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instability in multiple-band layered superconductors
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We explore superconducting instability for a clean two-band layered superconductor with deep and shallow
bands in the magnetic field applied perpendicular to the layers. In the shallow band, the quasiclassical
approximation is not applicable, and Landau quantization has to be accounted for exactly. The electronic
spectrum of this band in the magnetic field is composed of the one-dimensional Landau-level minibands. With
increasing magnetic field the system experiences a series of Lifshitz transitions when the chemical potential
enters and exits the minibands. These transitions profoundly influence the shape of the upper critical field
at low temperatures. In addition, the Zeeman spin splitting may cause the nonuniform state with interlayer
modulation of the superconducting order parameter [Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state]. Typically,
the quantization effects in the shallow band strongly promote the formation of this state. The uniform state remains
favorable only in the exceptional resonance cases when the spin-splitting energy exactly matches the Landau-level
spacing. Furthermore, for specific relations between electronic spectrum parameters, the alternating FFLO state
may realize, in which the order parameter changes sign between the neighboring layers. For all above cases, the
reentrant high-field superconducting states may emerge at low temperatures if the shallow band has significant
contribution to the Cooper pairing.
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I. INTRODUCTION

The nature of superconducting instability in the magnetic
field is a long-standing fundamental problem. In clean type-II
superconductors, the upper critical field HC2 and its tempera-
ture dependence are sensitive to the electronic band properties
as well as to the gap structure which contains crucial infor-
mation on how the correlated Cooper pairs are formed. The
magnitude of HC2 is mostly determined by the suppression of
superconductivity due to the quasiparticles orbital motion and
the Zeeman spin splitting of the Fermi surface by the magnetic
field. The problem of orbital HC2 for a single-band system
was solved in the seminal papers [1] within the quasiclassical
approximation which neglects the Landau quantization of the
orbital motion. This approach works with high accuracy in
common metals with large Fermi energies and describes very
well most of known conventional superconductors. Neverthe-
less, the exact Landau quantization calculation was discussed
in Refs. [2,3] shortly after the quasiclassical work and the topic
was further elaborated in great details later [4–9].

Landau-quantization effects are most relevant when the
Fermi energy is comparable to the cyclotron frequency so
that only a few lowest Landau levels are occupied. Such
extreme quantum limit has not been viable in most of known
superconducting materials. The situation changed with the
recent discovery of the iron-based superconductors (FeSC).
It is very common in FeSCs that some of the bands have
very small Fermi energies and they can be driven through
the Lifshitz transition by chemical dopings [10–13] and,
importantly, these materials usually remain superconducting
after one of the bands is completely depleted. As the Fermi
energy of the shallow band may be smaller than the pairing
energy scale, the proper treatment of this band requires revision

of the conventional BCS approach. Such situation was first
considered in the context of shape resonances in confined
superconductors (thin films and nanowires) [14–17]. The
influence of the shallow band on the superconducting transition
temperature in multiple-band materials near Lifshitz transition
has been considered in Ref. [18] and, more recently, physics
of FeSCs motivated detailed investigations of this problem
[19–23]. It was demonstrated that, in spite of low quasiparticle
density, shallow bands may strongly influence the Cooper
pairing. Another key property facilitating the extreme quantum
limit near superconducting instability of FeSCs is that they are
characterized by the very high upper critical fields, up to 100 T.

As the orbital upper critical field is inversely proportional to
the Fermi energy, it is strongly affected by the shallow bands.
Moreover, in the vicinity of the Lifshitz transition, the extreme
quantum limit can be reached for these bands near HC2

meaning that the quasiclassical consideration cannot be used.
It has been indeed demonstrated that the Landau quantization
has a dramatic effect on superconducting instability in
the magnetic field for two-dimensional materials near the
Lifshitz transition [24]. The most spectacular prediction is the
emergence of the pronounced reentrant states at the magnetic
field corresponding to the matching of the Landau levels with
the chemical potential.

In addition to the orbital effect, shallow bands also promote
the Zeeman spin-splitting suppression of superconductivity.
The relative role of the spin and orbital mechanisms is
usually characterized by the Maki parameter αM defined
as

√
2HO

C2/H
P
C2, where HO

C2 and HP
C2 are the orbital and

spin upper critical fields, respectively. In a clean isotropic
single-band material with the free-electron g factor, the Maki
parameter is proportional to the ratio of the superconducting
gap � and the Fermi energy εF , αM = π2�/4εF . In this case,
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unless the band is very shallow, αM is very small, meaning that
the orbital effect strongly dominates. The Maki parameter is
greatly enhanced in special cases of weak orbital effect such as
quasi-one-dimensional materials and layered superconductors
for magnetic field directed along the layers.

An important consequence of the strong Zeeman effect (i.e.,
large αM ) is the emergence of the nonuniform Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state in very clean materials
[25,26]. In this state, the order parameter is periodically
modulated which allows for a gain in the Zeeman energy
which may exceed the kinetic-energy loss due to the nonzero
center-of-mass momentum pairing. Rich physics of the FFLO
state has been extensively investigated in many subsequent the-
oretical studies within quasiclassical approximation [27–36].
The FFLO instability may only realize in very pure materials
with weak scattering of quasiparticles. That is why, even
though the FFLO state was predicted more than half century
ago, the experimental data consistent with this state have
been reported only relatively recently in organic supercon-
ductors [37,38] and, less convincingly, in the heavy-fermion
compounds [39,40]. The conditions for the FFLO instability
with modulation along the magnetic field in isotropic material
were studied by Gruenberg and Gunther [27] within the qua-
siclassical framework. They found that the nonuniform state
appears only for very large Maki parameters, αM > 1.8, which
is unlikely to realize in any single-band isotropic material. That
is why most FFLO studies have been focused on quasi-low-
dimensional materials with strongly reduced orbital effects.

The FFLO state may realize in the iron-based supercon-
ductors due to the presence of shallow bands and huge upper
critical fields which are likely to be limited by the Zeeman
effect. This motivated recent investigations of the conditions
for the emergence of this state in multiple-band materials
within the quasiclassical approach in different situations [41–
44]. However, in the presence of very shallow bands, this
approach may be insufficient and quantization effects have to
be accounted for.

In this paper, we investigate the superconducting instability
for a two-band layered material in the magnetic field applied
perpendicular to the layers. We consider the case of the material
near the Lifshitz transition when one of the bands is very
shallow. In this case, the Landau-quantization effects strongly
influence the formation of the superconducting state. Even
though our consideration is motivated by physics of iron-based
superconductors, it is very general, and our goal is not to
describe any particular compound but, instead, to develop a
general understanding of how the orbital-quantization effects
influence the onset of superconductivity in clean two-band
layered materials. The major new feature in comparison with
a pure two-dimensional case [24] is that, due to the large
Zeeman effect in the shallow band, this system is prone to
the formation of the FFLO state with interlayer modulation
of the order parameter. The quantum effects have a profound
influence on this FFLO instability.

The interlayer tunneling lifts all the degenerate Landau
levels to dispersive minibands along the out-of-plane
momentum direction. As a consequence, the system
experiences series of Lifshitz transitions with increasing
the magnetic field corresponding to crossing of the chemical
potential with the miniband edges. Every Landau-level

miniband has two van Hove singularities at the reduced z-axis
momentums kz = 0 and π , at which the density of states (DOS)
is enhanced. In special situations, when two such singular
points for spin-up and spin-down bands simultaneously match
the Fermi level, the pairing strongly enhanced. Two distinct
cases of such resonance matching are possible. The first
well-known case is realized when spin-splitting energy is equal
to the Landau-level spacing [7,8]. In this case, the van Hove
points of the same kind (either kz = 0 or π ) may match leading
to the standard uniform superconducting state. The second
case corresponds to matching of the opposite van Hove points,
e.g., spin-down/kz = 0 and spin-up/kz = π points, which may
occur only for a certain relation between the electronic band
parameter. In this situation, the alternating FFLO state may
emerge, in which the superconducting order parameter changes
sign between the neighboring layers. These matching effects
may generate the high-field reentrant superconducting states
which are somewhat less pronounced than for two-dimensional
case [24] due to the DOS spreading by the interlayer tunneling.

On the other hand, the Landau-level spreading somewhat
mitigates the Zeeman pair-breaking effect since the dispersive
spin-up and -down minibands can cross the Fermi level
simultaneously within a finite energy range for arbitrary spin
splitting. In such generic situation, the shallow band favors the
formation of the FFLO state, in which the optimal modulation
wave vector equals to the difference between the spin-up and
-down Fermi momenta. Such FFLO instability leads to differ-
ent kind of reentrant states with the field-dependent modulation
wave vectors. In contrast to the reentrant states caused by the
matching of the van Hove singularities, the latter states can
extend over a broad magnetic field range.

This paper is organized as follows. In Sec. II, we
introduce the microscopic Hamiltonian describing a two-band
layered superconductor in the magnetic field and derive the
corresponding linearized gap equations. In Sec. III, we briefly
discuss these equations for the transition temperature in
zero magnetic field providing the reference for the further
investigation of the instability in finite magnetic field. In
Sec. IV, we derive the equations for the upper critical field
HC2 and evaluate the pairing kernels in these equations. In
Sec. V, we discuss the dependences of the quantum pairing
kernel on relevant parameters. In Sec. VI, we present the
typical magnetic field versus temperature phase diagrams. We
conclude the paper in Sec. VII.

II. MODEL OF A TWO-BAND LAYERED
SUPERCONDUCTOR

We will investigate the shallow-band effects in layered
superconductors using the simple tight-binding Hamiltonian
with only the nearest-neighbor interlayer hopping term,

H =
∑
jα

∫
d2r

⎡
⎣c†αjs(r)

[
εα(k̂)σ 0

ss ′ − μzHσz
ss ′
]
cαjs ′ (r)

− tαz exp

(
ie

c

∫
lj

dz Az

)
c
†
αjs(r)cα,j+1,s(r) + H.c.

−
∑

β

Uαβc
†
αj↓(r)c†αj↑(r)cβj↓(r)cβj↑(r)

⎤
⎦, (1)
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FIG. 1. (a) The illustration of electronic spectrum for a layered superconductor with deep and shallow bands. (b) The schematic diagram
demonstrating the evolution of the Fermi surfaces of the quasi-2D model in Eq. (1) near the Lifshitz transitions. The first Lifshitz transition
occurs at μh = 2th

z , at which the neck at kz = 0 interrupts and the FS of the h band changes from open to closed. The second Lifshitz transition
occurs at μh = −2th

z , where the h band becomes completely depleted.

where r = (x,y) is the in-plane coordinate, j is the layer
index, s represents spin, and α = e (h) represents the e band
(h band). Furthermore, tαz is the (nearest) interlayer hopping
energy, εe(k̂) = k̂2/(2me) and εh(k̂) = −k̂2/(2mh) + ε0 are
intralayer energy dispersions with the band masses mh and me

and the momentum operator k̂ = −i∇r − eA/c. In the model,
we also consider the Zeeman spin splitting and assume, for
simplicity, that the band electron’s magnetic moment μz is the
same in each band. In the second line of Eq. (1),

∫
lj

= ∫ (j+1)az

jaz

is the line integration along the out-of-plane direction and az

is the interlayer spacing (set to unity in the later calculation)
and Az is the z component of the vector potential. In zero
magnetic field, the three-dimensional energy dispersions are
εα(k,kz) = εα(k) − 2tαz cos kz [see Fig. 1(a)].

In this paper, we limit ourselves to the case of the magnetic
field applied in the z direction. In this case, Az = 0 with
standard gauge choices and the magnetic phase factor in Eq. (1)
tight-binding terms drops out. For definiteness, we consider the
case when the hole band is shallow meaning that the chemical
potential μ is located near its edge μh = ε0 − μ � ε0. We
note that whether the shallow band is holelike or electronlike
does not have any influence on the results of this paper. The
two Lifshitz transitions in this model occur at μh = ±2thz [see
Fig. 1(b)] [45]. At μh = 2thz the neck near kz = 0 interrupts
and μh = −2thz the hole band got completely depleted.

