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Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator
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We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using
time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled
two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production
of doublon-holon pairs, is enhanced by Hund’s exchange, which dynamically activates large orbital fluctuations.
The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction
of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration
of excitons with orbital character that are stabilized by Hund’s coupling. These unconventional “Hund excitons”
correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as
bandwidth, binding potential, and size within a semiclassical approach. The photometallic state results from
a coexistence of Hund excitons and doublon-holon plasma.
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I. INTRODUCTION

Control over the electronic properties of quantum mat-
ter using radiation is an attainable route to efficiently and
systematically understand nonequilibrium phenomena. The
interaction of correlated matter with light fields has already
uncovered a wealth of exotic “hidden” phases [1,2] includ-
ing light-induced superconductivity [3], dielectric breakdown
[4–7], photometallic states in organic insulators [8], and pho-
todisruption of charge, magnetic, and orbital order in complex
oxides [9–12].

For dielectric breakdown in insulators, optical excitations
typically observed are holons, doublons, and excitons. Exci-
tons are particle-hole pairs bounded by Coulomb interaction
and can be classified depending on the strength of such
interaction [13,14]. Wannier-Mott excitons are realized when
the particle-hole interaction is weak, giving rise to a large-
radius quasiparticle. These excitons are typically found in
semiconductors. Frenkel excitons are tightly bound with a
small particle-hole radius. Conjugated polymers and molecular
crystals usually display these excitons. Mott-Hubbard excitons
arise from local Coulomb interactions such as Hubbard-V
terms, and they have been proposed to explain some optical
properties in complex oxides.

Melting of insulating behavior with strong ultrashort light
pulses has been experimentally explored. Ultrafast photodop-
ing in the one-dimensional Mott insulator ET-F2 TCNQ has
induced a metastable metallic behavior [5]. It is also possible
to control the generation of Mott-Hubbard excitons and their
dynamics [15]. Similarly, reversible control over the dielectric
breakdown in fused silica has lead to a current increase of over
18 orders of magnitude [6,7].

Photoinduced states in insulator complex oxides, where
orbitals play a role, have also been studied. An insulator-
metal phase transition generated with light in Pr0.7Ca0.3MnO3

was reported [9]. Using optical reflectivity measurements, the
emergence of a metallic phase, melting of charge and orbital or-
der, and coherent orbital oscillations were demonstrated. This
photometal is not present in the phase diagram of such a com-
pound. Analogously, a photoinduced insulator-ferromagnet
phase transition was observed in strained La2/3Ca1/3MnO3

[11].
Theoretical effort has been devoted to understanding the

breakdown of single-orbital Mott insulators [16–27]. The
key finding in these efforts is the Mott insulator transition
to a quasistationary bad-metal state, which survives due to
Landau-Zener quantum tunneling between many-body states.
The breakdown depends not only on the field strength but
also on the Hubbard-U interaction. Light-induced phenomena
in two-orbital models have been studied focusing mainly on
quarter-filled Mott insulators using double-exchange models
[23–27]. A field-generated high-low spin insulator-
ferromagnet transition was observed, as well as bound
states, and orbital coherent oscillations.

Here, using time-dependent density matrix renormalization
group (DMRG) [28–33], we study the breakdown of a Mott
insulator in the half-filled two-orbital Hubbard model. We
show that this mechanism is strongly enhanced by the Hund
interaction, melting the antiferromagnetism (AFM) and giving
rise to an unconventional type of excitations that we dub “Hund
excitons.” Unlike those previously discussed, these are not
driven by Coulomb interactions but by Hund’s exchange. We
also show that Hund interaction dynamically activates large
orbital fluctuations in the field-induced dynamics.

II. THEORETICAL CONSIDERATIONS

In this section, we describe the model Hamiltonian and
parameters used in our study, and the observables calculated to
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analyze the photodynamics in the two-orbital Mott insulator.
We also discuss some basic properties of the half-filled Mott
insulating state.

A. Model Hamiltonian

We explore a two-orbital Hubbard model Hamiltonian
which includes kinetic energy, intra- and interorbital local
Coulomb repulsion, Hund’s rule exchange coupling, and pair-
hopping process. Explicitly,

H = −
∑
iσγ

tγ

(
c
†
iσγ ci+1σγ + H.c.

