂d = ∑

σ n̂dσ .
We assume the periodic boundary condition in the bath
ĉL+1σ = ĉ1σ . As discussed in Sec. II B, in the particular case of
a half-filled (L + 1)-site Hubbard problem, the exact auxiliary
impurity-interacting Hamiltonian of SOET is essentially the
one in Eq. (41) if

V = −t. (42)
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Note that, in principle, we should remove the coupling term
between the two neighbors (i = 1 and i = L) of the impurity
site. The latter point is ignored in the following for simplicity.
Using the representation of bath creation operators in k space,

ĉ
†
iσ = 1√

L

∑
k

e−iki ĉ
†
kσ , (43)

with

k = 2π

L
m

(
m = −L

2
+ 1, . . . ,

L

2

)
, (44)

we recover from Eq. (41) the usual SIAM Hamiltonian expres-
sion,

Ĥ SIAM =
∑
kσ

εkĉ
†
kσ ĉkσ + Un̂d↑n̂d↓ − U

2
n̂d

+
∑
kσ

(V (k)ĉ†kσ d̂σ + H.c.), (45)

where εk = −2t cos k and

V (k) = 2V√
L

e−ik/2 cos(k/2) (46)

is the k-dependent coupling term between the bath and the
impurity. The correlation energy of the impurity is then deter-
mined from the frequency-dependent hybridization function
[74]

�(ω) = π
∑

k

|V (k)|2δ(ω − εk), (47)

which, according to Eqs. (44) and (46), can be simplified as
follows in the thermodynamic limit (L → +∞):

�(ω) = L

2

∫ π

−π

dk|V (k)|2δ(ω − εk)

= 4V 2
∫ π

0
dk cos2(k/2)δ(ω − εk)

= V 2

t2

∫ 2t

−2t

dε

t − ε

2√
1 − ε2

4t2

δ(ω − ε). (48)

The (frequency-independent) impurity level width parameter �

of the SIAM is usually defined as the value of the hybridization
function at the Fermi level εF = −2t cos kF ,

� = �(εF ) = V 2

t2

t − εF

2√
1 − ε2

F

4t2

. (49)

By using Eq. (42) and the relation between the uniform density
n = N/L in the bath and kF ,

N = 2
L

2π

∫ kF

−kF

dk, (50)

or, equivalently,

n = 2

π
kF , (51)

we finally obtain a t-dependent density functional impurity
level width which connects the SIAM to the original Hubbard
problem to be solved in SOET:

� = �(t,n) = t

(
1 + cos(πn/2)

sin(πn/2)

)
. (52)

Note that the latter expression is valid when 0 � n � 1. In the
range 1 � n � 2, we should use the hole-particle symmetry
relation �(t,n) = �(t,2 − n).

As readily seen from Eq. (52), we obtain � = t for the
half-filled Hubbard problem (n = 1). This is the reason why,
in Sec. IV, per-site correlation energies have been computed for
the bath at the SIAM-BALDA[n = 1] level of approximation
[see Eq. (35)] with � set to t . The deviation from half-filling
in the original Hubbard system will be interpreted, in the
SIAM, as a rescaling of �. In the low-density regime we
have �(t,n) ≈ 4t/(πn) � �(t,n = 1), thus leading to weaker
correlation effects on the embedded impurity site in compar-
ison to the half-filled case. Consequently, we might expect
the simple combination of Yamada’s perturbation expansion
in U/� [see Eq. (37)] with Eq. (52) to provide a reasonable
approximation to the correlation energy of the impurity, even
when entering the strong correlation regime (this point will be
further discussed in the following). The latter approximation
combined with BALDA, for the calculation of the per-site
correlation energy of the bath, will be referred to as SIAM-
BALDA (without the suffix [n = 1]) in the following. It can
be summarized as follows:

ebath
c (n0)

SIAM−−−→
BALDA

eBA
c (n0) − ESIAM

c,U/�→0(U,�(t,n0)). (53)

In contrast to its [n = 1] analog, SIAM-BALDA is applicable
to any density regime. Note that, for n = 1, SIAM-BALDA and
SIAM-BALDA[n = 1] will not give exactly the same result.
The difference will become substantial in the strongly corre-
lated regime where, by construction, the latter approximation
will be more accurate than the former.