To study the superconducting instabilities in the model (1),
we follow the standard approach and write the linearized gap
equation as

�α
r,j = T

∑
ωn

∑
βj ′

Uαβ

∫
r′

Kβ
ωn

(rj,r′j ′)�β

r′,j ′ , (2)

where the gap function is defined as �α
r,j =∑

β Uαβ〈cβ,j↓(r)cβ,j↑(r)〉 and we used the notation
∫

r = ∫ dr,
ωn = 2πT (n + 1/2) are the Matsubara frequencies, and the
kernel is

Kα
ωn

(rj,r′j ′) = Gα
ωn,+(rj,r′j ′)Gα

−ωn,−(r′j ′,rj ), (3)

where Gα
ωn,±(rj,r′j ′) is the one-particle Green’s function

in the normal phase and the subscripts + or − describe
spin orientation. Without magnetic field, the normal Green’s

functions can be expanded into the plane-wave basis

Gα
ωn,±(rj,r′j ′) =

∑
kkz

e−i[k·ρ+kz(j−j ′)]

iωn − ξα
k + 2tαz cos kz

, (4)

where ξα
k = εα(k) − μ and ρ = r − r′. In the presence of

out-of-plane magnetic fields, in the symmetric gauge A =
H
2 (−y,x,0) the one-particle Green’s function can be repre-

sented as

Gα
ωn,±(rj,r′j ′)

= exp

(
i
[r × r′]z

2l2

)∑
kz

e−ikz(j−j ′)gα
ωn,±(ρ,kz), (5)

where l = √
c/(eH ) is the magnetic length and ρ = |ρ|. We

use the quasiclassical approximation for the Green’s function
of the deep e band

ge
ωn,± ≈

∑
k

e−ik·ρ

iωn ∓ μzH − ξ e
k + 2t ez cos kz

, (6)

and expand the Green’s function of the shallow h band over
the exact Landau-level basis [9,46]

gh
ωn,± = 1

2πl2

∑
�=0

L�

(
ρ2

2l2

)
exp
(− ρ2

4l2

)
iωn ∓ μzH + E� − μh + 2thz cos kz

, (7)

where μh = ε0 − μ, E� = ωc(� + 1
2 ), ωc = eH/mhc is the

cyclotron frequency, and L�(x) are the Laguerre polynomials.
We note that in the single-band case the chemical potential

of the shallow band may depend on the magnetic field [47].
However, in our case the deep band serves as the particle
reservoir that stabilizes the chemical potential. This allows us
to solve the gap function assuming fixed chemical potential
(see also Ref. [48]).

III. TRANSITION TEMPERATURE IN ZERO
MAGNETIC FIELD (TC )

For zero magnetic field, the superconducting order param-
eter is homogeneous, �α

rj = �α
0 . This gives the linearized gap
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equation, which we represent as

�α
0 =
∑

β


αβ
−1
0,β�

β

0 , (8)

where we have introduced the notations for the coupling matrix

αβ = UαβNβ with Nα = mα/(2π ) is the densities of states
per layer (for shallow band, Nh is the true density of states
only in the regime of open Fermi surface, μh > 2thz ), and


−1
0,α ≡ N−1

α T

∞∑
ωn=−∞

∑
j ′

∫
r′

Kα
ωn

(rj,r′j ′). (9)

The kernels are determined by the zero-field Green’s function
in Eq. (4) giving


−1
0,α = N−1

α T
∑
ωn

∑
kkz

[
ω2

n + (ξα
k − 2tz cos kz

)2]−1

(see Appendix A 1). We further integrate out the wave vec-
tors in 
−1

0,α by using
∑

k = Ne

∫ �

−�
dξe for e band (

∑
k =

Nh

∫ μh

−�
dξh for h band) and

∑
kz

= ∫ π

−π

dkz

2π
. Here, � is the

energy cutoff and we have assumed that � 
 tz,TC,μh. We
therefore obtain the following gap equation near TC :

[

̂−1 − 
̂−1

0

](�h
0

�e
0

)
= 0, (10)

where 
̂−1
0 = diag[
−1

0,h,

−1
0,e] with


−1
0,e ≈

∞∑
ωn>0

2TC

ωn

tan−1 �

ωn

≈ ln
A�

TC

, (11a)


−1
0,h ≈ 1

2
ln

A�

TC

+ ϒC, (11b)

A = 2eγE/π ≈ 1.134, and γE ≈ 0.5772 is the Euler-
Mascheroni constant. Here, the parameter ϒC = ϒTC

is the
value of the temperature-dependent function

ϒT =
∞∑

ωn>0

∫ π

−π

dkz

2π

2T

ωn

tan−1

[
μh − 2thz cos kz

ωn

]
(12)

at T = TC . This parameter appears due to the cutoff at the band
edge for the shallow band. We can carry out kz integration
and the Matsubara-frequency sum in ϒT using the relation
tan−1 1

a
= − ∫∞

0
dx
x

e−ax sin x. This gives

ϒT = −
∫ ∞

0

ds

πs
ln tanh(πT s) sin(2μhs)J0

(
4thz s
)
, (13)

where J0(x) is the Bessel’s function. In the limit of low
temperatures T � μh, this function diverges logarithmically,

ϒT ≈ 1
2 ln [A(μh +

√
μ2

h − (2thz )2)/(2T )].
The transition temperature TC is determined by the con-

dition of degeneracy of the matrix Ŵ ≡ 
̂−1 − 
̂−1
0 , i.e.,

det[Ŵ ] = 0. This equation determines 
0,e as


−1
0,e = 
ee + 
hh

2

D


− ϒC

+ δ


√√√√(
ee − 
hh

2

D


− ϒC

)2

+ 2

eh
he

D2



(14)

with δ
 = −sign[(1 − ϒC
hh)D
] and D
 = 
ee
hh −

eh
he. This parameter directly determines TC by Eq. (11a). In
the following consideration, we will use the zero-field equation
(10) to eliminate the logarithmic divergences from the gap
equation at finite magnetic field.

IV. SUPERCONDUCTING INSTABILITY
IN MAGNETIC FIELD

In the presence of magnetic field, the superconducting
order parameter is nonuniform. Near the onset of the super-
conducting instabilities in the magnetic field, the solutions
for the linear problem in Eq. (2) are given by the Landau-
level eigenfunctions. Typically, the lowest Landau-level eigen-
function yields the optimal HC2, where the superconducting
instability develops first.1 This solution has the following shape
[27]:

�α
r,j = �α

0 exp

(
− r2

2l2
+ iQzj

)
. (15)

We have assumed the possibility of the layer-to-layer mod-
ulation in the order parameters with the wave vector Qz.2

Such modulation is the realization of the nonuniform FFLO
state [25,26]. Superconducting instability is determined by the
condition that Eq. (15) provides a solution of the gap equation
at least for one value of Qz and then this optimal modulation
wave vector realizes in the emerging superconducting state.
The ansatz in Eq. (15) is the kernel eigenfunction in the
magnetic field,∑

j ′

∫
r′

Kα
ωn

(rj,r′j ′)�α
r′j ′ = πNαλα

ωn,Qz
�α

r,j (16)

with

λα
ωn,Qz

= 2

Nα

∫ ∞

0
ρ dρ exp

(
− ρ2

2l2

)

×
〈
gα

ωn,+

(
ρ,kz − Qz

2

)
gα

−ωn,−

(
ρ,kz + Qz

2

)〉
z

.

(17)

Here and below we use notation 〈F (kz)〉z ≡ ∫ π

−π

dkz

2π
F (kz) for

the averaging with respect to kz. We omit the dependence of
λα

ωn,Qz
on T , H , and the electronic parameters. As follows

from the definitions of the Green’s functions, Eqs. (6) and
(7), (λα

ωn,Qz
)∗ = λα

−ωn,Qz
. Next, we first discuss the kernel

eigenvalue for the deep e band and then for the shallow h

band.

1For strong Zeeman spin splitting, the largest HC2 may be realized
for higher Landau-level eigenfunction [49].

2To be accurate, the complex order parameter in Eq. (15) was
suggested by Fulde and Ferrel [25]. As demonstrated by Larkin and
Ovchinnikov [26], for purely paramagnetic case the ground state
below the transition is actually given by the order parameter with
the amplitude modulation ∝cos(Qzj ). In the presence of orbital
effects, both states may realize [33]. We only investigate the instability
location here, which is the same for both states.
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For the deep e band, the Landau quantization does not play a role. Using Eqs. (6) and (17), linearizing the band dispersion
at Fermi level [εe

kF +q ≈ εe
kF

+ ve · q, where ve = ∇kε
e
k|kF = kF /me with the Fermi wave vector kF = (kF

x ,kF
y )], we obtain the

following quasiclassical result for the kernel eigenvalue:

λe
ωn,Qz

= 2
∫ ∞

0
ds

〈
exp

[
− s2
(
μ + 2t ez cos kz cos Qz

2

)
mel2

2sζω

(
ωn + iμzH − 2itez sin kz sin

Qz

2

)]〉
z

, (18)

where ζω ≡ sign(ωn). The derivation details are described in Appendix A 2 a.
For the shallow h band, substituting the Green’s function [Eq. (7)] into the general presentation in Eq. (17), and using relation∫∞

0 dx L�(x)L�′(x)e−2x = (�+�′)!
2�+�′+1�!�′! , we derive

λh
ωn,Qz

= − 1

2πωc

∑
��′

〈
(� + �′)!/(2�+�′

�!�′!)(
iω̄n + � + 1

2 − γ̃z + μ̃h

)(
iω̄n − �′ − 1

2 − γ̃z + μ̃h

)
〉

z

, (19)

where we introduced the following notations:

μ̃h(kz,Qz) = μ̄h − 2t̄ hz cos kz cos(Qz/2), (20a)

γ̃z(kz,Qz) = γz − 2t̄ hz sin kz sin(Qz/2). (20b)

Here, all “barred” normalized quantities are defined as ā ≡ a/ωc (with a = ωn,μh,tz). Furthermore, γz = μzmhc/e =
gmh/4m0 is the reduced spin-splitting parameter, where m0 is the free-electron mass and g is the band electrons g factor.

Therefore, the gap equation (2), in the presence of the magnetic field, becomes


̂−1

[
�h

0

�e
0

]
= 2πT Re

�∑
ωn>0

[
λh

ωn,Qz
�h

0

λe
ωn,Qz

�e
0

]
. (21)

The Matsubara-frequency sums Sα(H,T ,Qz) ≡ 2πT
∑�

ωn>0 λα
ωn,Qz

are logarithmically divergent and have
to be cut at ωn ∼ �. Similarly to the two-dimensional case [24], we can regularize the gap equa-
tion using its zero-field counterpart (10). Namely, we decompose Sα(H,T ,Qz) as Sα(H,T ,Qz) =
[Sα(H,T ,Qz) − Sα(0,T ,0)] + [Sα(0,T ,0) − Sα(0,TC,0)] + Sα(0,TC,0) with Sα(0,TC,0) ≡ 
−1

0,α being the
only log-diverging term. This leads to

Ŵ

[
�h

0

�e
0

]
+
[
A1�

h
0

A2�
e
0

]
=
[
J1�

h
0

J2�
e
0

]
. (22)

Here, Aα(T ) ≡ Sα(0,TC,0) − Sα(0,T ,0) are the temperature-dependent parts of the pairing eigenvalues, A2(T ) = ln(T/TC)
and A1(T ) = 1

2 ln(T/TC) − ϒT + ϒC , where the function ϒT (T/μh,t
h
z /μh) is defined in Eq. (13). The field-dependent parts,

Jα(H,T ,Qz) ≡ Sα(H,T ,Qz) − Sα(0,T ,0), are

J1(H,T ,Qz) = 2πT

∞∑
ωn>0

Re

(
λh

ωn,Qz
− 1

2ωn

)
− ϒT , (23a)

J2(H,T ,Qz) = 2πT

∞∑
ωn>0

Re

(
λe

ωn,Qz
− 1

ωn

)
. (23b)

Note that, by definition, Aα(TC) = 0 and Jα(0,T ,0) = 0. Therefore, the UV cutoffs are explicitly removed and the Matsubara-
frequency sums in the right-hand side in Eqs. (23a) and (23b) converge now in the limit of � → ∞. We can represent the functions
Jα in this limit as

J1(H,T ,Qz) = 1

4

∞∑
m=0

m∑
�=0

m!

2m(m − �)!�!

〈
T (� + γ̃z − μ̃h) + T (m − � − γ̃z − μ̃h) − 2T

(
m
2 − μ̃h

)
m + 1 − 2μ̃h

〉
z

− 1

2

〈∫ 1/2

0
dx

T
(

x−1
2 − μ̃h0

)
x − 2μ̃h0

+
∞∑

m=0

∫ 1/2

−1/2
dx

[
T
(

m+x
2 − μ̃h0

)
m + 1 + x − 2μ̃h0

− T
(

m
2 − μ̃h

)
m + 1 − 2μ̃h

]〉
z

, (24a)

J2(H,T ,Qz) = 2
∫ ∞

0
ds ln tanh

(
πT

ωe
c

s

)〈
exp(−μ̃es

2)
[
μ̃es cos

(
2γ̃ e

z s
)+ γ̃ e

z sin
(
2γ̃ e

z s
)]〉

z
, (24b)
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where we introduced notations T (x) ≡ tanh[ωc(x + 1
2 )/2T ],

μ̃h0(kz) = μ̄h − 2t̄ hz cos kz. Furthermore, ωe
c = eH/cme is the

e-band cyclotron frequency, μ̃e ≡ μ̄ + 2t̄ ez cos kz cos Qz

2 , γ̃ e
z ≡

γz − 2t̄ ez sin kz sin Qz

2 , μ̄ = μ/ωe
c , and t̄ ez = t ez /ω

e
c . We remind

that the parameters μ̃h and γ̃z also depend on kz [see Eqs. (20a)
and (20b)]. We describe derivation of J1(H,T ,Qz) in Ap-
pendix A 2 b. The double sum in Eq. (24a) collects the con-
tributions to pairing coming from the quasiparticles located at
the Landau levels � and m − �. The quantum kernel eigenvalue
J1 depends on five independent dimensionless parameters:
the reduced magnetic field ωc/μh, the reduced temperature
T/μh, the modulation wave vector Qz, the ratio thz /μh, and
the spin-splitting factor γz.