)
+ U

∑
iγ

ni↑γ ni↓γ

− 2J
∑

i

Si1 · Si2 + (
U ′ − J/2

) ∑
i

ni1ni2

+ J
∑

i

(
c
†
i↑1c

†
i↓1ci↓2ci↑2 + H.c.

)
, (1)

where we consider a one-dimensional geometry of N sites,
or equivalently 2N orbitals, whose sites are labeled by i.
The operator ciσγ (c†iσγ ) annihilates (creates) a particle at site
i, with a spin projection σ at orbital γ = 1, 2. The density
niσγ and spin Siγ operators are written in the standard form
in terms of ciσγ and c

†
iσγ . The hopping parameters tγ are

orbital-dependent. U and J stand for Hubbard repulsion and
Hund’s ferromagnetic exchange, and U ′ = U − 2J is used for
symmetry reasons.

B. Light pulse

To account for the interaction with a light pulse, we employ
the so-called Peierls substitution, where the classical light field
enters in the Hamiltonian through the kinetic energy operator.
We therefore introduce a time τ dependence in the hopping
integrals:

tγ −→ tγ (τ ) = tγ exp (iA(τ )/N), (2)

where N stands for the system size. The time-dependent phase
is actually the vector potential of light whose form is assumed
to be an oscillatory Gaussian pulse

A(τ ) = A0 exp

[
− (τ − τP )2

2σ 2
P

]
cos [ωP (τ − τP )]. (3)

The frequency ωP , intensity A0, width σP , and peak time
τP characterize the nature of the electric field of the light
pulse, for which we neglect its dynamics and assumed to be a
classical field. In the calculations presented here, we have only
considered few-cycle pulses given its experimental relevance.

C. Parameters and procedure

The procedure followed for the calculation of the time-
dependent properties of the two-orbital Hubbard model is as
follows. We first calculate the ground state of Hamiltonian
(1), without light field [A(τ ) = 0], using ground-state DMRG
[28,29]. Once the energy has been minimized and the wave
function |�0〉 is accurately represented, we switch on the vector
potential and perform a real-time evolution of the ground state
using the now time-dependent Hamiltonian (1) and solving
for the wave function through the equation |�(τ + dτ )〉 =

exp(−i
∫ τ+dτ

τ
dτ ′H (τ ′))|�(τ ′)〉, with initial condition |�(τ =

0)〉 = |�0〉. The time evolution is performed using time-
dependent DMRG with a fourth-order Runge-Kutta integrator
to adapt the basis [29,32,33], with a Krylov expansion of the
evolution operator [33]. With |�(τ )〉 for different time slices,
we can calculate expectation values and monitor their time
evolution. The DMRG simulations were performed for systems
from 8 up to 32 orbital sites with a discarded weight of less than
10−8. We note that the finite-size effect in this model has been
shown to be quite small. Typically, for N � 8, such effects are
negligible for the purpose of our investigations.

The parameters of the Hamiltonian to be used are tγ =
(−0.5, − 0.5) and U = 8, with a filling factor of one particle
per orbital, i.e., half-filling, and we will explore results for the
ratios J/U = 0, 0.1, 0.25. We have chosen a diagonal hopping
matrix merely for simplicity, based on previous work [34,35].
Materials such as the iron-based superconductors have J/U as
large as 1/4 [36]. The bandwidth for each orbital is Wγ = 4tγ .
We will refer to the case when W1 = W2 as isotropic. The name
is related to the presence of a U(1)o symmetry associated to
the orbital channel. For the isotropic case, the full symmetry of
the system is U(1)c × SU(2)s × U(1)o, where the subindices
refer to charge conservation (c), spin rotational symmetry (s),
and orbital rotational symmetry (o). The parameters used for
the light field are A0 = 2.4, σP = 0.19, τP = 4σP , finally,
ωP = � the frequency of the pulse was set to match the charge
gap � of the Mott insulator ground state.