III. SUMMARY OF THE VARIOUS DENSITY FUNCTIONAL
APPROXIMATIONS AND COMPUTATIONAL DETAILS

In order to perform practical SOET calculations we must
solve the self-consistent impurity problem in Eq. (12) where,
as readily seen from Eq. (24), density functional approxi-
mations to the total and bath per-site correlation energies,
i.e., ec(n) and ebath

c (n), are needed. In our calculations, the
original one-dimensional uniform Hubbard system will consist
of 32 sites. The embedded impurity wave function [which
is the solution to the self-consistent Eq. (12)] has been
computed accurately (either fully self-consistently or, for
analysis purposes, by inserting the exact uniform density
into the complementary Hxc bath potential) by applying the
DMRG method [66–70] to the density functional impurity-
interacting Hamiltonian in Eq. (12). The maximum number
of renormalized states (or virtual bond dimension) was set to
m = 500. Turning to the functionals, BALDA [see Eq. (27)]
has been used for the total per-site correlation energy in both
SOET and conventional (KS) SOFT calculations. Regarding
the complementary correlation energy of the bath, various
approximations have been considered: iBALDA [Eq. (34)], the
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TABLE I. Summary of the density functional approximations used for E
bath
Hxc (n) in the practical SOET calculations [see Eqs. (11) and (12)]

presented in this work. The corresponding approximate bath Hxc potentials on site i are simply obtained by differentiation with respect to ni . In

(half-filled) SIAM-BALDA[n = 1] calculations, we used the potential ∂E
bath
Hxc (n)/∂ni = (1 − δi0)U/2, which is exact for finite-size half-filled

uniform rings.

SOET method Density functional approximation used for E
bath
Hxc (n) Correlation density functional approximations

iBALDA
∑

i �=0

(
U

4 n2
i + eBA

c (ni)
)

Eqs. (27)–(29)

SIAM-BALDA[n = 1]
∑

i

(
U

4 + eBA
c (1)

) − U

4 − ESIAM
c (U,� = t,1) Eqs. (27)–(29), (36)–(38), and (40)

SIAM-BALDA
∑

i

(
U

4 n2
i + eBA

c (ni)
) − U

4 n2
0 − ESIAM

c,U/�→0(U,�(t,n0)) Eqs. (27)–(29), (37), and (52)

interpolation-based SIAM-BALDA[n = 1] for calculations at
half-filling [Eqs. (35), (36), and (40) with � = t], and SIAM-
BALDA [Eq. (53)]. The expressions for the various density
functional approximations are summarized in Table I. Finally,
Eqs. (23) and (21) have been implemented for the calculation
of total per-site energies and double occupations, respectively.
The same quantities have been computed in SOFT by imple-
menting Eqs. (22) and (20). Standard DMRG calculations,
where the DMRG method is applied to the physical fully
interacting uniform Hubbard Hamiltonian in Eq. (1) [the
potential v is set to zero in this case], are used as reference
in the following. They are simply referred to as “DMRG” in
the rest of this work. The SOET calculations, where DMRG
is applied to the embedded impurity system, are referred to by
the name of the Hxc bath functional that is used (iBALDA,
SIAM-BALDA[n = 1], or SIAM-BALDA).

IV. RESULTS AND DISCUSSION

Let us first focus on the performance of iBALDA for the
calculation of total per-site energies (Figs. 2 and 3) and double
occupations (Fig. 4). Even though it performs well away from
half-filling for all U/t values, the iBALDA underestimates
the correlation energy significantly in the strongly correlated
regime when approaching half-filling (n = 1), as shown in the
bottom panel of Fig. 2. This is also reflected in the double
occupation (see Fig. 4) which, interestingly, is comparable
to the one obtained at the one-site DMET level [23]. As
expected, both per-site energies and double occupations are
significantly improved when applying the SIAM-BALDA[n =
1] functional (see Figs. 2 and 4). Let us stress that, in order to
obtain similar results in DMET, one would need to increase the
number of impurity sites [23] while, at the SIAM-BALDA[n =
1] level of approximation, we keep on using a single-impurity
site.