The HC2 problem is reduced to the solution of equation

det

[
W11 + A1 − J1 W12

W21 W22 + A2 − J2

]
= 0 (25)

for a given T and Qz, and we need to find the optimized Qz

in HC2(T ,Qz) for which the instability develops first. As the
matrix Ŵ is degenerate, this equation can be rewritten as∏

α=1,2

(
1 + Aα(T ) − Jα(H,T ,Qz)

Wαα

)
= 1. (26)

This is our main equation for determination of the upper critical
field in two-band layered superconductors. All information
about the coupling matrix is contained in the two parameters
W11 and W22. The analytical expressions for these parameters
can be derived from Eq. (10) (see also Ref. [24]):

W11 = 
ee − 1
2
hh

2D


− ϒC

2
+ δW

R

2
, (27a)

W22 = −
ee − 1
2
hh

D


− ϒC + δWR (27b)

with D
 = 
ee
hh − 
he
eh, δW = sign[D
(1 − ϒC
hh)],
and

R =
√(


ee − 1
2
hh

D


− ϒC

)2

+ 2

he
eh

D2



. (28)

As follows from Eq. (26), the weights with which the bands
contribute to the pairing near the upper critical field scale as
1/|Wαα|.

The behavior of the upper critical field is mostly determined
by the shape of the kernel eigenvaluesJα(H,T ,Qz). In general,
larger values of Jα correspond to stronger pairing strength. In
the next section, we will explore in detail the quantum kernel
eigenvalue J1.

V. BEHAVIOR OF THE QUANTUM PAIRING
KERNEL EIGENVALUE

The shape of magnetic-field–temperature phase diagrams is
determined by the behavior of the pairing kernel eigenvalues
Jα . While the quasiclassical kernel eigenvalue J2 is well stud-
ied and has monotonic dependence on the magnetic field for
all temperatures, the quantum kernel eigenvalue J1 has rather
complicated nonmonotonic dependence on the magnetic field
which is very sensitive to the electronic-spectrum parameters

FIG. 2. The schematic diagram illustrating the kz spectrum of
the shallow h band in the magnetic field in different situations.
The dispersion along kz direction has two van Hove singular points
at kz = 0,π . If the spin-up and -down van Hove singular points
match the Fermi level, the superconducting pairings lead to 1/

√
T

divergence in the pairing kernel eigenvalue J1 [cases (a) and (c)].
The matching condition for (a) is ωc = (μh ± 2tz)/(� + 1

2 ) and for
(c) is ωc = μh/(� + 1

2 ). The pairing instabilities for cases (b) and (c)
favor the formation of the FFLO states with nonzero Qz.

μh and thz as well as the spin-splitting factor γz. The electronic
spectrum of the shallow band in the magnetic field is composed
of the Landau-level minibands with width 4thz [see Fig. 2(a)].
The system has series of Lifshitz transitions with increasing
magnetic field when the chemical potential enters or exits a
particular miniband. At low temperatures, the magnetic field
dependences of J1 have features at these transitions whenever
the chemical potential crosses the van Hove points at the
miniband edges. There are two such points for every miniband
corresponding to two values of kz, 0 and π . In addition,
there are two minibands for every Landau level for two spin
orientations. This gives four miniband-edge magnetic fields
per Landau level, H�,σ,δt

= (cmh/e)ω�,σ,δt
, corresponding to

cyclotron frequencies

ω�,σ,δt
= μh + 2δt t

h
h

� + 1
2 + σγz

, (29)

where σ = ±1 (↑/↓) describes spin orientation and δt = 1 and
−1 corresponds to kz = π and 0, respectively. In addition, we
have to consider the behavior of J1 for different modulation
wave vectors Qz. In general, as the larger J1 corresponds to
stronger pairing strength, the shallow band favors the states
which maximize J1.

Before proceeding to the investigation of the magnetic-
field–temperature phase diagrams for two-band systems, it
is very instructive to study the analytical properties of the
function J1(H,T ,Qz), particularly, in the low-temperature
limit. We first focus on its singularities when the magnetic
field crosses the typical values in Eq. (29) and on identifying
the possible divergences for T → 0 since these features have
important implications on the superconducting instabilities.
Next, we consider the magnetic field dependences of J1 for
representative cases. Furthermore, by studying the Qz depen-
dences of J1 for different Zeeman spin-splitting parameters,
we identify possible parameter ranges for FFLO instabilities.
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A. Low-temperature limit and its divergences

In this section, we investigate the leading divergences of
the quantum kernel eigenvalues Jα as T → 0 for different
cases. We review first the behavior of the quasiclassical kernel
eigenvalue J2 [Eq. (24b)]. For all magnetic fields, J2 has the
same logarithmic divergence asA2 so thatJ2 − A2 approaches
a finite value. In the typical situation of a moderate spin-
splitting factor, γz � √μ/ωe

c , it can be treated perturbatively.
For the uniform case Qz = 0, we derive from Eq. (24b) the
result for the zero-temperature limit of the full quasiclassical
kernel eigenvalue

J2(H,T → 0,0) − A2(T → 0) = −1

2
ln r

(0)
C ,

r
(0)
C ≈ eγE ωe

c

π2T 2
C

μ +
√

μ2 − (2t ez
)2

2

⎛
⎝1 + 2γ 2

z ωe
c√

μ2 − (2t ez
)2
⎞
⎠.

(30)

The parameter r
(0)
C is just the ratio H/He

c2(0), where He
c2(0)

is the upper critical field of the deep band at zero temper-
ature. In the case of finite Qz, the parameter r

(0)
C has to be

replaced by the function rC(Qz). The closed analytical result
for rC(Qz) is not available even for γz = 0. One can only
derive an approximate result in the limits γz � √μ/ωe

c and
t ez /μ,tez sin(Qz/2)/

√
ωe

cμ � 1:

rC(Qz) ≈eγE ωe
cμ

π2T 2
C

[
1 + 2

ωe
cγ

2
z

μ
+ 4

(
t ez
)2

μωe
c

sin2 Qz

2

−
(
t ez
)2

μ2
cos2 Qz

2

]
. (31)

Generally, the quasiclassical kernel eigenvalue J2 − A2 is a
monotonically decreasing function of H at all temperatures
and spin-splitting parameters meaning that the magnetic field
always suppresses superconductivity. As expected, it has max-
imum at Qz = 0 in the limit γz � √μ/ωe

c , meaning that the
deep band favors the uniform state.

The quantum kernel eigenvalue J1 typically behaves simi-
larly to J2, i.e., it has the same logarithmic divergence as A1,
J1 ∝ ln(T/TC) so that the total kernel eigenvalue J1 − A1

approaches a finite value in the zero-temperature limit. This
zero-temperature value, however, has singular contributions
when the magnetic field crosses the typical values given
by Eq. (29), corresponding to Lifshitz transitions for the
Landau-level minibands. We discuss these singularities in the
next subsection. In several exceptional resonant cases, when
two miniband-edge fields with opposite spin orientations are
identical, the Landau quantization leads to faster divergence
J1 ∝ 1/

√
T . In the case when these two fields originate from

the van Hove singular points of the same type (either kz = 0
or π ), the divergence occurs in the uniform channel Qz = 0.
On the other hand, if the two fields correspond to the opposite
van Hove points, the divergence takes place in the alternating
channel Qz = π . We discuss both these cases below. Another
divergence appears within the field ranges where the chemical
potential simultaneously crosses two minibands with opposite
spin orientations. In this case, the total kernel eigenvalue J1 −

A1 diverges logarithmically for T → 0 at the optimal wave
vector Qz = Qop connecting the minibands’ Fermi momenta
[see Fig. 2(b)]. All these low-T divergences may lead to the
high-field superconducting states.

1. Square-root singularity of the pairing kernel
at the miniband-edge fields

As discussed above, the system has series of the mini-
band Lifshitz transitions at the magnetic fields given by
Eq. (29). In this section we discuss singularity of the pair-
ing kernel eigenvalue J1(H,T → 0,Qz) at these transitions,
when the cyclotron frequency ωc crosses the miniband-edge
value ω�0,σ,δt

. We consider here only a general nondegenerate
situation when the corresponding transition magnetic field
H�0,σ,δt

is separated from other typical fields. The derivation in
Appendix B 1 gives the result for the singular contribution at
zero temperature

J1(ωc) − J1(ω�0,σ,δt
)

≈ − δt

2π

√
μh + 2δt thz

thz

√∣∣∣∣1 − ωc

ω�0,σ,δt

∣∣∣∣ θ
[
δt

(
1 − ωc

ω�0,σ,δt

)]

× G�0

[
μh + 2δt t

h
z cos2 Qz

2

ωc

]
(32)

with θ (x) being the step function and

G�(x) ≡
∞∑

m=�

m!

2m(m − �)!�!

1

m + 1 − 2x
.

We see that the square-root singularity J1(H ) ∝√|H − H�0,σ,δt
| appears near the transition point when

the chemical potential is inside the Landau-level miniband,
i.e., H � H�0,σ,− or H � H�0,σ,+. It reflects the pairing
enhancement caused by the square-root divergence of the
density of state at the edge of one-dimensional miniband.
Finite temperature smears this singularity.

2. Resonant cases for the uniform state ( Qz = 0)

In the uniform state Qz = 0, the resonant condition cor-
responds to the matching of the Zeeman spin-splitting energy
2γzωc and the Landau-level energy spacing jzωc, giving 2γz =
jz with integer jz � 0. The divergence occurs when the Fermi
level matches the van Hove singular point at kz = 0 or π

corresponding to the magnetic field

ωc = μh ∓ 2tz

�0 + (jz + 1)/2
. (33)

Figure 2(a) illustrates the simplest case with jz = 0. We
derive in Appendix B 2 the following asymptotic behavior of
J1(H,T ,0) for T � ωc,t

h
z for arbitrary �0 and jz:

J1(H,T ,0) ∼ C
(2�0 + jz)!

22�0+jz (�0 + jz)!�0!

ωc√
thz T

, (34)

where C = (2
√

2 − 1)ζ ( 3
2 )/(8π3/2) ≈ 0.1072 and ζ (x) is the

Riemann zeta function [ζ ( 3
2 ) ≈ 2.6124]. We can see that theJ1

diverges as ∼1/
√

T manifesting the enhancement of pairing.
The coefficient decreases with increasing interlayer hoping
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thz and with increasing of the resonance order described by
the integers �0 and jz. We note that for any small deviations
from the condition (�0 + 1

2jz + 1
2 )ωc = μh ± 2thz , the total

eigenvalue J1 − A1 approaches a finite limit at T → 0. We
can also note that this divergence is somewhat weaker than the
1/T divergence for the 2D case [24], due to the smearing of
δ-function singularity in the density of states at the Landau
levels by the interlayer hopping. Such 1/

√
T divergence in the

uniform state for zero or resonant spin-splitting factor has also
been reported in Refs. [2,9].

For the strongest resonance at �0 = 0, jz = 0, and ωc =
2(μh ∓ 2thz ) for kz = 0/π , we derived in Appendix B 2 the more
accurate asymptotic for the total kernel eigenvalue

J1 − A1 ≈ C
ωc√
thz T

+ R∓
(
t̄ hz
)− 1

2
ln

ωc

πTC

− ϒC,

R∓
(
t̄ hz
) = 1

2

∞∑
m=1

⎛
⎝ 1√

m
(
m ∓ 8t̄ hz

) − 1

m

⎞
⎠. (35)

For kz = 0, the function R−(t̄ hz ) diverges for ωc = 8thz . As
ωc = 2(μh − 2thz ), meaning that this result is only valid for
μh > 6thz .

We mention that the spin splitting is a fixed material’s
parameter and therefore the resonance cases 2γz = jz are
exceptional. To some extent, the effective spin splitting can
be tuned by tilting the magnetic field [50]. We note, however,
that in contrast to the two-dimensional case [24], in layered
superconductors the in-plane magnetic field also influences
the orbital motion of quasiparticles, meaning that the problem
of the upper critical field for this case requires separate
consideration.