D. Observables

In order to study the time response of the system, we explore
the following observables. The total double occupancy

Dtot(τ ) = 1

N

∑
i

〈�(τ )|ni↑ni↓|�(τ )〉. (4)

The local magnetic moment

〈Sz(τ )2〉 = 1

N

∑
i

〈�(τ )|(Sz
i

)2|�(τ )〉. (5)

The orbital-dependent static spin structure factor

Sγ (q,τ ) = 1

N

∑
jk

eiq(j−k)〈�(τ )|S+
jγ S−

kγ |�(τ )〉. (6)

Interorbital local charge fluctuations are

C12(τ ) = 1

N

∑
i

〈�(τ )|δni1δni2|�(τ )〉, (7)

where δniγ := niγ − 〈�(τ )|niγ |�(τ )〉. The local holon
[nh

iγ := (1 − ni↑γ )(1 − ni↓γ )] doublon (nd
iγ := ni↑γ ni↓γ )

number correlation function is defined as

Cdh
loc(τ ) = 1

N

∑
i

〈�(τ )|nd
i1n

h
i2 + nh

i1n
d
i2|�(τ )〉. (8)

Similarly, the orbital nearest-neighbor doublon-holon correla-
tion function is

Cdh
γ (τ ) = 1

N − 1

∑
i

〈�(τ )|nd
iγ nh

i+1γ + nh
iγ nd

i+1γ |�(τ )〉.

(9)
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In the plots shown in this paper, the ordinate axis actually
represents the relative change of any of the above mentioned
expectation values with respect to their ground-state value.
That is, any expectation value Ea(τ ), which depends on time
and has quantum numbers packed as a single index a, will be
plotted as

�Ea(τ ) := Ea(τ ) − Ea(τ = 0)

Ea(τ = 0)
. (10)

For simplicity, we will label the ordinate axis by Ea(τ ) instead
of �Ea(τ ). For instance, for the total double occupancy, we
will plot

�Dtot(τ ) := Dtot(τ ) − Dtot(0)

Dtot(0)
, (11)

but label the ordinate axis in the plots as just Dtot(τ ). An
important exception will be the expectation value of the current
density operator defined as

J (τ ) = i

N − 1

∑
jσγ

tγ 〈�(τ )|c†jσγ cj+1σγ − H.c.|�(τ )〉, (12)

for τ > 2τP , which we will just simply plot as J (τ ).

E. On the nature of the ground state

Let us first discuss the nature of the ground state of the
two-orbital Hubbard model at half-filling. Regardless of the
values of U/Wγ , the system has a finite single-particle gap,
signaling an insulating state. In the absence of Hund’s coupling,
the ground state is weakly magnetic with no large AFM and
large orbital fluctuations. For finite values of J , the ground
state has a local magnetic moment leading to the establish-
ment of quasi-long-range antiferromagnetic correlations with
a large suppression of fluctuations in the orbital channel. The
imbalance in the bandwidths of the orbitals will still favor
antiferromagnetic order and, under the appropriate conditions,
the orbital differentiation phenomena [37].

III. RESULTS FOR THE PHOTODYNAMICS

Results for the photodynamics are shown in Figs. 1–6.
We first consider J = 0. The ground state in this case is
paramagnetic, which implies that the doublon number is large
(compared to the case J �= 0). The large amount of doublons in
the ground state has to do with small magnetic and large orbital
fluctuations; therefore the resulting light-induced doublon
production is weak. As shown in Fig. 1(a), the effective
photodoping in this case (measured as the amount of doublon
or holons generated with respect to the ground state) is about
0.6%. The periods of the oscillations are 2π/U and 2π/�,
where � corresponds to the single-particle gap.

In contrast, the J �= 0 case leads to a larger production of
doublon-holon pairs and hence to a stronger breakdown of the
insulating state, see Fig. 1(a). (The breakdown of the insulator
is to be understood here as the production of doublon-holon
pairs, which constitute the carriers.) We observe that for fairly
large values of J/U the photodoping rate lies around 2%. We
can then say that Hund’s exchange enhances the melting of
the Mott insulator. Notice that finite J lifts the degeneracy
of the atomic states giving rise to periods of oscillation
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J/U = 0.1

J/U = 0.25

FIG. 1. Relative double occupancy (a) and local magnetic mo-
ment (b) for several values of J/U and U = 4W . The vertical dashed
line marks the light pulse span. (a) Breakdown of the Mott insulator
is signaled by the creation of doublons. (Inset) Discrete Fourier
transform (DFT) of Dtot(τ ), color coded with the main figure, showing
the characteristic energy scales associated with the oscillations in the
time response and the corresponding peak-splitting effect of J . (b) A
decrease in the local magnetic moment indicates a high- to low-spin
transition induced by the field.