Away from half-filling, SOFT (BALDA) systematically
underestimates the double occupation in the weakly correlated
regime, as shown in Fig. 4. This is a direct consequence of the
unphysical linear behavior in U of eBA

c (n) when U → 0 and
n �= 1 [see Eq. (31)]. On the other hand, the iBALDA, which
uses the “bare” double occupation of the embedded impurity
[see Eqs. (21) and (34)], recovers the exact double occupation
in the weakly correlated limit (U = 0) and gives relatively
accurate results otherwise. Note that exact densities have been
used so far. By solving Eq. (12) self-consistently within the
iBALDA, we introduce density-driven errors in the per-site
energy (see the dashed lines in Fig. 3). In the weakly correlated

regime, they are clearly related to the unphysical linearity in
U of the BALDA correlation potential [see Eq. (32)]. Note
that, at the iBALDA level of approximation, the double occu-
pations obtained self-consistently (not shown) are essentially
on top of the ones obtained with the exact densities, simply
because the density functional contribution is neglected. Let us
finally mention that, in the vicinity of the half-filled strongly
correlated regime, the iBALDA per-site energy deteriorates
if self-consistently converged densities are used (see Fig. 2).
As shown in Fig. 5 (see the U = 5 and U = 10 panels),
the BALDA per-site correlation energy differs substantially
from the exact impurity correlation one, especially around
n = 1, thus making the iBALDA approximation irrelevant in
this regime of correlation and density. SIAM-BALDA gives,

0
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FIG. 2. Total per-site energies (−e/t) plotted as a function of
the exact density n = N/L for U = 1,5, and 10, t = 1 and L =
32. Results obtained with SIAM-BALDA[n = 1], which is defined
only at half-filling, are shown with green open circles. Results
obtained with SIAM-BALDA are shown only for U = 1 (see text for
further details). iBALDA as well as SIAM-BALDA [U = 1] energies
obtained with self-consistently converged densities are plotted with
dashed lines. Comparison is made with SOFT (BALDA) and DMRG.
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FIG. 3. Similar to Fig. 2, but deviations from the DMRG result
are plotted (instead of total per-site energies) for ease of comparison.
Dashed lines are used for SOET results obtained with self-consistently
converged densities.

on the other hand, a far more accurate description of the
impurity correlation energy than BALDA around half-filling,
as illustrated in Fig. 5. Note that, at low density, SIAM-BALDA
does not give very accurate impurity correlation energies for
large U values, thus somehow invalidating our assumption
(see Sec. II D) that, at low densities, combining Yamada’s
expansion in U/� of the SIAM correlation energy with the
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FIG. 4. Double occupations plotted as a function of U/t for
various exact densities n = N/L with L = 32. Results obtained
with SIAM-BALDA[n = 1], which is defined at only half-filling,
are plotted for n = 1 (green curve). iBALDA double occupations
obtained with self-consistently converged densities (not shown) are
almost indistinguishable from the ones obtained with the exact
densities. Note that for n = 1, the BALDA curve is on top of the
DMRG curve, as expected.
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FIG. 5. Comparing the density functional impurity correlation
energy used in SIAM-BALDA [see Eqs. (37) and (52)] with the exact
results of Ref. [65]. The latter were obtained for an eight-site ring.
The (total) BALDA per-site correlation energy is shown for analysis
purposes.

density-dependent impurity level width parameter �(t,n) of
Eq. (52) would be sufficient. A better approximation is clearly
needed in this regime of correlation and density.

Let us now briefly discuss the performance of SIAM-
BALDA. We show only results obtained with the relatively
small U = 1 value for which, at half-filling, Yamada’s pertur-
bation expansion of the SIAM correlation energy is accurate.
Although, as discussed previously, SIAM-BALDA provides
an overall better description of the density functional impurity
correlation energy than BALDA, even in stronger correlation
regimes, its combination with BALDA [see Eq. (53)] for the
calculation of per-site energies and double occupations will not
necessarily provide good results as U/t increases. Indeed, as
readily seen in Eqs. (21) and (23), it is in principle important
to reproduce the proper dependence in t and U of the com-
plementary per-site bath correlation functional. Moreover, the
density dependence of the SIAM-BALDA impurity correlation
energy is far from satisfactory (see Fig. 5), which may lead to
substantial density-driven errors. The performance of SIAM-
BALDA in stronger correlation regimes will be discussed
further in a forthcoming paper. Obviously, the same criticism
would apply to the interpolation in Eq. (36), where the density-
dependent �(t,n) of Eq. (52) could be used for any density n

