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The dynamical spin structure factor is computed within a variational framework to study the one-dimensional
J1-J2 Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum
is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters
demonstrates the excellent description of both gapless and gapped (dimerized) phases, including incommensurate
structures for J2/J1 > 0.5. Calculations on large clusters show how the intensity evolves when increasing the
frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (nonintegrable)
frustrated spin models.
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I. INTRODUCTION

Quantum spin liquids are unconventional phases of matter
in which quantum fluctuations endure any tendency to develop
local (e.g., magnetic) order, down to zero temperature. Most
importantly, the lack of any symmetry-breaking mechanism is
accompanied by topological order and the presence of excita-
tions with fractional quantum numbers [1]. For concreteness,
let us consider the spin-1/2 Heisenberg model on a given
two-dimensional lattice. Whenever magnetic order sets in (e.g.,
on the square lattice with nearest-neighbor antiferromagnetic
interactions), the elementary excitations are S = 1 magnons
or spin waves, which can be pictured as coherent Bloch waves
made from localized spin-flip excitations. Instead, in spin
liquids, the elementary objects are S = 1/2 spinons, while
S = 1 excitations decay in two spinons that are asymptotically
free at long distances [1]. Since, for any lattice with a fixed
number of sites, the minimal change in the total spin is
�S = ±1, the existence of objects with S = 1/2 implies a
fractionalization of the spin quantum number. Spinons do
exist in the one-dimensional Heisenberg model [2], where the
magnetic long-range order is hampered, in agreement with
the generalized Mermin-Wagner theorem [3]. In this case, the
spectrum is gapless and characterized by the presence of a
broad continuum of excitations. A similar feature is present
in the one-dimensional Heisenberg model with inverse-square
superexchange [4]; in this case, spinons are noninteracting,
and the whole excitation spectrum can be found explicitly in a
closed form [5]. Moreover, S = 1/2 objects are elementary
excitations also in gapped systems, as in the case of the
Majumdar-Ghosh point of the frustrated J1-J2 Heisenberg
model (where the ratio between the first-neighbor coupling J1

and the second-neighbor one J2 is equal to 2). Here, the ground
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state is doubly degenerate (with long-range dimer order) [6],
and elementary excitations can be seen as propagating defect
boundaries between the two ground states (they are analo-
gous to solitons) [7]. Anyhow, in one-dimensional systems,
fractional excitations are ubiquitous and represent the general
feature of spin models. By contrast, in two spatial dimensions,
neat examples of spin liquids are rarer, and the possibility
to have free (i.e., deconfined) spinons when magnetic order
is destroyed is not taken for granted. A beautiful example
in which fractional excitations are present is given by the
Kitaev (compass) model on the honeycomb lattice [8], where
elementary excitations are Majorana fermions and Z2 gauge
fluxes.

In the last 20 years, a huge effort has been devoted to assess-
ing the low-energy behavior of various frustrated spin models
in order to unveil possible spin-liquid ground states. Many
different lattice structures and various kinds of interactions,
including long-range superexchange and ring-exchange terms,
have been considered by employing a large variety of analytical
and numerical techniques [9]. Nevertheless, most of these
studies focused on the ground-state properties by computing
correlation functions or different quantities that may give
information about the presence or absence of a spin gap. The
direct computation of the spin gap has been performed in a few
cases, notably for the Heisenberg model on the kagome lattice,
where this issue has been addressed using the density-matrix
renormalization group [10,11], variational Monte Carlo [12],
and Lanczos [13] approaches. By contrast, only a few works,
mainly based upon analytical or semianalytical approaches,
have focused on all the dynamical properties of frustrated spin
models [14–17]. In this respect, an important quantity that
gives direct access to the nature of the excitation spectrum
is the dynamical structure factor:

Sa(q,ω) =
∑

α

∣∣〈ϒq
α

∣∣Sa
q

∣∣ϒ0
〉∣∣2

δ
(
ω − Eq

α + E0
)
, (1)

2469-9950/2018/97(23)/235103(9) 235103-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.235103&domain=pdf&date_stamp=2018-06-05
https://doi.org/10.1103/PhysRevB.97.235103