3. Resonant cases for alternating FFLO state ( Qz = π )

The resonance enhancement of pairing may also take
place in the alternating FFLO state because in this case the
modulation wave vector Qz = π couples the van Hove singular
points at kz = 0 and π . Such enhancement is a unique property
of a layered superconductor with open Fermi surface and it
only exists for specific relations between the band parameters
μh and thz . Writing the full quasiparticle energy in the magnetic
field as ξh

±(�,kz) = μh − ωc(� + 1
2 ± γz) − 2thz cos kz, we can

identify that the resonance conditions are realized when the
spin-down (spin-up) energy at kz = 0 at the Landau level �0

simultaneously matches with the spin-up (spin-down) energy
at kz = π at the Landau level �π and with the chemical
potential, i.e., ξh

∓(�0,0) = ξh
±(�π ,π ) = 0 [see the first-case

example with �0 = �π = 0 in Fig. 2(c)]. This gives the
conditions

ωc = 4thz

�π − �0 ± 2γz

= 2μh

�0 + �π + 1
, (36a)

μh = ωc

2
(�0 + �π + 1) = 2thz (�0 + �π + 1)

�π − �0 ± 2γz

. (36b)

To derive the low-temperature behavior ofJ1, we substitute
the conditions in Eqs. (36a) and (36b) into Eq. (24a) with
Qz = π . The derivation described in Appendix B 3 yields

the low-temperature asymptotic for generic case of non-
integer 2γz:

J1(H,T ,π ) � C

2

(�0 + �π )!

2�0+�π �0!�π !

ωc√
T thz

, (37)

where the numerical constant C is defined above, after Eq. (34).
We note that this additional divergence is purely a consequence
of the interplay between the Landau quantization and interlayer
tunneling. In particular, such FFLO instability is absent in the
3D case with k2

z dispersion.
For the strongest resonance, �0 = �π = 0, μh = thz /γz

(γz < 0.5), and ωc = 2μh, we derived the more accurate
asymptotic

J1 − A1 � C

2

ωc√
T thz

− 1

2
ln

2ωc

πTc

− ϒC. (38)

In the real systems, such instability can be obtained by tuning
the chemical potential μh by doping or pressure.

4. Logarithmic divergence at the optimal modulation wave vector

In the case when the chemical potential crosses two Landau-
level branches with opposite spin orientations, the kernel
eigenvalue also has logarithmic divergence at the wave vector
connecting the crossing points [see Fig. 2(b)]. This divergence
originates from the one-dimensional character of the electronic
spectrum. The similar result was also found in the study of
a three-dimensional model with parabolic Landau minibands
[9]. For illustration, we consider such divergence for such
branches belonging to the same Landau level with index �0.
In this case, the diverging term in Eq. (24a) is the one with
m = 2�0 and � = �0:

J1,�0 = ωc

4

(2�0)!

22�0 (�0!)2

∫ π

−π

dkz

2π

×
∑
δ=±1

tanh
[ωc(�0+ 1

2 +δγz)−μh+2thz cos(kz+δ
Qz
2 )

2T

]
ωc(2�0 + 1) − 2

(
μh − 2thz cos kz cos Qz

2

) .
For the optimal modulation wave vector Qz = Qop shown in
Fig. 2(b), we have the relations

ωc

(
�0 + 1

2
+ δγz

)
− μh + 2thz cos

(
kz0 + δ

Qop

2

)
= 0,

for δ = ±1, where kz0 ± Qop/2 are the Fermi wave vectors for
the two considered branches. These relations determine Qop as

Qop =
∑
δ=±1

δ arccos

[
μh − ωc

(
�0 + 1

2 + δγz

)
2thz

]
. (39)

In the limit T � thz , the dominating contribution to J1,0 is
coming from the regions near the Fermi momenta, meaning
that we can use expansion kz = kz0 + k̃ with k̃ � kz0 and
approximate

J1,�0 ≈ (2�0)!

32π22�0 (�0!)2

ωc

thz sin kz0 cos Qop

2

×
∑
δ=±1

∫ π

−π

dk̃

k̃
tanh

[
thz

T
sin

(
kz0 + δ

Qop

2

)
k̃

]
.
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FIG. 3. The behavior of the kernel eigenvalue J1 in the uniform state Qz = 0 for different interlayer tunnelings th
z (a), temperatures (b),

and spin-splitting factors γz (c). We can see that at low temperatures the function J1(H ) has pronounced peaks when the chemical potential
matches Landau levels broadened by the interlayer tunneling. From plots in (a) we can see that the interlayer tunneling splits a single 2D
peak into two smaller peaks corresponding to the locations of the van Hove singularities in the spectrum at kz = 0 and π [Eq. (33)]. Plots in
(b) show that thermal fluctuations smear the Landau levels and eventually wash out the quantum effects near T ∼ ωc/2. The dotted-dashed
lines are the quasiclassical results. Plots in (c) indicate that the uniform state is very sensitive to the Zeeman spin-splitting effects: the Landau
peaks are rapidly suppressed at very small γz. Smaller peaks reappear when the resonant conditions are met (2γz = jz). The symbols mark the
miniband-edge magnetic fields, at which the chemical potential matches the van Hove points [Eq. (29)].

Evaluating the integral, we obtain

J1,�0 ≈ (2�0)!

8π22�0 (�0!)2

ωc

thz sin kz0 cos Qop

2

× ln

[
thz

T

√∣∣∣∣sin

(
kz0 − Qop

2

)
sin

(
kz0 + Qop

2

)∣∣∣∣
]
.

(40)

This logarithmic divergence for T → 0 is similar to the well-
known Peierls divergence of the electronic susceptibility for
one-dimensional metals at the nesting wave vector which, in
particular, leads to the charge-density-wave transition. In the
simplest scenario when the chemical potential crosses only two
minibands, the kernel eigenvalue diverges only at one wave
vector. In more complicated cases with many minibands at
the Fermi level, the divergence takes place at several wave
vectors and one can expect competition between multiple
ground states, similar to the situation considered in Ref. [42].

B. Magnetic field dependences of quantum kernel
eigenvalue J1 for different cases

Now, we discuss the general behavior of the kernel eigen-
value J1. In contrast to the monotonic behavior of the quasi-
classical result, the low-temperature divergences discussed in
the Sec. V A may lead to the emergence of strong peaks in J1

at the specific magnetic fields and modulating wave vectors Qz

which indicate the enhancement of pairing. The magnitude and
location of these peaks are sensitive to the details of electronic
band properties.

1. Uniform state: Qz = 0

Figure 3 illustrates the effects of interlayer tunneling,
temperature, and Zeeman spin splitting in the uniform state
(Qz = 0). Without spin splitting, the interlayer tunneling
broadens the Landau levels and splits a single divergent peak
into two smaller peaks at low temperatures [see Fig. 3(a)].

The smaller peaks correspond to the matching between the
chemical potential and the van Hove singularities in the
spectrum at kz = 0 and π [Eq. (33)]. Their values are estimated
by Eq. (34). The shaded regions mark the field ranges for which
the chemical potential is located within the broadened Landau
levels, and their boundaries correspond to the crossing of the
van Hove singularities.

Figure 3(b) shows that the peaks are rapidly smeared by the
thermal effects and disappear at T ∼ ωc/2. In this figure, we
compare the exact kernel eigenvalue with the quasiclassical
results (dotted-dashed lines), which are calculated by using

J qc

1 (H,T ,Qz) = 2
∫ ∞

0
ds

〈
ln tanh

(
πT

ωc

s

)
exp(−μ̃hs

2)

× [μ̃hs cos(2γ̃zs) + γ̃z sin(2γ̃zs)]

〉
z

. (41)

This quasiclassical approximation of J1 can be obtained from
the quantum kernel in Eq. (24a) by assuming small-field limit
[51] ωc � μh with the temperature range ωc � T � μh. One
can see that this approximation yields a monotonic behavior
for the kernel eigenvalue in the magnetic field and gives a good
approximation at low fields.

We can see in Fig. 3(c) that the divergent peaks are also
rapidly suppressed by finite spin splitting γz, meaning that
the uniform state is highly susceptible to the Zeeman effect.
The smaller peaks reappear if the resonant conditions are met
(the solid red line for γz = 0.5). We also observe a noticeable
enhancement of J1 in the field ranges where the chemical
potential crosses both spin-up and -down minibands for the
zero Landau level (e.g., in the range 1.5 < ωc/μh < 2.4 for
γz = 0.1). We point, however, that in this range the maximal
J1 is not at Qz = 0. We discuss the Qz dependences in the
next subsection.
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FIG. 4. The representative dependences of the pairing kernel
eigenvalue on the modulation wave vector Qz. In the resonance cases
with integer 2γz, the maximum of J1 is always realized at Qz = 0
corresponding to the uniform state. The curve with γz = 0.2 illustrates
the nonresonant case, when the chemical potential crosses both spin-
up and -down zero Landau-level minibands, as illustrated in Fig. 2(b).
The maximum is realized at the modulation vector connecting the
Fermi momenta of these minibands. Finally, the curve with γz = 0.3
illustrates a special situation when the chemical potential matches two
opposite van Hove points at kz = 0 and π [see Fig. 2(c)]. In this case,
the maximum is realized at Qz = π , favoring the alternating FFLO
state.

2. FFLO modulated state: Qz �= 0

We now consider the behavior of the quantum kernel eigen-
value at finite modulation wave vectors Qz. Figure 4 shows
the dependences of J1 on Qz for fixed electronic-spectrum
parameters, fixed magnetic field, and for three spin-splitting
factors representing different cases. In the resonant cases with
half-integer spin-splitting factors the kernel eigenvalue always
has the maximum at Qz = 0, as illustrated by the curve with
γz = 0. The finite-Qz modulated states are not favorable in
these cases, due to the absence of strong Zeeman pair breaking
at the Landau levels [see Fig. 2(a)], and the uniform state
always dominates. Away from the uniform-state resonances,
2γz �= jz, the Zeeman pair breaking favors developing of the
finite-Qz states. The second curve with γz = 0.2 illustrates
the situation when the chemical potential crosses both spin-up
and -down zero Landau-level minibands. In this case, the
maximum is realized at the modulation wave vector connecting
the minibands Fermi momenta [see Fig. 2(b)]. This modulation
vector varies with the magnetic field. The third curve with
γz = 0.3 illustrates a special situation when the chemical
potential matches two opposite van Hove points atkz = 0 andπ

[see Fig. 2(c)]. Such matching is realized when the parameters
satisfy the relation given by Eqs. (36a) and (36b) (the plot is
made for �0 = �π = 0). In this case, the maximum is realized
at Qz = π , favoring the alternating FFLO state.

Figure 5 illustrates the magnetic field dependences of J1

for different Qz in two situations with noninteger 2γz. We also
show the maximal J1 with respect to Qz. The light blue and
pink regions mark the crossing of the chemical potential with
the mismatching spin-up and -down Landau-level minibands.
This regions are limited by the miniband-edge magnetic fields
given by Eq. (29) with δt = ±1 while � and σ are fixed. The

FIG. 5. The magnetic field dependences of J1 for different
modulation wave vectors Qz for noninteger 2γz. The parameters in
(a), tz/μh = 0.3, γz = 0.2, correspond to a general case without any
resonances. In this case, states with different Qz are favorable for
different magnetic fields. The parameters in (b), tz/μh = γz = 0.3,
favor π -FFLO instability. As a consequence, a new diverging peak
appears for Qz = π state at ωc = 2μh. In both panels, we also show
the magnetic field dependence of the maximum value of J1 with
respect to Qz (blue circles).

simultaneous crossing of both such bands at the chemical
potential only occurs in the overlapping regions in which
the pairing favors finite-Qz states as illustrated in Fig. 2(b).
Figure 5(a) corresponds to a general situation without any
resonances. In this case, the states with different Qz become
favorable in different fields. In particular, for Qz = π/2 the
maximum at ωc/μh ≈ 2.1 corresponds to the condition for
optimum modulation vector Qop(ωc) = Qz [Eq. (39)]. We can
also see that the pairing strength is noticeably enhanced in
the region 1.3 < ωc/μh < 2.3 when the chemical potential
crosses zero-Landau level minibands for both spin orientations.
The choice of parameters in Fig. 5(b) allows for Qz = π

singularity [see Eq. (36b) and the illustration in Fig. 2(c)].
At ωc/μh = 2, the chemical potential matches simultaneously
two van Hove singular points: the spin-up energy at kz = 0 and
spin-down energy at kz = π . This matching leads to the addi-
tional divergent peak at this point strongly favoring Qz = π

instability and may lead the formation of the superconducting
state with the alternating sign of the order parameter between
the layers. In both cases, the optimal kernel eigenvalue (blue
circles) significantly exceeds the one for the uniform state
(black line) almost in the whole field range.

To obtain a better presentation for the range of parameters
where the shallow band favors nonuniform states, we expand
J1 with respect to small Qz:

J1(H,T ,Qz) ≈ J1(H,T ,0) + 1
2J

′′
1 (H,T ,0)Q2

z . (42)
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FIG. 6. These plots show positive and negative regions of the kernel-eigenvalue second derivative with respect to the modulation wave
vector Qz, J ′′

1 (H,T ,0), in the spin-splitting–magnetic field plane. In the shaded regions with J ′′
1 (H,T ,0) < 0, the onset of the finite-Qz FFLO

states may be expected. The (a) and (b) diagrams are made using the exact kernel eigenvalue at T = 0.02μh and 0.2μh. The dashed lines trace
the magnetic fields for which the van Hove singularities of the Landau-level minibands match the chemical potential exactly [Eq. (29)]. The
label “+tz” (“−tz”) in the diagram marks the kz = π (kz = 0) van Hove singular point. (c) The diagram for the quasiclassical pairing kernel at
zero temperature [Eq. (41)].