(not just n = 1). Such a choice would be pragmatic since the
interpolation is only justified in the half-filled case. A density-
dependent generalization of the interpolation formula would be
needed in order to obtain a density functional approximation
that is applicable to any density and correlation regime. Let us
finally point out that the use of a density-dependent impurity
level width parameter �(t,n) in the strongly correlated limit
of the SIAM correlation functional ESIAM

c,U/�→∞(U,�,n) might
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FIG. 6. Double occupations plotted as a function of the exact
density n = N/L for U = t = 1 and L = 32. For iBALDA and
SIAM-BALDA, results obtained with self-consistently converged
densities (not shown) are almost on top of the ones obtained with
the exact densities.

enhance the density dependence of the embedding potential. It
is unclear how physical (or unphysical) this can be. This should
obviously be analyzed in detail. We keep such an analysis for
future work.

Returning to SIAM-BALDA, it gives, for U = 1, rela-
tively accurate per-site energies (see Fig. 2). Interestingly,
even though density-driven errors are still present, they are
substantially reduced when comparison is made with iBALDA,
especially in the low-density regime (see the dashed lines in the
top panel of Fig. 3). This is simply due to the fact that, within
SIAM-BALDA, the embedding potential equals the BALDA
correlation potential on all sites (bath and impurity) and it
is complemented by Yamada’s correlation potential (with a
minus sign) on the impurity site only [see Eqs. (37) and (52)].
Since the latter potential is quadratic in U , there will be no
spurious Hartree contribution to the potential, in contrast to
BALDA (as seen from the top panel of Fig. 5), and therefore no
self-consistency errors, at least at low density. We also see from
Fig. 5 that, when the density increases, the SIAM-BALDA
impurity correlation potential, i.e., the derivative of the SIAM-
BALDA impurity correlation energy with respect to n, is
underestimated (in absolute value), which could explain why,
in this regime, SIAM-BALDA still induces density-driven
errors. We should finally stress that the latter errors might be
enhanced by the fact that we use a complementary per-site
correlation functional for the bath that depends only on the
occupation of the impurity [see Eq. (25)]. Double occupations
are plotted with respect to the exact density for U = 1 in
Fig. 6. As expected, SIAM-BALDA improves on iBALDA
results close to the half-filled case. However, at low density,
the SIAM-BALDA per-site correlation for the bath inherits
the unphysical linear behavior in U of BALDA (which is
removed in iBALDA by construction), thus leading to under-
estimated double occupations. In summary, the simple version
of SIAM-BALDA that we propose is relatively accurate close
to half-filling. By construction, it is in principle applicable
only to relatively weak correlation regimes. Its generalization
to stronger correlation regimes as well as the possibility to

include occupations of the bath sites in the design of impurity
correlation functionals will be investigated in the future.

V. CONCLUSIONS AND PERSPECTIVES

SOET is an in-principle-exact DFT-based embedding the-
ory where the (not necessarily uniform) fully interacting Hub-
bard system is mapped onto an impurity-interacting one. In this
work, SOET has been applied to the uniform one-dimensional
Hubbard model for the purpose of deriving local density
approximations. Exact properties of the embedding functionals
have been derived first. In particular, we have shown that in
order to calculate per-site energies and double occupations,
the contribution of the bath to the per-site correlation energy
is, in addition to the latter, the key quantity to model in SOET.
Various density functional approximations, which are based
on Bethe ansatz and perturbative solutions to the Hubbard
and Anderson models, have been constructed and tested. Each
functional is well adapted to a particular regime of correlation
and density. For example, one of them (SIAM-BALDA), while
performing well around half-filling and in not too strong
correlation regimes, inherits the limitations of BALDA away
from half-filling. We hope that this work will pave the way
to the design of better SOET density functionals that are
applicable to all regimes.