FERRARI, PAROLA, SORELLA, AND BECCA PHYSICAL REVIEW B 97, 235103 (2018)

where |ϒ0〉 is the ground state of the system with energy
E0, {|ϒq

α 〉} are the excited states with momentum q (relative
to the ground state) and energy E

q
α , and

Sa
q = 1√

L

∑
R

eiqRSa
R (2)

is the Fourier-transformed spin operator for the components
a = (x,y,z), with L being the number of sites of the cluster.
In this regard, inelastic neutron scattering provides a direct
measurement of the dynamical structure factor as a function
of momentum q and energy ω. Therefore, the theoretical
computation of Sa(q,ω) has an immediate connection to
experiments, thus validating or disproving the modelization
of a given real material [18–20].

Unfortunately, the theoretical evaluation of the dynami-
cal structure factor is possible only for very limited cases.
In one dimension, an exact calculation is possible for the
Heisenberg model with inverse-square superexchange [21],
while very accurate approximations are now available for the
simple Heisenberg model with nearest-neighbor interaction
[22–24]. In two spatial dimensions, an exact computation of
the dynamical structure factor is possible for the Kitaev model
in both the gapless and gapped regimes [25]. Besides these
fortunate cases in which the model is integrable, numerical
techniques have been employed to study generic models,
especially in one dimension. Here, exact diagonalizations
can be performed on relatively small clusters [26], and their
results can be compared with semianalytical calculations [27].
Moreover, the density-matrix renormalization group [28] or
matrix-product states [29,30] can be used. Alternatively, a
variational technique, implemented within a quantum Monte
Carlo method, has been suggested to approximate the exact
spectrum with L states for each momentum q [31]. The
important advantage of this approach is that the dynamical
structure factor S(q,ω) is directly accessible, without any
computation requiring (unstable) transformations from real or
imaginary times to frequencies [32]. Curiously, this approach
has been applied in very few cases [33,34], without systematic
benchmarks and comparisons with other methods.

In this paper, we employ the variational approach that was
introduced in Ref. [31] to compute the dynamical structure
factor of Eq. (1) for momentum q and energy ω in the spin-1/2
J1-J2 Heisenberg model in one dimension:

H = J1

∑
R

SR · SR+1 + J2

∑
R

SR · SR+2, (3)

where R = 1,2, . . . ,L are the (integer) coordinates of the L

sites and SR = (Sx
R,S

y

R,Sz
R) is the S = 1/2 spin operator on

site R. Periodic boundary conditions are considered in the
spin Hamiltonian. In the following, we will consider the case
with a ≡ z in Eq. (1) since, given the SU (2) symmetry of
the Heisenberg model, any component of the structure factor
gives the same result. The variational Monte Carlo results are
compared with Lanczos diagonalizations on a small L = 30
cluster in order to show the accuracy of the method for different
values of the frustrating ratio J2/J1. Then, calculations are
reported for large systems, illustrating how the various features
of the dynamical structure factor evolve from the gapless to the

gapped phase, also entering in the incommensurate region with
J2/J1 > 0.5.

The rest of the paper is organized as follows: in Secs. II
and III we describe the variational approach that we have
employed; in Sec. IV, we present our numerical results. Finally,
in Sec. V, we discuss the conclusions and the perspectives.

II. VARIATIONAL METHOD

The variational approach is based on a Gutzwiller-projected
fermionic wave function, which is constructed from an auxil-
iary superconducting (BCS) Hamiltonian:

H0 =
∑

R,R′,σ

tR,R′c
†
R,σ cR′,σ

+
∑
R,R′

�R,R′ (c†R,↑c
†
R′,↓ + c

†
R′,↑c

†
R,↓) + H.c. (4)