If J ′′
1 (H,T ,0) is positive, then Qz = 0 does not maximize J1

and the finite nonzero Qz state is favorable. For better visual
impression of the parameter range where the shallow band
favors nonuniform states, we present in Fig. 6 the regions of
positive (shaded) and negative (unshaded) J ′′

1 (H,T ,0) in the
magnetic-field–spin-splitting plane for representative parame-
ter thz /μh = 0.2 and two values of temperature T = 0.02μh(a)
and 0.2μh(b). For comparison, we also show in Fig. 6(c) the
same diagram for the quasiclassical kernel eigenvalue (41).
In the latter case, an analytical analysis [27] suggests that the
boundary should behave as ωc/μh ∝ 1/γ 2

z while the numerical
fitting gives ωc/μh ≈ 1/(0.14 + 1.07γz)2. If the upper critical
field with Qz = 0 state falls into the shaded region, this means
that the shallow band favors the nonuniform state, and the order
parameter has a tendency to develop nonzero Qz modulation
in real space. We see that at low temperatures the shaded
regions cover substantial part of the phase diagram except
locations around the integer 2γz. Especially surprising is that
they extend to very low fields, down to ωc/μh ∼ 0.1. These
low-field regions are eliminated at higher temperatures.

To avoid misunderstanding, we note that for two-band
systems the nonuniform states do not automatically appear in
the shaded regions because the ground state is determined by
both bands and the deep band typically favors the uniform state
J ′′

2 (H,T ,0) < 0. The FFLO modulation may appear below
certain temperature TFFLO, at which the second derivative
∂2HC2/∂Q2

z changes sign. From the general equation for the
upper critical field [Eq. (26)], we can derive the equation for
this temperature T = TFFLO,

J ′′
1 (H,T ,0)

W11 + A1(T ) − J1,0(H,T )

+ J ′′
2 (H,T ,0)

W22 + A2(T ) − J2,0(H,T )
= 0 (43)

with Jα,0(H,T ) ≡ Jα(H,T ,0), in which we have to substitute
H → HC2(T ) at Qz = 0. This equation may have solution
only if (i) J ′′

1 (H,T ,0) > 0 at low temperatures [i.e., the
parameters are in the shaded region in Fig. 6(a)] and (ii) the
ratio W11/W22 characterizing the relative weight of the shallow
band is not too small.

VI. SUPERCONDUCTING INSTABILITIES
AND PHASE DIAGRAMS

The exact shape of the H -T phase diagram of a lay-
ered multiple-band superconductor depends on many param-
eters: electronic spectra properties of the bands, spin-splitting
factors, and structure of the coupling matrix. The most crucial
factor is the quantum pairing kernel eigenvalue for the shallow
band J1, whose shape at low temperatures is extremely
sensitive to the electronic parameters of the shallow band μh,
thz , and γz, as we discussed in the previous section. With the
finite interlayer tunneling, the kz dispersion in the Landau-
quantization spectrum can lead to complex behavior of the
superconducting state in the magnetic field.

In addition, the Zeeman spin splitting in the shallow band
favors the formation of the FFLO states (see Figs. 2 and 5). As
the Landau quantization strongly influences the Cooper pairing
in the bands with relatively low Fermi energies, this brings a
natural general question about the role of quantum effects in the
FFLO instability, even in the common case of a single-band
superconductor in the quasiclassical limit. Surprisingly, this
important topic has been never addressed before and we leave
it to a separate paper. Here, we focus on the general behavior
of the H -T phase diagrams for the two-band system where
the shallow band is close to the extreme quantum limit. We
illustrate this behavior for several representative cases.

The most spectacular consequence of the Landau quan-
tization is the emergence of the high-field superconducting
states at the magnetic fields corresponding to matching of
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the chemical potential with the Landau levels. These states
are most pronounced in the two-dimensional case and for the
lowest Landau level [24]. The interlayer tunneling smears the
delta-function singularity in the density of states, leading to
suppression of the high-field superconductivity. To quantify
these effects, we first calculate the transition temperatures in
magnetic field, TC2, in the resonance cases for which the kernel
eigenvalue diverges as ∼1/

√
T (see Sec. V A). For this we find

solution of Eq. (26) assuming that TC2 � TC,tz.
First, we evaluate the transition temperature for the

strongest resonance in the uniform state without Zeeman spin
splitting (γz = 0), T

(0)
C2 , which is realized when the chemical

potential matches the van Hove singular points at kz = 0,π at
the magnetic fields ωc = 2(μh ∓ 2thz ). In this case, substituting
the low-T asymptotics ofJα − Aα given by Eqs. (30) and (35)
into Eq. (26), we derive

T
(0)
C2 = C2ω2

c

thz

[
W11 ln r

(0)
C

2W22+ ln r
(0)
C

−R∓
(
t̄ hz
)+1

2
ln

ωc

πTC

+ϒC

]−2

.

(44)

This result allows us to understand better the typical sizes of the
high-field reentrant regions. A similar result can be derived for
the strongest alternating-state resonance with Qz = π realized
when the parameters satisfy the relation μh = thz /γz. In this
case, the low-temperature asymptotics of J1 − A1 is given
by Eq. (38), leading to the π -state transition temperature at
ωc = 2μh:

T
(π)
C2 = C2ω2

c

4thz

[
W11 ln r

(π)
C

2W22 + ln r
(π)
C

+ 1

2
ln

2ωc

πTC

+ ϒC

]−2

(45)

with r
(π)
C ≡ rC(Qz = π ). Even though the overall scale of the

above transition temperatures is given by ω2
c/thz with the small

numerical factor C2 ≈ 0.0115, their absolute values are very
sensitive to the structure of the coupling matrix. The latter
dependence is given by the first term in the square brackets in
Eqs. (44) and (45). In general, these transition temperatures are
not vanishingly small only if the shallow band gives substantial
contribution to pairing.

In particular, in the case when the deep band dominates
pairing, 
ee > 
hh,|
eh|,|
he|, the constants Wαα can be
estimated as W11 ≈ 
ee/D
 and W22 ≈ 
eh
he/(
eeD
),
meaning that |W22| � |W11|. In addition, inequalities
ln rC � |W22| and W11 ln rC/W22 ≈ 
2

ee ln rC/
eh
he 

ϒC, ln(μh/Tc) are typically satisfied, leading to the estimate

T
(0)
C2 ≈ (C2ω2

c/thz )[2
eh
he/(
2
ee ln r

(0)
C )]

2
. In this case, the

transition temperature has the additional small factor which
rapidly decreases with decreasing of the interband coupling
constants 
eh and 
he, and with increasing the deep-band
coupling constant 
ee. On the other hand, we see that T

(0)
C2

increases when the resonance field approaches the orbital
field of the shallow band r

(0)
C → 1. In the interband-coupling

scenario |
eh|,|
he| > 
ee,
hh, the ratio W11/W22 ≈ 1/2,
meaning that there is no additional smallness caused by the
coupling factor.

We illustrate the typical behavior of TC2 in Fig. 7, by
plotting the transition temperatures for uniform and alternating
states as function of the ratio 
h,e/
0,e which controls the
shallow-band weight. The plots are made for fixed effective

FIG. 7. The dependences of the transition temperatures TC2 on
the interband coupling constant 
he for the superconducting states
that are induced by the strongest 1/

√
T divergences at high magnetic

field. The plots are made assuming fixed effective coupling constant

0,e = 0.2. The blue (green) curves show the dependences of uniform
state TC2 on the interband coupling 
he = 
eh at the magnetic field
ωc = 2μh + 4tz (ωc = μh + 2tz) with γz = 0 (γz = 0.5), while the
orange curves are for the alternating-state case at the magnetic field
ωc = 2μh with γz = 0.3 (upper plot) and γz = 0.1 (lower plot). The
dashed lines are the approximate results given by Eqs. (44) and (45)
(which are accurate only if tz � TC2) and the solid lines are calculated
using the exact formula in Eq. (26). The upper and lower figures
compare two different values of the interlayer hopping energy th

z .

coupling constant 
0,e = 0.2 which fixes the zero-field tran-
sition temperature TC . As expected, in all cases the transition
temperatures rapidly decrease with decreasing of the shallow-
band contribution to pairing. For comparison, we present the
TC2 dependences for two values of the interband hopping
energy thz = 0.45TC and 0.15TC . We see that TC2’s are much
higher for smaller thz .

We also note that, in spite of the kernel low-temperature
divergences in the resonance cases, the two-band system does
not always become superconducting at the corresponding
magnetic fields. Indeed, the above solutions for T

(0)
C2 and T

(π)
C2

are only valid if the arguments in the square brackets of
Eqs. (44) and (45) are positive. When the interband coupling
dominates, D
 < 0, the parameters Wαα are negative. In this
case, T

(α)
C2 may vanish if ln r

(α)
C = 2|W22|. As |W22| 
 1, this

may only realize if the resonance magnetic field is much larger
than the deep-band orbital field r

(α)
C 
 1, corresponding to the

very large Fermi energy μ > 100TC .
We now present numerically computed magnetic-field–

temperature phase diagrams for different typical situations.
We first illustrate the influence of the interlayer tunneling
on the reentrant high-field states in the resonant cases with
integer 2γz. Figure 8 shows the H -T diagrams for γz = 0.5,
μh = 3TC , and different hopping energies thz . The diagrams are
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FIG. 8. The influence of the interlayer tunneling on the typical
H -T diagram for the resonant case (2γz = 1) in the low-T regime.
We used the following parameters: the coupling constants 
hh = 
ee

= 0, 
he = 
eh = 0.3, the mass ratio is me/mh = 1, ε0 = 12TC , and
μh/TC = 3. The insets demonstrate the crossing of the van Hove
singular points at the chemical potential.

made for the case of dominating interband coupling scenario
(
hh = 
ee = 0, 
he = 
eh = 0.3), for which the discussed
reentrant effects are very pronounced. The vertical scale of
the magnetic field cmhTC/e in the plot can be rewritten as
7.44T(mh/m0)(TC/10 K). Two reentrant states are realized
for selected parameters, around the zeroth and first Landau
levels. We can see that the interlayer tunneling smears these
states. It splits the single peak in TC2(H ) around the field
ωc = μh(� + 1

2 + 1
2jz)−1 into the two peaks with maximums

approximately located at ωc = (μh ± 2thz )(� + 1
2 + 1

2jz)−1 (in
the plot � = 0,1 and jz = 1). The latter fields correspond to the
crossing of the Fermi level and the van Hove singular points of
the shallowh band given by Eq. (29), as illustrated by the insets.
Since the increase of thz reduces the low-T divergent peaks in
J1(H ) dependence [Eq. (34)], the reentrant TC2 are always
smaller than in the two-dimensional case. We emphasize again
that for the resonant cases 2γz = jz, the FFLO state is not
favorable and Qz = 0 always gives the largest TC2.

We now discuss the formation of the interlayer FFLO states
due to spin splitting in the shallow band for a more general
case of noninteger 2γz. Figure 9 shows the representative
H -T phase diagram for the spin-splitting factor γz = 0.3, the
interlayer hopping energy tz = 0.45TC , and three values of
the Fermi energy μh = TC (a), 1.25TC (b), and 1.5TC (c). We
again consider the interband-coupling scenario with the same
coupling constants as in the previous figure. We plot the HC2

lines with Qz at the optimal values (Qop) and the lines are
color coded by Qop. For comparison, we also show the Qz = 0
transition lines.