Another key aspect of SOET is the self-consistent calcula-
tion of the embedded impurity system’s wave function. DMRG
has been used for that purpose in this work but any other
wave-function–based method could in principle be used in this
context. In contrast to the DMET, SOET can easily incorporate
correlation effects in the bath thanks to a dedicated density
functional. Note that, for practical purposes, the SOET could be
reformulated as an open impurity site problem, thus allowing
for clearer connections between the two approaches. Work is
currently in progress in this direction.

Let us also mention that the impurity problem in SOET
could alternatively be solved with a SIAM solver. The use of
Green function techniques in SOET is interesting, not only
for practical purposes, but also for the development of better
density functional embedding potentials. For that purpose, one
would have to derive a Sham-Schlüter equation [76] for the
embedded impurity system. Moreover, a Green-function-based
formulation of SOET might provide a convenient framework
for comparing SOET with DMFT, in the spirit of Ref. [7].
Extensions to higher-dimensional [35,51,77] and ab initio
Hamiltonians [using localized orbitals or (delocalized) natural
molecular orbitals] are also under investigation.
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APPENDIX A: EXACT EXPRESSION FOR THE DOUBLE
OCCUPATION

In this section, the proof for the SOET-based double occu-
pation expression in Eq. (21) is given. Let us start with Eq. (20),
which is valid for a uniform N -electron and L-site model
with density n ≡ {ni = n}i , where n = N/L. According to
Eq. (18), the double occupation now reads

d = n2

4
+ ∂E

imp
c (n)

∂U
+ ∂ebath

c (n)

∂U

= ∂E
imp
Hxc(n)

∂U
+ ∂ebath

c (n)

∂U
. (A1)

We will come back to this expression later on. Let us now
consider the impurity-interacting LL functional in Eq. (10),
which is defined for any (i.e., not necessarily uniform) density
n. The minimizing wave function in Eq. (10), whose density
equals n, is denoted � imp(n) so that

F imp(n) = 〈� imp(n)|T̂ + Un̂0↑n̂0↓|� imp(n)〉. (A2)

An equivalent and useful expression is obtained from the
following Legendre-Fenchel transform [64,65]:

F imp(n) = sup
v

{E imp(U,t,v) − (v|n)}, (A3)

where E imp(U,t,v) is the ground-state energy of
Ĥ imp(U,t,v) = T̂ + Û0 + ∑

i vi n̂i . Differentiating Eq. (A3)
with respect to U gives

∂F imp(n)

∂U
= ∂E imp(U,t,v)

∂U

∣∣∣∣
v=vemb(U,t,n)

, (A4)

where vemb(U,t,n) is the maximizing (and therefore stationary)
potential in Eq. (A3), thus leading to the following expression,
according to the Hellmann-Feynman theorem,

∂F imp(n)

∂U
= 〈� imp(n)|n̂0↑n̂0↓|� imp(n)〉

= d imp(n), (A5)

where we used the fact that � imp(n), whose double occupation
for the impurity site is denoted d imp(n), is the ground-state
wave function of Ĥ imp(U,t,vemb(U,t,n)) [64,65]. Finally,
since the noninteracting kinetic energy Ts(n) does not depend
on U , we obtain from Eqs. (13) and (A5) the general expression

d imp(n) = ∂E
imp
Hxc(n)

∂U
. (A6)

Returning to the particular case of a uniform n = n density
[see Eq. (A1)], it comes from Eq. (A6) the following exact
expression for the true physical double occupation,

d = d imp(n) + ∂ebath
c (n)

∂U
, (A7)

which is equivalent to Eq. (21), since, in the exact theory, the
self-consistent solution � imp to Eq. (12) equals (in the uniform
case) � imp(n) and n = n� imp(n).