Here, c
†
R,σ (cR,σ ) creates (destroys) an electron with spin

σ = ±1/2 on site R; tR,R′ and �R,R′ are hopping and singlet
pairing terms, respectively. This Hamiltonian is quadratic in the
fermionic operators and therefore can be easily diagonalized.
Its ground state is denoted by |�0〉. Of course, this quantum
state is not suitable to describe a spin system since it is
defined in the “enlarged” Hilbert space with empty and doubly
occupied sites. Then, a suitable variational wave function for
the Heisenberg model of Eq. (3) can be obtained by projecting
out all the configurations with at least one empty or doubly
occupied site:

|	0〉 = PG|�0〉, (5)

where PG = ∏
R(nR,↑ − nR,↓)2 (with nR,σ = c

†
R,σ cR,σ being

the local electron density per spin σ on site R) is the Gutzwiller
projector, which enforces single fermionic occupation on each
site. It has been shown that Gutzwiller-projected fermionic
wave functions are very accurate for describing the exact
ground state of the one-dimensional Heisenberg model with
J2 = 0, as well as the lowest-energy spinon excitations [35].

The parameters ofH0, i.e., hopping and pairing amplitudes,
are taken to be real and fully optimized by means of the
stochastic reconfiguration technique in order to minimize
the variational energy of |	0〉 [36]. In most of the calcula-
tions, we will impose translational symmetry in the quadratic
Hamiltonian H0, strongly reducing the number of independent
parameters to be treated. We must emphasize the fact that
both periodic boundary conditions (PBCs) and antiperiodic
boundary conditions (APBCs) are allowed within the auxiliary
BCS Hamiltonian (leading to a real wave function). However,
while in the presence of a gapped fermionic spectrum either
option will lead to a unique ground state, the same may not
be true for a gapless spectrum. For example, if there are
gapless points at k = ±π/2, the ground state is unique if PBCs
(APBCs) are considered for L = 4n + 2 (L = 4n), where n is
an integer.

In order to tackle the problem of computing Sz(q,ω), we
need to devise a way to construct excited states. Following the
procedure of Ref. [31], we first introduce a set of two-spinon
triplet excitations with momentum q, which are obtained by the
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Gutzwiller projection of particle-hole fermionic excitations:

|q,R〉 = PG

1√
L

∑
R′

eiqR′ ∑
σ

σc
†
R+R′,σ cR′,σ |�0〉. (6)

Then, for each momentum q, {|q,R〉} defines a (nonorthog-
onal) basis set that can be used to approximate the exact
low-energy excitations. In other words, we can define a set
of L states [37] (for each momentum q), which are labeled by
n:

|	q
n 〉 =

∑
R

A
n,q

R |q,R〉. (7)

The coefficients A
n,q

R are obtained by diagonalizing the Heisen-
berg Hamiltonian within the subspace generated by {|q,R〉} for
eachq, namely, by solving the generalized eigenvalue problem:∑

R′
H

q

R,R′A
n,q

R′ = Eq
n

∑
R′

O
q

R,R′A
n,q

R′ , (8)

where we have introduced two matrices, H
q

R′,R =
〈q,R′|H|q,R〉 (Hamiltonian) and O

q

R′,R = 〈q,R′|q,R〉
(overlap). Notice that, within our fermionic variational
approach, the basis set {|q,R〉} provides a natural
generalization of the well-known single-mode approximation
[38] that is recovered by restricting ourselves to consider only
|q,0〉 = Sz

q |	0〉.
Finally, the dynamical structure factor of Eq. (1) is approx-

imated by taking

Sz(q,ω) =
∑

n

∣∣〈	q
n

∣∣Sz
q

∣∣	0
〉∣∣2

δ
(
ω − Eq

n + Evar
0

)
, (9)

where, compared to the exact form of Eq. (1), the variational
states |	0〉 and {|	q

n 〉} are considered (instead of the exact
eigenstates) and the variational energies Evar

0 (corresponding
to |	0〉) and {Eq

n } are taken (instead of the exact ones). Most
importantly, the sum over excited states runs over, at most,
L states (instead of an exponentially large number). By using
Eq. (7), we have

Sz(q,ω) =
∑

n

∣∣∣∣∣
∑
R

(An,q

R )∗Oq

R,0

∣∣∣∣∣
2

δ
(
ω − Eq

n + Evar
0

)
. (10)