2π/U ′, 2π/�, and 2π/(U + J ). We see that the effective
Hubbard U has been renormalized by J . As we will discuss
below, the latter period is associated to the photogeneration of
spin-singlet orbital-triplet doublons.

The production of carriers can be associated with a re-
duction in the local magnetic moment. The time evolution
of 〈Sz(τ )2〉, shown in Fig. 1(b), indicates a decrease in the
magnetic moment. Such change agrees with both doublon
production and melting of magnetic order signaling a high-
to low-spin photoinduced phase transition. The reduction in
〈Sz(τ )2〉 is only partial and so is the phase transition between
spin states, where 〈Sz(τ )2〉 has been reduced by up to 1%.

The doublon-holon pair production leads to a concomitant
partial melting of the magnetic order. We plot in Fig. 2(a) the
value of the spin structure factor at the ordering wave vector
q/π = 1. We observe a cooperative phenomenon where the
melting of the AFM order happens simultaneously as doublons
are produced. The typical time scale at which Sγ (q = π,τ )
decays is related to the single-particle charge gap �, which in
the atomic limit goes as �at ∼ U + J such that the decrease
in the AFM fluctuations occurs at larger time scales for
finite J .
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FIG. 2. Relative antiferromagnetic fluctuations at q = π (a) and
interorbital local charge fluctuations (b), for several values of J/U .
The vertical dashed line marks the light pulse span. (a) The AFM order
is partially melted within a timescale different than that of doublon
production. (b) The dynamical coupling effect of Hund’s exchange
can be seen in the interorbital charge fluctuations.

In order to examine the photodynamics in the orbital
channel we show in Fig. 2(b) the change in the orbital
fluctuations, C12(τ ), as a function of time τ . We observe this
change to be negligible for J = 0. The situation completely
changes when J/U �= 0, where large variations in C12 are
detected. We also notice that larger values of J/U lead to
larger fluctuations. The negative deviations for J/U = 1/4
show that orbital fluctuations at long times decrease compared
to the ground-state value, still indicating a substantial change in
orbital correlations. The positive-to-negative change in C12(τ )
occurs due to the large value of the ratio J/U = 1/4 � 1/3.
Indeed, large values of J will have the tendency to primarily
modify orbital correlations.

The light-induced activation of correlations in the orbital
channel, as seen in the time dependence of C12(τ ), reaches an
order-of-magnitude increase when compared to the ground-
state case. At equilibrium, Hund’s coupling tends to lock
orbital correlations leading to the formation of robust magnetic
moments and order; whereas in the nonequilibrium case,
Hund’s exchange dynamically favors orbital excitations and
melting of such magnetic moments. The activation of orbital
fluctuations is due to the suppression of the magnetic order and
corresponding generation of doublons, which can hop through
the system via second-order- and pair-hopping processes. This
makes the coupling of orbitals stronger than in the ground-state
scenario.
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FIG. 3. Local (a) and neighboring (b) doublon-holon correlation
function for several values of J/U . The vertical dashed line marks
the light pulse span. Large fluctuations in the local doublon-holon
number correlation (a), when compared to the neighboring one (b),
suggest that doublon and holon will tend to bound on the same site
and different orbitals rather than within neighboring sites in the same
orbital.