APPENDIX B: EXACT EXPRESSION FOR THE PER-SITE
ENERGY

In this section, the proof for the SOET per-site energy
expression in Eq. (23) is given. Let us start with Eq. (22),
which is valid for a uniform density profile n. According to
Eq. (18), the per-site energy now reads

e = ts(n) + U

4
n2 + Eimp

c (n) + ebath
c (n)

= ts(n) + E
imp
Hxc(n) + ebath

c (n), (B1)

or, equivalently, according to Eq. (13),

e = ts(n) + F imp(n) − Ts(n) + ebath
c (n). (B2)

We will come back to this relation later on. Let us now focus
on the impurity-interacting LL functional that, for any (i.e.,
not necessarily uniform) density n, we decompose into kinetic
and interaction energy contributions,

F imp(n) = 〈� imp(n)|T̂ + Û0|� imp(n)〉
= T imp(n) + U imp(n), (B3)

where

T imp(n) = 〈� imp(n)|T̂ |� imp(n)〉, (B4)

and

U imp(n) = 〈� imp(n)|Û0|� imp(n)〉
= U 〈� imp(n)|n̂0↑n̂0↓|� imp(n)〉
= Ud imp(n). (B5)

Following the same strategy as in Eqs. (A4) and (A5), we obtain

∂F imp(n)

∂t
= ∂E imp(U,t,v)

∂t

∣∣∣∣
v=vemb(U,t,n)

= T imp(n)

t
, (B6)

which gives, when U = 0,

∂Ts(n)

∂t
= Ts(n)

t
. (B7)

Combining Eqs. (13), (14), (B6), and (B7) finally leads to

T imp(n) = t
∂F imp(n)

∂t

= Ts(n) + t
∂E

imp
c (n)

∂t
. (B8)

Returning to the uniform case n = n, it comes from Eqs. (B2),
(B3), (B5), and (B8) the following exact expression for the
per-site energy,

e = ts(n) + Ud imp(n) + t
∂E

imp
c (n)

∂t
+ ebath

c (n), (B9)

which, with the decomposition in Eq. (18) and the fact that
� imp(n) = � imp, leads to Eq. (23).
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APPENDIX C: INVARIANCE OF ebath
c (n) UNDER

HOLE-PARTICLE SYMMETRY AND CONSEQUENCES
FOR THE EMBEDDING POTENTIAL

Let us consider any density n ≡ {ni}i summing up to a num-
ber N = ∑

i ni of electrons. Under hole-particle symmetry,
this density becomes (2 − n) ≡ {2 − ni}i and the number of
electrons equals 2L − N , where L is the number of sites. We
will prove that these two densities give the same correlation
energy for the impurity. Let us start with the Legendre-Fenchel
transform in Eq. (A3) (the t and U dependence of the impurity
system’s energy is dropped for convenience) which, under
hole-particle symmetry, becomes

F imp(2 − n) = sup
v

{
E imp,2L−N (v) − 2

∑
i

vi + (v|n)

}
.

(C1)

From the substitution

v → −v, (C2)

we obtain the following equivalent expression,

F imp(2 − n) = sup
v

{
E imp,2L−N (−v) + 2

∑
i

vi − (v|n)

}
,

(C3)

where E imp,2L−N (−v) is the (2L − N )-electron ground-state
energy of the impurity-interacting Hamiltonian

Ĥ imp(−v) = −t
∑
iσ

(ĉ†iσ ĉi+1σ + H.c.) −
∑
iσ

vi ĉ
†
iσ ĉiσ

+Uĉ
†
0↑ĉ0↑ĉ

†
0↓ĉ0↓. (C4)

If we now apply the hole-particle transformation to the creation
and annihilation operators,

ĉ
†
iσ → b̂

†
iσ = (−1)i ĉiσ ,

ĉiσ → b̂iσ = (−1)i ĉ†iσ , (C5)

the Hamiltonian in Eq. (C4) becomes

Ĥ imp(−v) = Ĥ
imp
h (v) − 2

∑
i

vi + U

(
1 −

∑
σ

b̂
†
0σ b̂0σ

)
,

(C6)

where the hole analog of the impurity-interacting Hamiltonian
with arbitrary potential v reads

Ĥ
imp
h (v) = −t

∑
iσ

(b̂†iσ b̂i+1σ + H.c.) +
∑
iσ

vi b̂
†
iσ b̂iσ

+Ub̂
†
0↑b̂0↑b̂

†
0↓b̂0↓. (C7)

By shifting the potential on the impurity site as follows,

v → ṽ ≡ {vi − Uδi0}i , (C8)

we finally obtain

Ĥ imp(−v) = Ĥ
imp
h (ṽ) − 2

∑
i

vi + U. (C9)