Remarkably, all the quantities that define the dynamical
structure factor of Eq. (10) can be computed within a varia-
tional Monte Carlo scheme (i.e., without any sign problem).
In fact, the entries of the Hamiltonian and overlap matrices are
given by

H
q

R′,R =
∑

x

〈q,R′|x〉〈x|H|q,R〉, (11)

O
q

R′,R =
∑

x

〈q,R′|x〉〈x|q,R〉, (12)

where {|x〉} is a set of normalized and orthogonal states,
which can be sampled by using the variational wave function
|〈x|	0〉|2 as the probability distribution:

H
q

R′,R =
∑

x

[ 〈q,R′|x〉
〈	0|x〉

〈x|H|q,R〉
〈x|	0〉

]
|〈x|	0〉|2, (13)

O
q

R′,R =
∑

x

[ 〈q,R′|x〉
〈	0|x〉

〈x|q,R〉
〈x|	0〉

]
|〈x|	0〉|2. (14)

At this stage, it is worth making two remarks. First of all,
our sampling procedure is possible because both the ground-
state wave function |	0〉 and the particle-hole excitations
of Eq. (6) have Sz

tot = ∑
R Sz

R = 0, and therefore, the set of
configurations {|x〉} can be chosen to also have Sz

tot = 0. This
would not be possible when considering excitations involving
a spin flip. For this case, a different sampling procedure was
proposed in Ref. [31]. The most important advantage of our
approach is that all the values of the momentum q can be
computed with a single Monte Carlo simulation, at variance
with the previous technique, in which each q needs a separate
calculation. Second, within our formulation, the sampling is
correct whenever the ground-state wave function 〈x|	0〉 is
nonzero for all the configurations |x〉; otherwise, the sampling
procedure neglects the contributions from these “vanishing”
configurations. We checked that, for most of the cases we
considered, the number of these configurations is negligible,
and therefore, they do not affect the final results.

We emphasize that, within this procedure, once the ground-
state wave function is optimized, the only remaining pa-
rameters are the coefficients {An,q

R }, which are completely
determined by solving Eq. (8). In other words, the particle-hole
excitations are applied to a fixed reference state, i.e., |�0〉,
which is optimized, once for all, to minimize the ground-state
variational energy.

The evaluation of O
q

R′,R and H
q

R′,R essentially boils down
to computing the following quantities:

Gσ
R,R′ (x) = 〈x|c†R,σ cR′,σ |	0〉

〈x|	0〉 , (15)

�σ
R,R′(x) = 〈x|Hc

†
R,σ cR′,σ |	0〉
〈x|	0〉 . (16)

Once O
q

R′,R and H
q

R′,R have been evaluated, the generalized
eigenvalue problem (8) for the excited states of momentum
q can be solved. In doing so, we need to get rid of the linear
dependence, which may affect the set {|q,R〉}. This is achieved
by restricting Eq. (8) to the subspace of eigenvectors of the
overlap matrix that have nonzero eigenvalues. In practice,
since the entries O

q

R′,R are computed stochastically, we need
to discard the eigenvectors whose eigenvalues are smaller than
some given tolerance.

III. THE GROUND-STATE VARIATIONAL
WAVE FUNCTION

The phase diagram of the one-dimensional J1-J2 Heisen-
berg model is well known [39]: for small values of the
frustrating ratio, the system is gapless (i.e., a Luttinger fluid)
with power-law spin-spin correlations, while for large values
of J2/J1, the system is in a gapped phase characterized by
long-range dimer order. In addition, (short-ranged) spin-spin
correlations show an incommensurate periodicity for J2/J1 �
0.5. The critical (Kosterlitz-Thouless) point that separates
gapless and gapped phases has been estimated with high
accuracy, (J2/J1)c = 0.241167 ± 0.000005 [40].
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FIG. 1. Top: accuracy of the DFS, WFA, and WFB wave functions
for a chain of L = 30 sites. �E is the difference between the
variational energy Evar

0 and the exact ground-state energy E0, obtained
with Lanczos diagonalizations. For J2/J1 > 0.5, the accuracy of the
DFS state is not shown since it rapidly deteriorates. Bottom: overlap
|〈	0|ϒ0〉| between the variational wave functions, either WFA or
WFB, and the exact one.