The partial melting of AFM, the high-low spin photoin-
duced transition, and the large orbital fluctuations (with the
corresponding oscillation frequency U + J associated to spin-
singlet orbital-triplet doublons) indicate that the doublons and
holons arrange in an unexpected way in the photodynamics.
We confirm this by studying the local interorbital Cdh

loc and
neighboring intraorbital Cdh

γ correlations between holon and
doublon number operators, see Fig. 3. We observe that the local
doublon-holon number correlation displays robust changes,
as large as 60% up to 150%, compared to the ground state
[Fig. 3(a)]. On the other hand, the neighboring intraorbital
doublon-holon number correlation presents smaller changes,
of around 10%–20%, compared to Cdh

loc [Fig. 3(b)]. We can
clearly see the effect of Hund’s coupling in the photodynamics:
without J there is no appreciable change in both Cdh

loc and
Cdh

γ , and large values of J/U lead to a larger response in said
observables. The large effect inCdh

loc(τ ) is associated to pair- and
second-order-hopping processes along with spin fluctuations,
which do not necessarily enhance Cdh

γ (τ ). At equilibrium,
Hund’s coupling locks orbital correlations leading to robust
magnetic moments and order [34,37]; in the nonequilibrium
case, Hund’s exchange dynamically favors orbital excitations
and melting of such moments.
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pump pulse

(a)

(b)

(c)

Hund excitons

FIG. 4. Dynamical formation of excitons in a one-dimensional
two-orbital Mott insulator. (a) The starting point is the Mott insulator
ground state interacting with the incident light. (b) After photoirradia-
tion, doublon-holon pairs are created by absorption of photons, which
bound to form Hund excitons (dashed ellipses). (c) Such excitons will
move in the lattice with a characteristic bandwidth (13) and size (17).
While in principle there are other possible states that can be generated
from (a) after the absorption of a photon, our results indicate that panel
(b) is the most likely.

A. Exciton properties

We interpret the above mentioned results as the photogener-
ation of neutral low-spin objects with orbital character that are
bound locally, suggesting they are unconventional excitons.
More specifically, the photodynamics generates spin-singlet
orbital-triplet doublon-holon bound pairs induced by J . These
excitations move in an AFM background with an effective
bandwidth

Wexcitons ∼ t1t2

U − 3J
. (13)

Naively, it is expected that the excitons, which are naturally
bosons, will propagate coherently giving rise to a condensate
in the low-density limit. These “Hund excitons” are created due
to the presence of Hund’s exchange; therefore their existence
is not directly related to Coulomb interactions. These findings
suggest that the type of excitons observed here correspond to
a kind of optical excitation that is set apart from more familiar
quasiparticles, such as Frenkel, Mott-Hubbard, and Wannier-
Mott excitons, which are typically associated to large or small
Coulomb interactions. A cartoon showing the photogeneration
of Hund excitons and their emergent dynamics is shown in
Fig. 4.

The stability of the excitons can be understood by con-
sidering the two-orbital AFM insulating state in the Ising
limit (ignoring spin fluctuations) and assuming the creation
of a single doublon-holon pair locally, as shown in Fig. 5.
For illustration, one can allow the doublon to move through
hopping processes, creating a string of misaligned spins in the
AFM background, separating it from the holon (see Fig. 5).
This will induce a linear confining potential Vexcitons(x), at
position x, that will favor the motion of both holon and doublon

FIG. 5. Cartoon illustrating the stability of Hund excitons in a
one-dimensional two-orbital model at half-filling in the Ising limit
(ignoring spin fluctuations). The AFM background induces the linear
confining potential (14). Starting with a single exciton (top) and
subsequently moving the doublon (or analogously the holon) will
distort both the local magnetic moment and the AFM background by
destroying local triplet states and reducing superexchange (bottom,
dashed box). The magnetic energy loss, which is proportional to
the length of the box or number of hops, will generate the trapping
potential (14) for the doublon (or analogously, for the holon).

as a single “heavier” object, with the bandwidth (13). The
confining potential reads

Vexcitons(x = ja) ∼ J |x|, (14)

where J corresponds to Hund’s coupling, j labels a site, and a

is the lattice spacing. In order to arrive to this result, we have
only considered the Hund exchange in the z direction. Notice
that the existence of the confining potential is directly linked
to a finite value of Hund’s rule coupling. If J = 0, there is no
confining potential, allowing the doublons and holons to move
independently.