In the case μh = TC [Fig. 9(a)], the Zeeman spin splitting
in the Landau levels of the shallow h band leads to the
pairings that favor the FFLO modulation along the out-of-plane
direction for T < 0.18TC . The formation of this state leads
to substantial enhancement of the upper critical field at low
temperatures. The modulation wave vector at the transition Qop

rapidly increases with decreasing temperature, reaching 2.17
at T → 0. At somewhat higher Fermi energy μh = 1.25TC

[Fig. 9(b)], the pairing at overlapping spin-up and -down
zero-Landau-level minibands leads to the formation of the
separated reentrant high-field state. This state also has z-axis

FIG. 9. The representative H -T phase diagrams for nonresonant spin-splitting factor γz = 0.3 and interband-coupling scenario (the coupling
constants 
hh = 
ee = 0, 
he = 
eh = 0.3) computed for three Fermi energies. Other used parameters are the interlayer hopping energies
th
z = t e

z = 0.45TC , the mass ratio me/mh = 1, and ε0 = 12TC . The boundaries are color coded by the optimal-modulation wave vector Qop.
The orange dotted-dashed line shows instability boundary for the uniform state Qz = 0. The horizontal dashed lines are the magnetic fields that
match the Fermi level of spin-up/-down electrons in the h band with kz = 0,π [see Eq. (29)]. (a) For μh = TC we can see that the formation of the
nonuniform FFLO state below 0.18TC leads to significant enhancement of HC2 at low temperatures caused by the proximity to the lines 0↑, + tz
and 1↓, + tz. The inset in this and other plots demonstrate the Landau-level minibands near the chemical potential for selected magnetic fields
and corresponding optimal modulation vectors. (b) For the larger Fermi energy μh = 1.25TC , the reentrant region appears located between the
lines 0↑, + tz and 0↓, − tz, where the chemical potential crosses the zero-Landau-level minibands for both spin orientations. The upper right
inset in this plot shows the optimal modulated wave vector Qop evaluated from Eq. (39) (green line) and the realized one (solid brown points).
(c) The value of the Fermi energy μh = 1.5TC in this plot satisfies the relation μh = th

z /γz, which is required for realization of the π -FFLO
state around the field ωc = 2μh. Indeed, matching of the levels 0↑, + tz and 0↓, − tz at this field leads to the reentrant high-field state with
Qop = π .
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FIG. 10. The dependences of the upper critical field on the
shallow-band Fermi energy μh for three different coupling-constant
sets shown in the plot. Other parameters are the same as in Fig. 9.
As in previous figures, we also show the miniband-edge field lines.
The vertical dotted-dashed line marks the location of the first Lifshitz
transition (see Fig. 1).

modulation with the wave vector Qop shown in the inset
and its value is very close to the distance between spin-up
and -down Fermi momenta given by Eq. (39). Note that the
reentrant FFLO state occupies a quite extended field range
corresponding to 1.5 < ωc/TC < 2.75, where the spin-up and
-down zero-Landau-level minibands overlap.

As demonstrated in Sec. V A 3, a layered superconductor
with shallow band may have special resonance situations
leading to appearance of the alternating FFLO state. Namely,
if μh satisfies the condition in Eq. (36b), J1 diverges for
T → 0 at the magnetic field that is given by Eq. (36a). This
divergence typically gives rise to the FFLO modulation with
Qz = π . Figure 9(c) shows an example of the H -T diagram
for such situation with �0 = �π = 0 in Eqs. (36a) and (36b)
corresponding to the strongest resonance. We can see that the
small reentrant region indeed appears at the high magnetic
field. However, only part of this region is occupied by the
alternating state. In contrast to the uniform state, TC2(H ) has
only single maximum, as in the two-dimensional case. We see
that, depending on parameters, the reentrant states can be either
well separated from or very close to the main superconducting
region.

For better understanding of general trends, we plot in Fig. 10
the dependences of the low-temperature upper critical field on
the shallow-band Fermi energy μh. The upper curve is made
for the same parameters as in Fig. 9. We can see that this
dependence has several salient features. The HC2 curve has a
clear tendency to follow one of the miniband-edge field lines
and it sharply turns away from this line close to crossing points
with the second miniband-edge field line. As a consequence,
the regions of multiple HC2 values corresponding to reentrant
behavior appear below some of these crossing points. Near
the crossing of 0↓ − tz and 0↑ + tz lines corresponding to
the matching of the opposite van Hove singularities for the
zero Landau level, the region of the alternating FFLO state is
realized.

So far, we only considered the purely interband-coupling
scenario for which the quantum effects from the shallow band

FIG. 11. Shrinking of the reentrant region with increasing deep-
band coupling constant 
ee. All parameters except 
ee are the same
as in Fig. 9(b).

are quite pronounced. The behavior, however, is sensitive to the
structure of the coupling-constant matrix reflecting the pairing
mechanism. In addition to the interband-coupling case, Fig. 9
also shows the HC2-μh dependences at low temperatures for
two coupling-constant sets with finite 
ee. We can see that
with increasing deep-band pairing weight, the upper critical
field decreases and moves to the region of miniband-edge
field lines for higher Landau levels, especially for +tz lines
corresponding to larger-area cross section of the Fermi surface
at kz = π . Nevertheless, the main trends remain: the HC2

curves still tend to follow the miniband-edge field lines and
the reentrant regions appear near the crossing points (at least,
for the case 
ee = 0.2 and 
eh = 0.3). Note that the reentrance
completely vanishes when the deep-band coupling is too strong
(the lowest curve in Fig. 9). The ground state at low temperature
is modulated for all studied cases, but the optimal modulation
wave vector Qop progressively decreases with increasing the
deep-band weight. The middle curve includes the crossing of
0↓ − tz and 1↑ + tz lines, where the shallow band strongly
favors the alternating state. This state, however, is not formed
due to the large weight of the deep band. The modulation
wave vector is sharply enhanced when μh approaches the
crossing-point value 1.125TC but it only reaches ∼1.1 at the
maximum.

The temperature range of reentrant states rapidly reduces
with increasing deep-band coupling. We illustrate this trend in
Fig. 11 in which we present the evolution of the reentrant region
of Fig. 9(b) with increasing deep-band coupling constant 
ee.
We can see that the size of this region rapidly shrinks with
increasing 
ee. This counterintuitive behavior is again caused
by the reduction of the shallow-band weight in the pairing.
In the regime of dominating deep-band coupling, 
ee > 
eh,
the reentrant region becomes practically invisible for these
electronic-spectrum parameters.

We discuss in Appendix C the scenario in which super-
conductivity is dominated by the deep-band coupling with

ee > 
he. The resulting H -T diagrams are not qualitatively
different from the representative case in Figs. 8 and 9, but
there are substantial quantitative differences. In the resonant
case, the sizes of reentrant regions are much smaller than for
the interband-coupling case due to the strong reduction of the
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shallow-band contribution to the pairing (see also Fig. 7). In
the nonresonant case, the reentrant behavior only appears either
for smaller interlayer tunneling or smaller Fermi energy of the
deep band in comparison with the parameters considered in
this section. Nevertheless, the FFLO instability in the main
superconducting region always appears at low temperatures.

VII. SUMMARY AND DISCUSSION

In summary, we have investigated the pairing instabilities
of a clean two-band layered superconductor in the magnetic
field oriented perpendicular to the layers. In this system, the
interlayer tunneling lifts the degeneracies in all Landau levels
and transforms them into the dispersive minibands along the
out-of-plane momentum (kz) with two van Hove singularities
at kz = 0 and π . We explored the possible pairing instabilities
as the Landau minibands cross the chemical potential in the
vicinity of the first Lifshitz transition (μh � 2thz in Fig. 1).

Solving the linearized gap equation [Eq. (2)], we found that
the Landau quantization leads to strong 1/

√
T divergences in

the shallow band’s pairing kernel if either the same [Eq. (33)]
or opposite [Eqs. (36a) and (36b)] van Hove points match at
the chemical potential. The former matching condition gives
the uniform superconducting state and the latter one favors
the alternating FFLO state with Qz = π modulation. For
general Zeeman spin-splitting energy, the pairing kernel has
ln T divergence in the pairing channel with the optimal wave
vector Qop [Eq. (39)] corresponding to the difference between
the spin-up and -down Fermi momenta. These logarithmic
divergences are similar to the FFLO instabilities in quasi-
one-dimensional superconductors [29,40,52] and they strongly
promote the formation of the FFLO states with Qz = Qop.

Furthermore, we studied the magnetic field versus temper-
ature phase diagrams and found that the shallow-band diver-
gences yield a complex reentrant behavior in the high magnetic
field superconductivity. The properties of these reentrant states
are highly sensitive to the shallow-band parameters μh, thz ,
γz, as well as to the coupling-matrix structure. In general,
the interlayer tunneling smears the Landau-level densities of
states which reduces the quantum effects in the resonant cases.
Therefore, the reentrant transition temperatures are smaller
than those in the two-dimensional monolayer [24]. On the
other hand, the interlayer tunneling enables the formation of the
FFLO modulations which mitigate the Zeeman suppression in
the reentrant states. As a result, the reentrant region is stretched
to a wider magnetic field range [see Figs. 9(a) and 9(b)].
Furthermore, we also found the reentrant alternating-FFLO
states [see Fig. 9(c)] due to the interplay between the Landau
quantization and interlayer tunneling. The similar alternating-
FFLO state has been also suggested for the layered system
in the magnetic field applied parallel to the layers [34]. The
formation of these alternating-FFLO states is the consequence
of the compensation between the Zeeman energy and the
interlayer hopping energy.

In this study, we only performed the linear stability analysis
and, strictly speaking, the computed phase lines describe
instability of the normal state. These lines would correspond to
true second-order phase transitions only if the coefficient for
the quartic order-parameter term in the free energy is positive.
Otherwise, superconducting state will emerge via a first-order

transition. Such first-order scenario for the emergence of the
FFLO state indeed realizes in quasi-two-dimensional materials
with very strong Zeeman effect for the magnetic field perpen-
dicular to conducting layers [53]. This analysis, however, has
been performed only for the quasiclassical regime and it does
not take into account the effect we stress here: promotion of the
FFLO instability by the Landau quantization. A full nonlinear
consideration with proper accounting for the quantum effects
remains to be done.

The described behavior can only be observed in very clean
materials in which the scattering time τ satisfies the condi-
tion τωc 
 1. This condition implies that superconducting
transition should take place in the region of noticeable quantum
magnetic oscillations of magnetization and conductivity (de
Haas–van Alphen and Shubnikov–de Haas effects). This is
obviously the most stringent requirement for observation of
the described anomalous behavior of the upper critical field.
We expect that impurity scattering suppresses such behavior
similar to the thermal noise. Indeed, in the interpretation of
the quantum-oscillation phenomena scattering is frequently ac-
counted for by introducing a fictitious temperature proportional
to the scattering rate, so-called Dingle temperature.

We only considered the simplest nearest-neighbor interlayer
tunneling process. Additional strong pairing instability may
arise if new van Hove singularities appear in the Landau
band due to the complicated interlayer tunneling processes.
Furthermore, for sufficiently strong Zeeman splitting and/or
small Fermi surfaces for all bands, the higher-Landau-level
gap eigenfunction may be relevant [49]. Influence of the
quantization effects on this gap solution and modification of
the reentrant behavior are other interesting topics for future
study.

The quantum effects considered in this paper may be
relevant to the high magnetic field behavior of several iron-
based superconductors, in particular, for FeSe and LiFeAs
single crystals. The simplest compound FeSe has the transition
temperature ∼8 K [54] and the low-temperature upper critical
field ∼17 T [55,56]. The material can be made clean allowing
for observation of quantum oscillations at fields >20 T [56–
58]. Its band structure is composed of hole and electron bands
with rather small Fermi surfaces. In particular, Shubnikov–de
Haas oscillations show that the smallest Fermi energy for the
electron and hole bands are only 3.9 and 5.4 meV, respectively
[56] (the first energy corresponds to the ratio εF /ωc ∼ 4 at
Hc2). Similar Fermi energies are also observed by ARPES
[57,59–61]. Moreover, the additional field-induced transition
inside the superconducting state has been observed in this
compound near 13 T by thermal conductivity measurement
[55]. The plausible intriguing interpretation of this transition is
the onset of the FFLO modulation along the magnetic field [43].
Such explanation is also consistent with the low-temperature
upturn of the upper critical field. If this interpretation is
correct, then this FFLO transition is likely influenced by
quantum effects. Furthermore, the transition temperature in
FeSe can be increased by pressure up to 20 K at 25 kbar
and the upper critical field increases above 35 T at 14 kbar.
As a consequence, at high pressures, the superconducting
transition in the magnetic field takes place in the region
of pronounced quantum oscillations [62]. As for the most
shallow band εF /ωc ∼ 2 at HC2 in this region, it is clear that
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the quantum effects strongly influence the superconducting
instability.

The 111 compound LiFeAs is one of the few stoichiometric
iron-based superconductors with transition temperature ∼
18 K [63] and zero-temperature c axis HC2 ∼ 24 T [64,65].
The quantum oscillations also have been reported for this ma-
terial in Refs. [66,67]. It has the holelike shallow band located
at the zone center with closed Fermi surface and tiny Fermi
energy μh ∼ 3 meV [67]. It is important to note that this band
actually has the largest superconducting gap [12], meaning
strong participation in the formation of the superconducting
state. In addition, this band can be completely depleted by
small Co doping [12]. The band with so small Fermi energy
definitely should cause noticeable quantum effects near the
upper critical field if the material can be made sufficiently
clean. The quantitative predictions for a particular material
require a detailed knowledge of the electronic spectrum, spin-
splitting factors for all bands, and coupling matrix.