The simplest Ansatz that can be used to describe both phases
is the one obtained from a pure hopping Hamiltonian H0

with broken translational symmetry. This can be achieved by
doubling the unit cell and taking different intracell (t1) and
intercell (t ′1) hoppings. When t1 = t ′1,H0 recovers translational
invariance and reduces to the case of free fermions in one
dimension, which have a Fermi sea ground state and gapless
excitations. Instead, when t ′1 
= t1, there are two fermionic
bands separated by a finite gap. The uniform and dimerized
states are dubbed UFS and DFS, respectively. The accuracy for
a cluster with L = 30 sites is shown in the top panel of Fig. 1.
For J2/J1 � 0.35 the optimal wave function does not break
the translational symmetry (i.e., t ′1 = t1); by contrast, for larger

values of the frustrating ratio, t ′1 
= t1. At the Majumdar-Ghosh
point (J2/J1 = 0.5), one of the two hopping parameters is
equal to zero, indicating that the wave function is a product of
nearest-neighbor singlets. Here, the variational state becomes
exact. Actually, the fully dimerized wave function remains
the optimal solution for J2/J1 > 0.5, but its accuracy quickly
worsens since its energy is independent of J2.

More accurate wave functions can be built from translation-
ally invariant Ansätze, which include both hopping and pairing
terms (with tR,R′ = t|R−R′| and �R,R′ = �|R−R′|). Nonetheless,
even by considering translational symmetry, a “spontaneous
symmetry breaking” mechanism is possible after Gutzwiller
projection is included, leading, for example, to dimer order
[41,42]. Within a gapless regime, an extremely accurate state,
dubbed WFA, is constructed from a fermionic Hamiltonian
that contains first- and third-neighbor hoppings (t1 and t3), as
well as first-neighbor pairing �1. This choice gives a gapless
fermionic band at k = ±π/2 and can be stabilized up to
J2/J1 ≈ 0.15. For larger values of the frustrating ratio, the
pairing term goes to zero, and the wave function coincides
with the UFS state. A different possibility, which allows
the existence of a gap in the fermionic spectrum, is given
by taking first-neighbor hopping and both on-site (�0) and
second-neighbor (�2) pairings. This Ansatz, which is dubbed
WFB, is gapped unless �0 = −�2. Optimizing the parameters
of this wave function for L = 30 sites, we find that it reduces
to the simple UFS state (i.e., �0 = �2 = 0) for J2/J1 � 0.1.
Then, the optimal pairing terms become nonzero, and the wave
function proves to be more accurate than the DFS state and
stable for all the values of the frustrating ratios (see Fig. 1).

We expect that, in the thermodynamic limit, the gap in
the fermionic spectrum will open in the vicinity of the exact
transition point (J2/J1)c and will follow the behavior of the
spin gap. However, it is extremely hard to locate this point
by performing a finite-size-scaling analysis since the gap is
exponentially small in an extended region after the critical
point.

IV. RESULTS

Here, we present the numerical results for the spin structure
factor of a one-dimensional chain. Let us start by considering a
small cluster with L = 30 sites, where exact diagonalizations
are possible using the Lanczos method. First of all, we
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FIG. 2. Dynamical structure factor for L = 30 and J2 = 0. The Lanczos results are reported in the left panel. The variational calculations
in the middle and right panels were obtained using the Ansätze WFA and WFB, respectively.
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FIG. 3. Comparison between Lanczos and variational calcula-
tions forSz(q,ω) at different momentaq = 2π/L × n, withnbeing an
integer specified in the figure. Here, we consider L = 30 and J2 = 0.
The δ functions in Eqs. (1) and (9) have been replaced by normalized
Gaussians with σ = 0.05J1. Statistical errors are negligible within
the present scale.

demonstrate that the variational results do not change appre-
ciably when considering the wave function WFA or WFB to
compute the dynamical structure factor (see Fig. 2). Indeed,
even though the latter state is about five times less accurate than
the former one for J2 = 0 (see Fig. 1), the actual differences
between the two dynamical calculations are negligible (and
either option gives an excellent description of the exact results).
Therefore, in the following, we consider only the WFB wave
function to compute the dynamical structure factor.
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FIG. 4. The same as in Fig. 3, but for J2/J1 = 0.45.