We can also estimate the size of the exciton by writing down
an effective model for the motion of a doublon (or a holon)
in the presence of the exciton potential (14). The effective
Hamiltonian is Heff = −∑

m t0|m〉〈m + 1| + t0|m + 1〉〈m| −
Vexcitons(m)|m〉〈m|, where t0 = max(t1,t2) and |m〉 correspond
to a Wannier orbital at lattice site m. Writing down the wave
function of the doublon as |doublon〉 = ∑

m cm|m〉 we obtain
the following time-independent Schrödinger equation:

Ecm = −t0(cm−1 + cm+1) + Vexcitons(m)cm, (15)

where E stands for the energy. Taking the continuum limit of
this equation, one obtains

−t0
d2cx

dx2
+ Vexcitons(x)cx = Ecx. (16)

And by re-expressing it in terms of dimensionless variables,
one obtains the size of the excitons as the characteristic length
scale of the problem:


excitons ∼ a

(
t0

J

)1/3

. (17)

For the parameters considered in this work, we find that

excitons/a ≈ 2−2/3 ≈ 0.63 for J/U = 0.25, and 
excitons/a ≈
51/3/2 ≈ 0.86 for J/U = 0.10, showing that the bound state
is essentially local with almost no spatial fluctuations. A
more detailed analysis beyond the semiclassical approximation
made here will be done in an upcoming work.

The physics of photogeneration of Hund excitons somehow
resembles the situation in a slightly doped two-dimensional
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FIG. 6. Electric current density averaged over the system size, for
several values of J/U . The vertical dashed line marks the light pulse
span. A long-lived metallic state with a small, albeit finite, oscillating
current is found. The photocarriers correspond to a plasma of doublon-
holon pairs coexisting with Hund excitons.

AFM. There, the holon is trapped in a linear potential created
by the AFM background [38]. Similar confinement features
between holes owed to an interplay of superexchange and de-
localization were explored in a two-band Hubbard model [39].
In the case considered here, holon and doublon couple locally
in different orbitals in order to minimize Vexcitons(x) so that the
AFM established by Hund’s coupling and superexchange is
minimally disturbed. The effect of confinement of spinons,
via a linear potential induced by interchain coupling, has
been observed experimentally in the spin systems XCo2V2O8

(X= Ba,Sr) [40–42]. The confinement occurs in the spin
channel between different chains; in our case it appears in the
charge channel between different orbitals.

The experimental detection of Hund excitons can be ac-
complished, for example, in a pump-probe (time-resolved
reflectivity) setup, by registering the evolution of the optical
conductivity as a function of both energy and delay time.
A resulting midgap or midband state, depending on U/W

and J/U , should be detected between an optical band of
unbounded doublon-holon pairs and a precursor of the Drude
peak. (There might be multiparticle absorption bands at higher
energies that are not relevant to the analysis here.) Such
midgap/midband peak will correspond to the excitons analyzed
here. These excitons could be observed in oxide perovskites,
such as manganites and nickelates, where two orbitals are
needed for their description.

The photocurrent resulting from the breakdown of the
Mott insulator is displayed in Fig. 6. We observe a transient
dynamics, from a high-current state right after the pulse is
applied to a low-current steady state. We note that J (τ ) displays
a similar trend to the intraorbital correlation Cdh

γ (τ ), indicating
a synergy between intraorbital doublon-holon pairs and pho-
tocarrier dynamics. The oscillations in J (τ ) are associated to
frequencies related to U ′ and �. We notice that the revival
of the current at later times is due to the system’s finite size
(see below). The fact that the generation of doublons (Fig. 1),
and therefore Hund excitons, flattens out at late times and the
fact that we have a stationary current implies that the excitons
coexist with a plasma of mobile carriers (dissociated doublon-
holon pairs). In other words, Hund excitons are created up to a
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FIG. 7. Expectation value of the electric current density averaged
over the system size, for several system sizes L and for J/U = 0.25.
The results for other values of J/U are comparable. The vertical
dashed line marks the light pulse span. The finite-size effects are
virtually negligible at short times, which is when the photoexcitation
of Hund excitons occurs. At intermediate and late times, size effects
are stronger.

saturation point and then the metallic state follows due to their
partial dissociation. This in contrast with previous results in
single-orbital Hubbard models [21], where a constant creation
of doublons has no impact on the current.

As shown by the results in Figs. 1–6, the photoinduced state
corresponds to an out-of-equilibrium strongly correlated metal
with partially polarized spins and orbital-dependent correla-
tions, with the concurrency of Hund excitons, and doublon-
holon plasma as photocarriers. A possible scenario that could
be realized at long times is that the current completely decays
to zero, leading to the possibility of a photoinduced phase
transition to a Hund-excitonic insulator. A separate future study
on the role of fluence and system size will clarify whether such
feature survives in the long-time photodynamics.