The high-field reentrant superconductivity has been reliably
found at least in one material, Eu-doped Chevrel phases,
EuxSn1−xMo6S8 [68], where an isolated semielliptical super-
conducting region has been observed in the H -T diagram for
T < 1 K and a very wide magnetic field range 4 T < H <

22.5 T. The interpretation of this strong reentrance was based
on the Jaccarino-Peter effect [69], the compensation of the Zee-
man spin splitting due to the interaction with the local magnetic
moments of the Eu dopants. However, such interpretation also
required an assumption of the extremely weak orbital effect of
the magnetic field (a huge Maki parameter αM ≈ 4.8 was used
in the theoretical fits). The reason for this assumption is not
very clear, as the material is isotropic. We cannot, therefore,
exclude that the quantization effects may also play a role in the
formation of the reentrant region.

The newly discovered Dirac/Weyl semimetals [70–74] (see
also review [75]) with very small and tunable Fermi energies
are another interesting system to search for the high mag-
netic field induced superconductivity. Of particular interest
to this paper are the superconducting states that are found
in some compounds under high pressure [76–79]. It has been
demonstrated in Ref. [80] that the orbital quantization in super-
conducting materials with such Dirac-type spectrum can also
lead to the reentrant superconductivity in high magnetic fields.
Furthermore, the similar reentrant behavior has also been found
in the theoretical study on the Dirac-type surface states of
a topological insulator [81]. In contrast to the conventional

quadratic electronic dispersion, the linearly dispersive band
yields nonuniform Landau-level spacing and it has been argued
that this intriguing feature makes the quantum limit much
easier to attain [80]. In addition to this feature, due to the
small cyclotron effective mass near the Dirac point, the Landau
quantization is more robust against disorders [81,82]. So far,
the above studies only considered the Landau-quantization
effects in the uniform states. The possible enhancement of
the FFLO instabilities in the three-dimensional Dirac/Weyl
semimetal due to quantum effects is an interesting problem
to be explored in the future.

Finally, we note that the study in this paper only concen-
trated on the correlation effects in the BCS pairing channels.
For real systems, other correlation effects in spin and charge
channels are also likely to play an important role. Particularly,
the Landau-level miniband is effectively a one-dimensional
system, and the spin and charge fluctuations may have sig-
nificant influence. Indeed, the strong competition between
the pairing and density-wave instabilities may have dramatic
effects and give rise to a new class of strongly correlated
quantum states [83]. The rich strongly correlated phenomena
due to the interplay between these fluctuations in quantum limit
are certainly important problems for future consideration.
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APPENDIX A: CALCULATION OF THE KERNEL
EIGENVALUES

In this Appendix, we give details of the calculations of the
kernels in zero and finite magnetic field.

1. Zero magnetic field

The kernels (3) are composed by the zero-field Green’s
function (4). The effective coupling constant 
0,α [Eq. (9)]
is determined by


−1
0,α = T

Nα

∑
ωn,j ′

∑
kk′
kzk

′
z

∫
r′

e−i[(k−k′)·(r−r′)+(kz−k′
z)(j−j ′)] 1(

iωn − ξα
k + 2tz cos kz

)(
iωn + ξα

k′ − 2tz cos k′
z

) .

Since the system is translationally invariant, it is straightforward to integrate out r′ and sum all j ′. This yields


−1
0,α = N−1

α T
∑
ωn

∑
kkz

1

ω2
n + (ξα

k − 2tz cos kz

)2 .
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We further integrate out k and kz by using
∑

k = Ne

∫ �

−�
dξe for e band (

∑
k = Nh

∫ μh

−�
dξh for h band) with Ne = me

2π
(Nh = mh

2π
)

and
∑

kz
= ∫ π

−π

dkz

2π
. We therefore obtain


−1
0,e =
∑
ωn

∫ π

−π

dkz

2π

[
T

ωn

tan−1 x

ωn

]x=�

x=−�

,


−1
0,h =
∑
ωn

∫ π

−π

dkz

2π

[
T

ωn

tan−1 x

ωn

]x=μh−2tz cos kz

x=−�

.

Note that we assumed � 
 tz. Further simplifying the above expressions, we obtain Eqs. (11a) and (11b) in the main text.

2. Finite magnetic field

a. Deep band

For the deep e band in which the Landau quantization does not play a role, we have the following quasiclassical result for the
kernel eigenvalue:

λe
ωn,Qz

= 2

Ne

∑
kk′kz

∫ ∞

0

ρ dρ exp
[−i(k − k′) · ρ − ρ2

2l2

]
[
iωn − μzH − ξ e

k + 2t ez cos
(
kz − 1

2Qz

)] 1[
iωn − μzH + ξ e

k′ − 2t ez cos
(
kz + 1

2Qz

)] . (A1)

Setting k → k − 1
2 q and k′ → k + 1

2 q, and keeping only the linear order in q, we can approximate the dispersion near Fermi
level as ξ e

k → ξ e
k − 1

2ve · q and ξ e
k′ → ξ e

k + 1
2ve · q. We now integrate out k in Eq. (A1) with the above approximation by using∑

k = Ne

∫∞
−∞ dξe. Extending the energy integration to a closed contour in the complex plane, this yields

λe
ωn,Qz

≈ −πi
∑
kzq

∫ ∞

0
ρ dρ exp

[
−iq · ρ − ρ2

2l2

]{
iωn − μzH + 1

2
ve · q + t ez

[
cos

(
kz − 1

2
Qz

)
− cos

(
kz + 1

2
Qz

)]}−1

.

The absolute value of the momentum k in the Fermi velocity ve(k) is approximately determined by ξe
k = t ez [cos(kz − 1

2Qz) +
cos(kz + 1

2Qz)] giving

v2
e ≈ 2

me

(
μ + 2t ez cos kz cos

Qz

2

)
. (A2)

Exponentiating the denominator as follows,

λe
ωn,Qz

≈ 2π
∑
kzq

∫ ∞

0
ρ dρ exp

[
−iq · ρ − ρ2

2l2

] ∫ ∞

0
ds exp

{
2ζωs

[
ωn + i

[
μzH − 1

2
ve · q − 2t ez sin(kz) sin

(
1

2
Qz

)]]}
,

with ζω = sign(ωn), we integrate out q, which gives

λe
ωn,Qz

≈ 2π
∑
kz

∫ ∞

0
ρ dρ

∫ ∞

0
ds δ(ρ + ζωsve) exp

[
− ρ2

2l2

]
exp

{
2ζωs

[
ωn + i

[
μzH − 2t ez sin(kz) sin

(
1

2
Qz

)]]}
.

Finally, taking the ρ integral, we obtain the eigenvalue of the kernel

λe
ωn,Qz

= 2
∫ ∞

0
ds

〈
exp

[
− 2ζωs

(
ωn + iγ̃ e

z

)− v2
e s

2

2l2

]〉
z

, (A3)

where γ̃ e
z = γz − 2t ez sin kz sin Qz

2 . Substituting the Fermi velocity from Eq. (A2), we obtain Eq. (18).

b. Shallow band

In the case of shallow band, the quantum kernel eigenvalue J1 is defined by Eqs. (19) and (23a). The summation over the
Matsubara frequencies in Eq. (19) can be performed using the relation T

∑
ωn

1
(iωn+z)(iωn−z′) = − 1

2 (tanh z
2T

+ tanh z′
2T

)/(z + z′),
which gives

πT

∞∑
ωn=−∞

λh
ωn

=1

4

M�∑
m=0

m∑
�=0

m!

2m(m − �)!�!

〈T (�+ γ̃z − μ̃h) + T (m − �− γ̃z − μ̃h)

m +1− 2μ̃h

〉
z

,
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where T (x) ≡ tanh[ωc(x + 1/2)/2T ] and the functions μ̃h(kz,Qz) and γ̃z(kz,Qz) are defined by Eqs. (20a) and (20b)
correspondingly. Here, we introduced a new summation index m = � + �′ and cut off the diverging sum over m at M� = 2�/ωc.
The converging function J1 is obtained by subtracting the zero-field limit of this sum at Qz = 0 which yields

J1 = 1

4

M�∑
m=0

m∑
�=0

m!

2m(m − �)!�!

〈T (� + γ̃z − μ̃h) + T (m − � − γ̃z − μ̃h)

m + 1 − 2μ̃h

〉
z

− 1

2

∫ M�

0
dx

〈
T
(

x−1
2 − μ̃h0

)
x − 2μ̃h0

〉
z

(A4)

with μ̃h0(kz) ≡ μ̃h(kz,0) = μ̄h − 2t̄ hz cos kz. This quantity remains finite in the limit � → ∞. Note that the subtracted term can
also be represented as

1

2

∫ M�

0
dx

〈
T
(

x−1
2 − μ̃h0

)
x − 2μ̃h0

〉
z

= πT
∑

0<ωn<�

1

ωn

+ ϒT ≈ 1

2
ln

A�

T
+ ϒT . (A5)

To derive a presentation better suited for numerical evaluation, we split the integration over x as
∫∞

0 dx F (x) = ∫ 1/2
0 dx F (x) +∑∞

m=0

∫ 1/2
−1/2 dx F (m + 1 + x) and subtract the term 〈 T ( m

2 −μ̃h)
m+1−2μ̃h

〉
z

from both m sums making them converging independently. This
results in Eq. (24a) of the main text.

APPENDIX B: LOW-TEMPERATURE ASYMPTOTICS
OF J1(H,T, Qz)

In this Appendix, we analyze the low-temperature behavior of the function J1(H,T ,Qz). In most cases it behaves ∝ln(T )
which gives the finite zero-temperature limit of the total kernel eigenvalue J1 − A1. This zero-temperature limiting value has
square-root singularities when magnetic field crosses the miniband-edge fields [Eq. (29)]. In addition, in several resonance cases
J1 diverges as 1/

√
T . Such behavior may be realized only in the uniform state with Qz = 0 or in the alternating FFLO state with

Qz = π and for special values of the spin-splitting factor γz.

1. Derivation of the pairing kernel near the miniband-edge fields

In this Appendix, we derive the square-root contribution to the pairing kernel eigenvalue J1, Eq. (32), which appears when the
chemical potential enters Landau-level miniband at H = H�0,σ,δt

[see Eq. (29)]. The singular behavior is coming from the terms
with � = �0 for σ = 1 (m − � = �0 for σ = −1) in the Landau-level sum (A4). The corresponding singular term can be written
as

rm,�0,σ (ωc) =
〈

tanh
[ωc(�0−σγz+ 1

2 )−μh+2thz cos(kz− 1
2 Qz)

2T

]
m + 1 − 2

(
μh − 2thz cos kz cos Qz

2

)
/ωc

〉
z

.

At T → 0 we can replace tanh(A/T ) with the sign function sign(A). For ωc near ω�0,σ,δt
, we use the presentation

ωc

(
�0 − σγz + 1

2

)
− μh + 2thz cos

(
kz − Qz

2

)
= (μh + 2δt t

h
z

)( ωc

ω�0,σ,δt

− 1

)
+ 2thz

[
δt + cos

(
kz − Qz

2

)]
,

which indicates that the main contribution to the difference rm,�0,σ (ωc) − rm,�0,σ (ω�0,σ,δt
) comes from the miniband-edge region

(i.e., near kz = π + Qz

2 for δt = 1 and kz = Qz

2 for δt = −1), where the quadratic expansion of the cosine can be used. This allows
us to evaluate

rm,�0,σ (ωc) − rm,�0,σ

(
ω�0,σ,δt

) ≈ −2δt/π

m + 1 − 2
(
μh + 2δt thz cos2 Qz

2

)/
ωc

√
μh + 2δt thz

thz

√∣∣∣∣1 − ωc

ω�0,σ,δt

∣∣∣∣θ
[
δt

(
1 − ωc

ω�0,σ,δt

)]
,

where θ (x) is step function. We see that rm,�0,σ (ωc) has a singular square-root behavior when ωc approaches ω�0,σ,δt
from the side,

at which the chemical potential is inside the miniband. Collecting the singular terms, we obtain the corresponding result for the
kernel eigenvalue

J1(ωc) − J1
(
ω�0,σ,δt

) ≈ 1

4

∞∑
m=�0

m!

2m(m − �0)!�0!

[
rm,�0,σ (ωc) − rm,�0,σ

(
ω�0,σ,δt

)]
.

Substituting the difference rm,�0,σ (ωc) − rm,�0,σ (ω�0,σ,δt
) from the previous equation, we arrive at Eq. (32) of the main text.

2. Uniform state ( Qz = 0) and 2γz = jz

We analyze the low-temperature divergence of the function J1(H,T ,Qz) in the uniform case when the spin-splitting energy
matches the Landau-level separation, i.e., γz = jz/2. In this case, a singular behavior takes place when the chemical potential
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matches the Landau-level energy at kz = 0 or π corresponding to the condition (�0 + 1
2jz + 1

2 )ωc = μh ∓ 2thz . To extract the
leading low-T divergence, we will use Eqs. (A4) and (A5). First, near T = 0, the second term of Eq. (A4) diverges as ∼ln T .
The dominating low-T divergent contribution is coming from the first term with m = 2�0 + jz and � = �0:

J1 � ωc

8thz

(2�0 + jz)!

22�0+jz (�0 + jz)!�0!