In order to best quantify the agreement between the vari-
ational and the exact calculations, we directly report Sz(q,ω)
for several momenta q as a function of the frequency ω for two
values of the frustrating ratio, J2/J1 = 0 and 0.45 (see Figs. 3
and 4). Here, the δ functions related to the exact and variational
energies entering Eqs. (1) and (9) have been replaced by
normalized Gaussians with σ = 0.05J1. The agreement is very
good not only for the unfrustrated case with J2 = 0 (see Fig. 3)
but also in the presence of a sizable frustration, J2/J1 = 0.45
(see Fig. 4). Similar results are also obtained for larger values
of the ratio J2/J1 (see below). Therefore, it is expected that,
within this approach, both gapless and gapped regimes are
correctly described. The accuracy of the variational method is
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FIG. 5. The overlaps between the exact and the variational excitations are reported for a chain of L = 30 sites. The cases with J2 = 0 (left
panel) and J2/J1 = 0.45 (right panel) are shown. The size of the circles indicates the magnitude of the overlap, while their colors represent the
value of the variational spectral weights |〈	q

n |Sz
q |	0〉|2. For a detailed description of the calculations of the overlaps, see the main text.

highlighted in Fig. 5, where we report the overlaps between
the variational excited states of Eq. (7) and the exact ones.
In particular, whenever the excited states are well separated
in energy, it is easy to match each exact excitation with a
corresponding variational one (in this case, the overlap is
very large, as for J2 = 0). Instead, when two or even more
excitations are close in energy, this correspondence is not easy
to resolve and, for each variational state, we computed the
overlap with all the exact states and plotted the maximum
value. In this case, a reduction in the overlap is observed, as for
a number of cases at J2/J1 = 0.45. Nevertheless, in all cases,
the relevant excitations, which carry sizable spectral weight,
are well reproduced by the variational approach, and a reduced
overlap is detected for states which do not contribute much to
the whole intensity of the dynamical structure factor.

Finally, the results obtained with the exact and variational
approaches are compared in Fig. 6, where Sz(q,ω) of a chain
of L = 30 sites is represented using color maps for J2/J1 =
0.2, 0.45, 0.7, and 1. In all the cases, the variational results
follow the exact ones, including the development of incom-
mensurate features when J2/J1 > 0.5. In fact, by increasing
the frustrating ratio, the intensity progressively shifts from
q = π (low energies) to q = ±π/2 (high energies). At even
larger values of J2/J1, the modes at q = ±π/2 soften and
eventually become gapless for J2 → ∞ (in this limit, the spin
Hamiltonian consists of two decoupled Heisenberg models,
one for each sublattice, and J2 represents a nearest-neighbor
superexchange on each sublattice). Remarkably, the variational
approach is able to perfectly reproduce all the relevant features
of the dynamical structure factor. Moreover, we find that the
sum rule

∫
dωSz(q,ω) = 〈	0|Sz

−qS
z
q |	0〉 (17)

is satisfied within the error bars for all the values of the
frustrating ratio considered here. We mention the fact that
the only case where our sampling technique fails is at the
Majumdar-Ghosh point J2/J1 = 0.5, where the number of
vanishing configurations in the ground-state wave function
(exactly reproduced by our Gutzwiller-projected fermionic
state) is exponentially large.

The results for a large cluster with L = 198 sites are
reported in Fig. 7 for J2/J1 = 0, 0.2, 0.4, 0.45, 0.7, and 1. In
the unfrustrated case, it is known [22] that most of the total
intensity of the dynamical structure factor is carried by the
two-spinon contributions. For these excitations the lower and
upper energy limits are given by

ωlower = π

2
|sin(q)|, (18)

ωupper = π

∣∣∣sin
(q

2

)∣∣∣. (19)

Indeed, we find that our dynamical structure factor is bounded
by these limits and closely resembles the one that has been
recently obtained with a Bethe Ansatz approach [20,24].