Finally, let us comment on the robustness of the Hund
exciton phenomenology. It has been shown [16–27] that the
main aspects of the two-dimensional phase diagram of the two-
orbital model can be mimicked in one dimension. Additionally,
previous calculations [23–27] for the one-orbital case have
shown that similar quantum dynamics can be found both in one
and two dimensions. The two-orbital two-dimensional photo-
dynamics of the Mott insulator was recently explored [43]. The
type of excitations observed is similar in nature to the Hund
excitons reported in this work. The fact that the breakdown
of the Mott insulator is dominated by the interactions, which
are local on site, i.e., at the individual atomic level, lead us to
believe that the Hund exciton phenomenon may be present in
two and three dimensions.

B. Finite-size effects

In this section, we briefly discuss the effect of calculating
the time response of the two-orbital Mott insulator on a finite
system. Such finite-size effects are more pronounced in the
electric current. Figure 7 shows the expectation value of the
current density operator as a function of time τ , for several
system sizes L = 4, 8, 12 sites and J/U = 0.25. (Very similar
results are found for other values of J/U .) The expectation
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value is averaged over the system size, see Sec. II for details,
and time is scaled to the hopping parameter t1.

It is possible to distinguish three different trends in this
plot. At short times, the expectation value of the current
density operator displays a fairly size-independent behavior.
The values of J (τ ) oscillate with the same period for all
values of L. The values of those frequencies are related to
the interorbital repulsion U ′ and the charge gap �, as was
discussed in Sec. III. For intermediate τ , the values of the
expectation value of the current operator still oscillate in phase;
however, its strength changes greatly with the size of the
system. The revival effect seen for L = 4 can therefore be
attributed to finite-size effects. For late times, J (τ ) oscillates
out of phase and with a different strength for different values
of L.

The light-assisted generation of Hund excitons and the
accompanying phenomena discussed in this work, which is
the main focus here, occur at early times. We therefore consider
the influence of the above-mentioned finite-size effects as
almost negligible, when describing the breakdown of the two-
orbital Mott insulator.

IV. CONCLUSIONS

We have studied the photoinduced melting of a two-orbital
Mott insulator, resulting in a long-lived nonequilibrium metal-
lic state with unexpected properties. We have found that the
breakdown of the Mott insulator and corresponding onset of the
photometallic state is enhanced by Hund’s coupling. Indeed,
Hund’s exchange tends to suppress doubly-occupied configu-
rations in the ground state, as opposed to the nonequilibrium
situation where it greatly enhances doublon production. The
breakdown of the insulating ground state is realized through an
insulator-metal photoinduced phase transition with a concomi-
tant melting of the magnetic moments, implying a high-low
spin light-induced phase transition as well. Additionally, we
have shown evidence that Hund’s coupling dynamically acti-
vates large orbital fluctuations leading to a nontrivial dynamics
of doublon-holon pairs and to the loss of antiferromagnetic
quasi-long-range order.

More importantly, we observed the dynamical formation of
“Hund excitons”: emergent neutral quasiparticles with orbital
and spin character stabilized by Hund’s exchange, which can
establish a condensate. In high contrast to the more familiar
types of excitonic optical excitations, Hund excitons do not
originate from direct Coulomb repulsion but from exchange
interactions; in this case Hund’s coupling. Moreover, we have
studied semiclassically the properties of Hund excitons such
as bandwidth, confining potential, and size as a function of
Hund’s exchange. We have also observed that the long-lived
photometallic state results as a coexistence of Hund excitons
and doublon-holon plasma.

It would be interesting to further explore the properties
of Hund excitons. For example, the effect of exciton-exciton
interactions on the photodynamics and the study of the stages
of the breakdown of the Mott insulator. Indeed, a study on
intraband relaxation dynamics in a two-band Mott insulator
showed the generation of several excitations [43], among
them Hund excitons. We note, however, that the coupling to
radiation in that study differs from the one implemented here.
These issues deserve further study and are currently under
investigation.
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