As readily seen from Eq. (C9), Ĥ imp(−v) and Ĥ
imp
h (ṽ) share

the same (2L − N )-electron ground state. Moreover, it is clear
from Eqs. (C4) and (C7) that the (2L − N )-electron (i.e., N -
hole) ground-state energy of Ĥ

imp
h (ṽ) is nothing but the N -

electron ground-state energy E imp,N (ṽ) of Ĥ imp(ṽ). From these
observations and Eq. (C9) we conclude that

E imp,2L−N (−v) = E imp,N (ṽ) − 2
∑

i

vi + U. (C10)

Introducing Eq. (C10) into Eq. (C3) leads to

F imp(2 − n) = sup
v

{E imp,N (ṽ) − (v|n)} + U

= sup
ṽ

{E imp,N (ṽ) − (ṽ|n)} + U (1 − n0)

= F imp(n) + U (1 − n0). (C11)

In the particular case U = 0, we recover the hole-particle
symmetry relation for the noninteracting kinetic energy,

Ts(2 − n) = Ts(n). (C12)

We conclude from Eqs. (C11), (C12), (13), and (14) that
the impurity correlation density functional energy is invariant
under hole-particle symmetry,

Eimp
c (2 − n) = Eimp

c (n). (C13)

Since the per-site correlation energy in the uniform system is
also invariant [35],

ec(2 − n) = ec(n), (C14)

it comes from Eq. (18) that ebath
c (n) is invariant under hole-

particle symmetry. As a result, we have

− ∂ec(ν)

∂ν

∣∣∣∣
ν=2−n

= ∂ec(n)

∂n
, (C15)

and

− ∂ebath
c (ν)

∂νi

∣∣∣∣
ν=2−n

= ∂ebath
c (n)

∂ni

, (C16)

which, for a half-filled finite-size system gives

∂ec(n)

∂n

∣∣∣∣
n=1

= 0 = ∂ebath
c (n)

∂ni

∣∣∣∣
n=1

. (C17)

Note that, for a finite L value, uniform densities will have
discrete values, which explains why we do not distinguish
n → 1+ and n → 1− limits and just consider n = 1. However,
in the thermodynamic limit (L → +∞), this distinction should
be made otherwise the physical band gap cannot be reproduced
[36]. Note also that for a finite-size system with uniform
(discrete) density profiles n = n, the maximizing embedding
potential in Eq. (C1) fulfills, according to Eqs. (C2), (C3), (C8),
and (C11), the following hole-particle symmetry relation

vemb
i (2 − n) = −vemb

i (n) − Uδi0, (C18)

thus leading to, at half-filling,

vemb
i (1) = −U

2
δi0. (C19)

The latter result is also recovered from Eq. (C17) and Eq. (24).
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APPENDIX D: DERIVATIVE DISCONTINUITY IN KS SOFT
AND SOET AT n = 1 IN THE ATOMIC LIMIT

Let us consider the fully interacting L-site Hubbard Hamil-
tonian in the atomic limit (t = 0),

Ĥ (n) = Û + v(n)
∑

i

n̂i , (D1)

which reproduces the uniform density profile with density
n. Starting from the half-filling situation (L electrons or,
equivalently, n = 1), we can add an electron in order to
investigate the behavior of v(n) when n → 1+. In order to
have a total number of electrons varying continuously from
L to L + 1 or, equivalently, 1 < n < (L + 1)/L, the L- and
(L + 1)-electron ground states of Ĥ (n) must be degenerate,
thus leading to the following condition,

Lv(n) = (L + 1)v(n) + U, (D2)

or, equivalently, v(n) = −U . Therefore we conclude that, in
the thermodynamic limit (L → +∞),

v(n)|n=1+ = −U. (D3)

On the other hand, if we consider the removal of an electron,
the density can vary continuously in the range (L − 1)/L <

n < 1 if the (L − 1)- and L-electron ground states of Ĥ (n) are
degenerate, thus leading to the condition (L − 1)v(n) = Lv(n)
and, consequently,

v(n)|n=1− = 0. (D4)