It should be stressed that, for a relatively large region within
the gapped phase, the value of the spin gap remains very
small since the transition from the gapless to the dimerized
phase belongs to the Kosterlitz-Thouless universality class.
Therefore, even for a relatively large system size, it is very
hard to detect the presence of a finite gap in the excitation
spectrum: for example, the dynamical structure factors at
J2/J1 = 0.2 and 0.4 (see Fig. 7) look very similar, even though
the former case corresponds to a gapless phase and the latter
corresponds to a gapped spectrum. On this large cluster, the
gradual shift of the intensity from q = π to q = ±π/2 is
evident, as well as the presence of a “rounding” around q = π
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FIG. 6. Dynamical spin structure factor Sz(q,ω) for a chain of L = 30 sites: comparison of variational and Lanczos results for different
values of the frustrating ratio. The δ functions in Eqs. (1) and (9) have been replaced by normalized Gaussians with σ = 0.1J1.
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FIG. 7. Dynamical spin structure factor Sz(q,ω) for different values of the frustrating ratio and L = 198 sites. The δ functions in Eq. (9)
have been replaced by normalized Gaussians with σ = 0.1J1. The white dashed lines for J2 = 0 indicate the lower and upper limits of the
two-spinon contributions, Eqs. (18) and (19).

within the gapped phase for J2/J1 < 0.5. Within such a large
size, incommensurate features appear clearly for J2/J1 > 0.5;
namely, the excitations with lowest energy move from q = π

to q = ±π/2, giving rise to a nontrivial form of the spectral
function. These effects are determined by the gapped BCS
spectrum, whose minima lie at incommensurate momenta. The
rich structure of Sz(q,ω) is related to the fact that, in the
limit J2/J1 → ∞, the system decouples into two independent
Heisenberg chains with coupling constant J2. The Brillouin
zone is then halved with respect to the case with J2 = 0, and
the dynamical structure factor is given by the repetition of
the one of the pure Heisenberg model between [0,π ] and
[π,2π ], scaled by J2/J1. For finite values of J2/J1 in the

incommensurate phase, the spectral features at high energies
are related to the lower and upper bounds of the two-spinon
continuum that develops in the aforementioned limit.

V. CONCLUSIONS

In conclusion, we have used a variational approach to
study the dynamical spin structure factor of the frustrated
J1-J2 model in one spatial dimension. Here, excitations at a
given momentum q are directly constructed from a Gutzwiller-
projected fermionic wave function, thus avoiding any sign
problem and/or analytic continuation from imaginary or real
times to frequencies. In contrast to the original definition where
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these excitations have Sz = 1 [31], here, we have considered
states with Sz = 0, which allow us to have a much simpler
Monte Carlo sampling. Indeed, within our technique, the
dynamical structure factor Sz(q,ω) can be computed for all
momenta q within a single Monte Carlo simulation.

We have reported the unprecedented accuracy of this
method not only at or close to the integrable point with
J2 = 0 but also for generic values of the frustrating ratio. The
remarkable advantage of this variational procedure is given
by the fact that the relevant part of the low-energy spectrum
can be described by considering particle-hole excitations on
top of a fixed “reference” state. Indeed, once the variational
wave function has been optimized for the ground state, only
O(L) parameters for each q are used to reproduce the low-

energy part of the spectrum. This fact suggests that Gutzwiller-
projected fermionic wave functions not only may accurately
reproduce the ground-state properties of frustrated spin models
but also constitute a good framework to generate low-energy
excitations.

This work shows that the present variational approach to
compute the dynamical structure factor is very promising,
especially in the case of two-dimensional frustrated spin
models, for which a straightforward generalization is possible.
The reliability of the results for different (gapped and gapless)
phases and the possibility to consider relatively large sizes
make this method very suitable not only for theoretical inves-
tigations of other spin models but also for direct comparisons
with neutron-scattering experiments.
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