∫ π

0

dkz

π

tanh thz (cos kz∓1)
T

cos kz ∓ 1
. (B1)

Making the substitution x = thz
T

(cos kz ∓ 1), we obtain

J1 � ωc

8π
√

T thz

(2�0 + jz)!

22�0+jz (�0 + jz)!�0!

∫ 2thz /T

0
dx

tanh x

x3/2
√

2 − T x/thz
. (B2)

In the limit T � thz , using
∫∞

0 dx x−3/2 tanh x = √
2(2

√
2 − 1)ζ (3/2)/

√
π , we obtain Eq. (34) in the main text.

We derive a more accurate asymptotics for the strongest resonance, �0 = 0 and jz = 0. Substituting ωc = 2(μh ∓ 2tz) for
kz = 0/π and Qz = 0 into the Eq. (A4), we obtain

J1 = 1

2

2�/ωc∑
m=0

m∑
�=0

m!

2m(m − �)!�!

〈
tanh �−2t̄ hz (±1−cos kz)

2T/ωc

m − 4t̄ hz (±1 − cos kz)

〉
z

− 1

2
ln

A�

T
− ϒT . (B3)

At low temperatures, we can replace tanh → 1 in all terms except m = 0. This gives

J1 �1

2

〈
tanh thz (1 ∓ cos kz)

T

4t̄ hz (1∓ cos kz)
+

∞∑
m=1

[
1

m + 4t̄ hz (cos kz ∓ 1)
− 1

m

]〉
z

+ 1

2

(
2�/ωc∑
m=1

1

m
− ln

A�

T

)
− ϒT .

Using limN→∞ (
∑N

m=1
1
m

− ln N ) = γE and performing averaging with respect to kz, we finally obtain

J1 ≈ Cωc√
thz T

+ R∓
(
t̄ hz
)− 1

2
ln

ωc

πT
− ϒT , R∓

(
t̄ hz
) = 1

2

∞∑
m=1

⎛
⎝ 1√

m
(
m ∓ 8t̄ hz

) − 1

m

⎞
⎠, (B4)

where C = (2
√

2 − 1)ζ ( 3
2 )/(8π3/2) ≈ 0.1072 and ζ (x) is the Riemann zeta function. Subtracting A1 gives Eq. (35) of the main

text.

3. Alternating state ( Qz = π )

For the alternating case Qz = π , the resonance conditions are given by Eqs. (36a) and (36b) corresponding to t̄ hz =
1
4 (�π − �0 ± 2γz) and μ̄h = 1

2 (�0 + �π + 1). Substi-
tuting these relations into the first term of Eq. (A4) and using μ̃h(kz,π ) = μ̄h, γ̃z(kz,π ) = γz − 2t̄ hz sin kz, we obtain

J1(H,T ,π ) � 1

4

∞∑
m=0

m∑
�=0

m!

2m(m − �)!�!(m − �0 + �π )

×
〈

tanh
2� − �0 − �π ± 2γz + (�π − �0 ± 2γz) sin kz

4T/ωc

+ tanh
2(m−�)−�0−�π∓2γz−(�π−�0±2γz) sin kz

4T/ωc

〉
z

.

The singular term m = �0 + �π requires resolution of a “zero over zero” uncertainty which leads to

J1(H,T ,π ) � ωc

8T

�0+�π∑
�=0

(�0 + �π )!

2�0+�π (�0 + �π − �)!�!

〈
sech2 �0 + �π − 2� ∓ 2γz −(�π − �0 ± 2γz) sin kz

4T/ωc

〉
z

.

The terms for which |�0 + �π − 2� ∓ 2γz| = |�π − �0 ± 2γz| are divergent. This condition is always satisfied for � = �π and this
term is

J1(H,T ,π ) � ωc

16πT

(�0 + �π )!

2�0+�π �0!�π !

∫ π

−π

dkzsech2 thz (1 + sin kz)

T
.

At low temperatures T � thz , the dominating contribution to the integral comes from the region near the inflection point kz = −π/2
and the integration can be approximately evaluated using the substitution kz = −π/2 +√2T x/thz , giving∫ π

−π

dkzsech2 thz (1 + sin kz)

T
≈
√

2T

thz

∫ ∞

0

dx√
x cosh2 x

=
√

2T

thz

(2
√

2 − 1)ζ
(

3
2

)
√

2π
.
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Therefore, we obtain

J1(H,T ,π ) � C

2

(�0 + �π )!

2�0+�π �0!�π !

ωc√
T thz

, (B5)

where the constant C is defined after Eq. (B4). We also mention that in the exceptional cases when 2γz is integer, the term with
� = �0 − 2γz also diverges and this gives additional diverging contribution

J1(H,T ,π ) � C

2

(�0 + �π )!

2�0+�π (�π + 2γz)!(�0 − 2γz)!

ωc√
T thz

.

We again derive a more accurate asymptotic for the strongest resonance of this kind with thz /μh = γz and ωc = 2μh. Near the
first Lifshitz transition, μh > 2thz which implies that γz < 0.5. For these relations, the function J1 becomes

J1 = 1

4

M�∑
m=0

m∑
�=0

m!

2m(m − �)!�!m

〈
tanh

� + γz(1 + sin kz)

2T/ωc

+ tanh
m − � − γz(1 + sin kz)

2T/ωc

〉
z

− 1

2
ln

A�

T
− ϒT . (B6)

Note that the m = 0 term again has “zero over zero” uncertainty. All terms in the sum remain finite for T → 0 except the
m = � = 0 term. Therefore, we separate this diverging term from the sum and take the limit T → 0 for the rest of the terms. This
yields

J1 � ωc

8T

〈
sech2 γz(1 + sin kz)

2T/ωc

〉
z

− 1

2

∞∑
m=1

1

2mm
+ 1

2

M�∑
m=1

1

m
− 1

2
ln

A�

T
− ϒT ≈ C

2

ωc√
T thz

− 1

2
ln

2ωc

πT
− ϒT . (B7)

This corresponds to Eq. (38) in the main text.

APPENDIX C: PHASE DIAGRAMS FOR THE DEEP-BAND
DOMINATING SCENARIO

In the main text, we mostly presented results for the
interband-coupling scenario (
ee = 
hh = 0), for which the
shallow band is essential for the formation of the supercon-
ducting state and the quantization effects caused by this band
are very pronounced. In this appendix, we consider the phase
diagrams for the alternative scenario when the deep band
itself has strong pairing strength and the interband coupling
induces superconductivity into the shallow band, i.e., 
ee >


he,
eh,
hh. In such scenario, the Lifshitz transition weakly
affects superconductivity as is indeed realized in several iron-
based superconductors. On the other hand, the influence of the
shallow band is only noticeable if it has substantial contribution
to pairing, i.e., the interband coupling constants 
he and 
eh

should be comparable with 
ee. Note that we focus in this
paper on the scenario when there is no intraband pairing in the
shallow band 
hh = 0. Such pairing would further enhance
shallow-band quantization effects. For illustration, we use the
coupling constants 
ee = 0.3 and 
he = 
eh = 0.2 in this
appendix. This corresponds to the ratio 
he/
0,e ∼ 0.54 in
Fig. 7.

We consider the resonant case first. Figure 12 shows the
representative H -T diagrams for γz = 0.5. The diagrams are
presented for three values of the interlayer hopping energies
thz shown in the plot. We can see that the overall behavior is
similar to the interband-coupling scenario shown in Fig. 8. The
quantitative difference is that the size of the reentrant region is
rather small even in the 2D case and it further diminishes with
increasing the interlayer tunneling. Already for small interlayer
hopping energy, thz = 0.1TC , the maximum TC2 drops below
0.02TC .

In a more generic nonresonant case (noninteger 2γz), two
features of the H -T diagrams have been emphasized in the
main text: (i)the interlayer FFLO instability accompanied by

the enhancement of the upper critical field at low temperatures
and (ii) the emergence of reentrant states for the magnetic
fields slightly below the crossings of two miniband-edge
field lines. We find that the FFLO instability in the main
superconducting region is robust. For example, Fig. 13(a)
shows the magnetic-field–temperature phase diagram for the
same electronic parameters as in Fig. 9(a) but for large pairing
strength in the deep band (the same coupling constants 
ee =
0.3, 
he = 
eh = 0.2, and 
hh = 0). For these parameters,
the shallow band induces the FFLO instability at T ≈ 0.1TC

accompanied by the upturn of the upper critical field at lower
temperatures. This upturn is much smaller than the one for
the interband-coupling scenario presented in Fig. 9(a). It is

FIG. 12. The representative H -T diagram for the resonant case
γz = 0.5, within the deep-band coupling dominating scenario. We
have used the coupling constants 
ee = 0.3, 
he = 
eh = 0.2, and

hh = 0. Other parameters are μh = 1.5TC , μ = 10.5TC , and me =
mh. The interlayer hopping energies th

z are shown in the plot.
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FIG. 13. The magnetic-field–temperature phase diagrams for the nonresonant case γz = 0.3 and dominating deep-band coupling 
ee =
0.3 > 
eh = 
he = 0.2. (a) The diagram for the same spectrum parameters as in Fig. 9(a). The inset zooms into the low-temperature region
for the same Fermi energy as in the main plot and for a smaller value μh = 0.9TC . In the latter case, the HC2 line has a pronounced upturn at
low temperatures caused by the proximity to the van Hove singularity. (b) The example of the H -T phase diagrams with reentrant regions for
the same parameters as in the previous figure except smaller th

z = 0.3TC and different μh. The inset shows the low-temperature region for two
values of μh for which the reentrant region is connected with and separated from the main domain.

enhanced, however, when the miniband-edge field approaches
the zero-temperature HC2. This can be seen from the inset
which also shows the low-temperature behavior of the HC2 line
for the smaller Fermi energy μh = 0.9TC , where the HC2 line
approaches the miniband-edge field “2↓ + tz” at T → 0. Such
enhancement is only observed for few special values of the
Fermi energy, while the behavior illustrated in the main figure
is typical. Another difference from the interband-coupling
scenario is that the modulation wave vector remains rather
small, Qop < 1, much smaller than the optimal wave vector
favored by the shallow band.

We find that in the dominating deep-band regime the
reentrant behavior is not realized for the electronic parameters
used in Fig. 9. Nevertheless, this behavior does appear for
smaller interlayer hopping energy and/or smaller Fermi energy
of the deep band. For example, Fig. 13(b) presents of the phase
diagram for thz = 0.3TC and μh = 2.05TC . In this case, the
reentrant region connected with the main domain exists. As
one can see from the inset, it separates at slightly larger μh.
This region is caused by the closely located miniband-edge
fields for � = 3/spin down/kz = π and � = 1/spin up/kz = 0.
Such reentrance only exists within narrow range of the Fermi
energies.

For better representation of the overall behavior, we show in
Fig. 14 the dependences of the low-temperature upper critical
field on the Fermi energy μh. The lower curve in the lower plot
is made for parameters thz = 0.45TC and ε0 = 12TC (first set).
The same plot is also shown in Fig. 10. There are no reentrant
regions for this parameter set. To illustrate the emergence of
such regions and other general trends, we also present HC2(μh)
dependences for (i) smaller energy separation between the band
edges ε0 = 8TC (the upper curve in the lower plot, second
set) and (ii) smaller interlayer hopping energy thz = 0.3TC

(upper plot, third set). Note that the parameter ε0 controls
the Fermi energy of the deep band μ = ε0 − μh. In all cases,

the HC2(μh) curves have pronounced oscillations and have a
clear tendency to follow the miniband-edge field lines. As we
already mentioned, for the first set HC2(μh) is a single-valued

FIG. 14. The dependences of the upper critical field on the Fermi
energy μh for the case of dominating deep-band pairing. The lower
plots are computed for the interlayer hopping energy th

z = 0.45TC

and two values of separation between the band edges ε0 = 8TC and
12TC . The upper plot is computed for th

z = 0.3TC and ε0 = 12TC .
The dashed lines show the miniband-edge fields defined by Eq. (29).
The vertical dotted-dashed lines mark locations of the first Lifshitz
transition at zero magnetic field.
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function reconfirming the absence of the reentrant behavior.
We see, however, that the HC2(μh) line has the pronounced
kinklike features near the crossing of the miniband-edge lines.
For the Fermi energies at the maxima, the HC2(T ) line has a
pronounced low-temperature upturn, as illustrated in the inset
of Fig. 13 for μh = 0.9TC . For the second and third sets,
multiple solutions for HC2(μh) appear below some crossing
points corresponding to existence of the reentrant behavior in

these regions. For example, for the thz = 0.3TC (upper plot),
such regions are located near μh = 1.28 and 2.1TC . We also
see that for these sets a kinklike feature also exists below
the first Lifshitz transition at μh = 0.9TC , in the region of
closed Fermi surface, where the HC2 curve separates from
the “1↓ + tz” line. It is clear that the reentrant regions will
become more pronounced with further decreasing of either thz
or ε0.
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