Turning to the KS Hamiltonian with ground-state uniform
density n (and t = 0),

Ĥ KS(n) = vKS(n)
∑

i

n̂i , (D5)

we can show similarly that, in contrast to the interacting case,
the KS potential has no discontinuity at n = 1,

vKS(n)|n=1+ = vKS(n)|n=1− = 0. (D6)

Consequently, we recover the well-known discontinuous be-
havior of the correlation potential at half-filling:

∂ec(n)

∂n

∣∣∣∣
n=1+

=
(

vKS(n) − v(n) − U

2
n

)∣∣∣∣
n=1+

= +U/2, (D7)

and

∂ec(n)

∂n

∣∣∣∣
n=1−

=
(

vKS(n) − v(n) − U

2
n

)∣∣∣∣
n=1−

= −U/2. (D8)

Let us now consider the impurity-interacting Hamiltonian of
SOET in the atomic limit,

Ĥ imp(n) = Û0 +
∑

i

vemb
i (n)n̂i . (D9)

A uniform density n = (L + 1)/L is obtained from the (L +
1)-electron ground state of Ĥ imp(n) if, for any bath site label i

(i �= 0),

U + 2vemb
0 (n) +

∑
k �=0

vemb
k (n) = 2vemb

i (n) +
∑
k �=i

vemb
k (n).

(D10)

The latter degeneracy condition simply ensures that the added
electron can occupy either the impurity site or a bath site. In
order to let n vary continuously in the range 1 < n < (L +
1)/L, we also need the L- and (L + 1)-electron ground states
to be degenerate:

2vemb
i (n) +

∑
k �=i

vemb
k (n) =

∑
k

vemb
k (n), (D11)

thus leading to vemb
i (n) = 0 in the bath and, according to

Eq. (D10), vemb
0 (n) = −U . If, on the other hand, the density

varies in the range (L − 1)/L < n < 1, the degeneracy condi-
tion between (L − 1)- and L-electron ground states reads∑

k �=j

vemb
k (n) =

∑
k

vemb
k (n). (D12)

Note that the latter condition, which leads to vemb
j (n) = 0, holds

for any site (impurity or bath) label j . In summary, we obtain
in the thermodynamic limit,

vemb
0 (n)

∣∣
n=1− = 0, vemb

0 (n)
∣∣
n=1+ = −U,

vemb
i (n)

∣∣
n=1− = vemb

i (n)
∣∣
n=1+ = 0, i �= 0. (D13)

We then conclude from Eqs. (12), (15), and (19) that, in
the atomic limit, the complementary per-site bath correlation
potential exhibits no discontinuous behavior at half-filling,
neither on the impurity site,

∂ebath
c (n)

∂n0

∣∣∣∣
n=1+

= (
vemb

0 (n) − v(n)
)∣∣

n=1+ = 0

= (
vemb

0 (n) − v(n)
)∣∣

n=1−

= ∂ebath
c (n)

∂n0

∣∣∣∣
n=1−

, (D14)

nor on the bath sites (i �= 0), since

∂ebath
c (n)

∂ni

∣∣∣∣
n=1+

=
(

vemb
i (n) − v(n) − U

2
n − ∂ec(n)

∂n

)∣∣∣∣
n=1+

= (
vemb

i (n) − vKS(n)
)∣∣

n=1+

= 0

= (
vemb

i (n) − vKS(n)
)∣∣

n=1−

= ∂ebath
c (n)

∂ni

∣∣∣∣
n=1−

. (D15)

Note that, as a consequence of Eqs. (D7), (D8), and (D14),

∂E
imp
c (n)

∂n0

∣∣∣∣∣
n=1+

= ∂ec(n0)

∂n0

∣∣∣∣
n0=1+

− ∂ebath
c (n)

∂n0

∣∣∣∣
n=1+

= +U/2, (D16)

and

∂E
imp
c (n)

∂n0

∣∣∣∣∣
n=1−

= ∂ec(n0)

∂n0

∣∣∣∣
n0=1−

− ∂ebath
c (n)

∂n0

∣∣∣∣
n=1−

.

= −U/2. (D17)

Therefore, the impurity correlation potential exhibits a discon-
tinuity at half-filling.
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